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1. Introduction

Nowadays, the accurate measurement of signifcant parameters is an essental task for scientfc
and industrial felds. As examples we can menton, the monitoring of glucose for diabetc people
and the environmental monitoring of emergence pollutants, such as pestcides or heavy metals,
derived from industrial actvity (Ogrodzki 2009, Mimendia, Guterrez, Leija, Hernandez, Favari,
Munoz et al., 2010). The evaluaton of toxic compounds in food and beverage products before
human  consumpton  is  an  essental  task  as  well.  To  carry  out  monitoring,  specialized
instrumentaton such as mass spectrometry, gas or liquid chromatography and electrophoresis
techniques are applied. The listed methods usually ofer reliable results, ensuring that that the
desired parameter is measured with high sensitvity, selectvity and accuracy even in complex
samples  (e.g.  food  samples,  human  blood  or  polluted  river  water)  where  interference  can
devalue the instrument response (Rodriguez-Mozaz, Lopez de Alda & Barcelo, 2007). However, a
current trend in monitoring is the on-line, contnuous acquisiton of data from parameters of
interest. Most of the mentoned methods are designed for a controlled laboratory environment
rather than for an in-situ and contnuous measurement. 

As an alternatve to laboratory techniques, chemical sensors were proposed as simple analytcal
tools providing selectve informaton about a specifc analyte in the sample. Biosensors are a
special group of chemical sensors, where a biological material is used as bioreceptor for getng
highly  specifc  informaton  about  a  specifc  analyte  in  the sample  (Thevenot,  Toth,  Durst  &
Wilson, 1999).  Nowadays,  biosensors  development  is  a  growing  feld  with  thousand  of
publicatons every year devoted to environmental,  food and beverage industry,  security  and
medical applicatons (Ivnitski, Abdel-Hamid, Atanasov & Wilkins, 1999; Rodriguez-Mozaz, Marco,
de Alda  & Barcelo, 2004; Campas, Prieto-Simon  & Marty, 2007; Arduini,  Amine,  Moscone &
Palleschi, 2010).  Since  biosensors  are  base  on  molecular  recogniton,  devices  for  specifc
compounds can be potentally designed for fast, low cost and portable applicatons such as the
hand held glucose meter for diabetc people. 

In spite of their widespread in scientfc literature, very few biosensors have reached commercial
success outside of laboratory tests. One reason could be, the single analyte approach, which is a
disadvantage when compared with some powerful multanalyte established techniques (Luong,
Male  & Glennon, 2008).  To  enhance  biosensor  performance  chemometric  tools  have  been
proposed as sensitve calibraton models. Especially artfcial neural networks (ANN) have been
proposed as calibraton tools because their ability to model non linear signals, commonly found
in biosensors (Almeida, 2002). In additon, a multanalyte approach to provide informaton about
several  analytes  present in  sample  is  possible with  ANN modeling (Bachmann,  Leca,  Vilatte,
Marty, Fournier & Schmid, 2000). In spite of their advantages,  chemometric tools have been
barely applied to biosensors but when applied they have shown an improvement in the whole
system performance. 

This chapter is devoted to the review of artfcial neural networks in the feld of biosensors.
Papers from 1995 to 2012 are presented and their applicatons for modeling, calibraton tool for
multanalyte  approach  is  presented.  Biosensing  platorms  applied  to  on-line  detectons  in
industrial process or environmental monitoring are also introduced.
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2. Biosensors

2.1. Principles

In the broad sense, a sensor is a device able to convert the measurand into a measuring signal.
For chemical sensors, the measurand is usually a chemical property or a specifc component
(analyte) in a sample of interest. The sensing informaton may be originated from a chemical
reacton of the analyte or from the change of a physical property in the sample (Thevenot et al.,
1999).

Chemical  sensors  have two basic  sequentally  connected  components,  namely  receptor  and
transducer. When the receptor is based on a biochemical mechanism the whole device is called
a biosensor, which is shown in fgure 1. According with the Internatonal  Union of Pure and
Applied Chemistry  (IUPAC),  a biosensor  is  an integrated receptor-transducer device which  is
capable of providing selectve quanttatve or semi-quanttatve analytcal informaton about a
specifc analyte using a biological recogniton element (Thevenot, Toth, Durst & Wilson, 2001). In
the  beginning,  biosensors  main  applicatons  were  intended  for  the  biomedical  feld  (i.e.
monitoring of biological samples such as glucose in human blood), but the current trends in
biosensing monitoring include environmental, food, pharmaceutcal and security felds (Luong et
al., 2008).

Figure 1. Typical representaton of a biosensor 

Biosensors can be classifed according with their biological  recogniton method or with their
signal  transducton  mode.  For  the  biological  recogniton  method  two  main  categories  are
distnguished: biocatalytc devices and afnity sensors (Ronkainen, Halsall & Heineman, 2010). In
biocatalytc  sensors  enzymes,  whole  cells  (i.e.  bacteria,  fungi,  eukaryotc  cells)  and slices  of
tssues (plants or animals) are used as recogniton element. In these devices, the immobilized
bioreceptor  catalyzes  a  reacton  which  produces  a  detectable  compound.  For  this  group,
enzymes are the most commonly found bioreceptors. The advantages of biocatalytc biosensors
are  the  compact,  easy  to  use  and  cheap  design,  which  is  exemplifed  in  the  commercially
successful blood glucose biosensor (Luong et al.,  2008; Chen, Xie, Yang, Xiao, Fu, Tan,  et al.,
2013). However, when analytes of interest are not notceable by biocatalytc receptors or their
inherent selectvity is afected by components present in complex samples, afnity biosensors
are preferable. In this group the fnal signal is the result of the highly selectve binding between

145



R.B. Domínguez Cruz, A.A. Alonso, R. Muñoz, J.L. Marty

the  target  analyte  and a  biomolecule  (e.g.  antbody).  The recogniton is  determined  by  the
complementary size and shape of the binding site to the analyte of interest. 

In additon to bioreceptor, biosensors can be classifed accordingly with their transducer mode.
Electrochemical transducers cover the majority of the current reported literature on biosensors,
while optcal,  piezoelectric and thermal  transducers represent  the minority (Thevenot et  al.,
2001).  For the electrochemical  transducer,  the interacton between the bioreceptor and the
target  analyte  produces  detectable  electroactve  specie  that  can  be measured  as  a  current
(amperometric detecton) or a potental (potentometric detecton). Changes such as conductve
propertes in the medium or alteraton on the resistance can be electrochemically detected as
well. Transducers based on optcal methods can transform a change in the refectance of the
surface, which is induced as a result of the interacton between the bioreceptor and the analyte.
For this group, surface plasmon resonance and spectroscopy are among the most commonly
found techniques in literature and in commercial available systems.

2.2. Single analyte detecton

Regardless the classifcaton, the highly selectve detecton of a target analyte is one of the main
(if not the main) features of biosensors. In all the cases, as a result of this selectve interacton a
well  defned signal  proportonal  to  the  concentraton  of  the  target  analyte  is  expected.  For
quanttatve informaton,  a  mathematcal  relatonship  is  established between stock  solutons
with well-know concentraton of the studied analyte and the resultng signal. Usually, a specifc
representatve feature of the signal (e.g. maximum current, maximum absorbance) is chosen to
be related with the known concentraton trough a simple linear model. Biosensor performance is
tested  with  new  samples  with  unknown  concentraton;  the  accuracy  of  determinaton  is
analytcally evaluated by the coefcient of determinaton (R2) and the recovery percentage. This
procedure is plenty in specialized literature and suitable for controlled laboratory conditons for
single target analyte detecton. 

2.3. Biosensor arrays

A single test  is  intrinsically  implicit  in  biosensor operaton since a single device can provide
informaton about only one specifc component of the analyzed sample. This can be a restricton
for biosensor inclusion in analytc applicatons where a multanalyte approach is preferred (i.e.
medical  diagnosis,  environmental  monitoring)  (Mimendia,  Legin,  Merkoci  & del  Valle, 2009;
Escuder-Gilabert & Peris, 2010; Mimendia et al., 2010). For this issue sensor arrays are a good
alternatve. The concept of sensor array was frstly applied for gaseous sample in the analytc
devices known as electronic noses (EN). Later, the concept was extended to liquid samples in the
electronic tongue (ET) device. Both, EN and ET were able to provide analytcal informaton of
complex  samples,  while  keeping  a  simple  and  relatve  low  cost  instrumentaton.  The  main
features  were  the  inclusion  of  sensors  with  diferent  selectvites  and  sensitvites  towards
multple analytes and the use of high order chemometric tools for data processing (del Valle,
2010; Escuder-Gilabert & Peris, 2010). The extension of this methodology to biosensor feld was
possible  with  the  inclusion  of  new  technologies  for  the  development  of  micro  arrays  with
diferent  immobilized  bioreceptors  and  the  inclusion  of  instrumentaton  for  multchannel
measurements. Besides, new immobilizaton methods for bioreceptors, the improving of existng
biosensors and the inclusion of novel biosensors for new analytes of interest will result in wider
analytcal applicatons for biosensor arrays.
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3. The role of Artficial Neural Networks in biosensor applicatons

3.1. Foundatons of Artficial Neural Networks in biosensor data modeling

The  main  interest  for  a  chemical  model  is  to  establish  a  relatonship  between  a  set  of
measurements  and  a  set  of  target  results  (e.g.  concentratons)  (Rodionova  & Pomerantsev,
2006). This mathematcal relatonship has been modeled by several ways, but in the last decades
chemical  feld  underwent  a  revoluton  with  the  development  of  sophistcated  complex
equipment along with high speed computer facilites, resultng in large amount of data (chemical
data). Therefore, there was an urgent need to analyze such as higher order informaton with
propel models to extract meaningful informaton. This fact promoted the development of the
chemistry  discipline  known  as  chemometrics,  which  basically  is  dedicated  to  fnd  relevant
informaton  from  the  measured  chemical  data  (Rodionova  & Pomerantsev,  2006).  Several
models (linear and non-linear) are developed, covered and studied by chemometrics.  Within
these models, ANNs are of great interest as modeling and calibraton tools (Marini, 2009). ANNs
are  mathematcal  models  attemptng  to  mimic  biological  neural  networks  functoning  in  a
simplifed way. Even historically ANNs are related with Artfcial Intelligence,  they have been
successfully  applied  in  several  branches  of  analytcal  chemistry  (Smits,  Melssen,  Buydens  &
Kateman, 1994). History of Artfcial Intelligence as discipline and ANN models has been covered
by several reviews and book chapters and will not be covered here extensively. The main focus
of  this  secton  is  the  applicaton  of  ANN  models  for  chemical  science,  in  partcularly  for
biosensors  and  biosensor  arrays  as  alternatve  methods  to  obtain  relevant  informaton  for
analytcal purposes. 

The main ANN architectures found in chemical literature are Multlayer Perceptron (MLP) and
Radial  Basis  Functon  (RBF).  For  MLP,  usually  a  three-layer  architecture  is  preferred  but
architectures with more layers can be found as well. When a single biosensor is modeled the
input number of variables is defned by the meaningful features of biosensor measurement (e.g.
peak height, peak area, maximum absorbance or intensites). When a biosensor array is modeled
the number of neurons in the input layer is the number of elements in the array. Components in
the output layer are usually the expected values for target analytes, but predicton of biosensor
behavior  can  be  also  found  as  ANN  output.  A  three  layer  MLP  can  be  described  as  the
computaton of No functons of Ni input variables. Each functon is a weighted combinaton of the
non-linear functons computed by the neurons in the hidden layer that can be expressed as
follow:

yk ( x) = g(∑j=1
N h

w kj f (∑
i=1

N I

w ji x i+w j0)+w k0)
Where

yk is the kth component of the output vector

wkj hidden to output weight

wij input to hidden weight

f and g are the non-linear actvaton functons
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Fixing the weights in ANN architecture to fnd the values that best map the input experimental
data to the desired output (i.e. optmizaton) is generally performed by the back propagaton
training algorithm. The goal is to change iteratvely the weights between neurons in a directon
that minimizes the error (E), according to the steepest descendent method (Marini, 2009).

A diferent architecture barely found in biosensor modeling is the Radial Basis functon neural
network (RBF-NN). While architectures of RBF-NN and MLP are similar, the diferences are in the
actvaton functon used by RBF-NN. Radial basis functon, and especially Gaussian basis functon,
is used in the hidden layer. Other parameters to optmize in these architectures are the center,
and the scale. An output for this architecture can be written as

y k ( x) =∑
j=1

N h

w kjρ (∥x−μ j∥)

Where

yk is the kth component of the output vector

wkj hidden to output weight

ρ radial basis functon

x input vector

Preprocessing of biosensor signals is usually focused on extractng meaningful features to feed
the ANN model (Jakubowska 2011). However and since biosensors are designed to be highly
selectve to target analyte most of the signals are univariate (i.e. steady state potental, enzyme
actvity). However when techniques such as cyclic voltammetry are used, preprocessing stages is
necessary  because  of  the  high  informaton  order  (e.g.  number  of  records)  of  data  (Ceto,
Cespedes & del  Valle, 2012).  This  is  the  case  for  spectroscopy  records,  diferental  pulse
voltammetry and transient  potentometric  records.  Table 1 list  the preprocessing techniques
found for this review along with the input signal and target analyte.

Analyte Signal Preprocessing technique Reference
Polyphenols BA1 Fast Fourier Transform (FFT) (Ceto et al., 2012)
Polyphenols BA Windowed sliced integral method (Ceto, Cespedes & del Valle, 2013)
Glucose BA Baseline correcton (Gutes,  Ibanez,  del  Valle  &  Cespedes,

2006)
Glucose, urea SB2 Mean values of FIAgram segments (Hitzmann,  Ritzka,  Ulber,  Scheper  &

Schugerl, 1997)
Simulaton SB Canonical Correlaton Analysis (CCA),

Principal Component Analysis (PCA)
(Baronas,  Ivanauskas,  Maslovskis  &
Vaitkus, 2004)

1Biosensor, 2Single biosensor

Table 1. Preprocessing techniques for chemical data

For  training  the  model  an  appropriate  set  of  well  known  samples  is  selected  from  the
concentraton range to be modeled (Smits et al., 1994). A separate set of chemical data is usually
prepared for testng the trained model. The testng set is comprised by new samples, which did
not account in the training and/or by real samples (e.g. juice, wine, human blood, urine). Cross
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validaton is the commonly applied method but some others such as jack-knife has been also
reported (Marini, 2009). The accuracy of the model is measured as a functon of some analytcal
fgures of merit. The most commonly found are the sum of square errors (SSE), the root mean
square error (RMSE), the relatve absolute error  (RAE),  the coefcient of correlaton (R),  the
coefcient of determinaton (R2), the slope and intercept of the straight line formed by predicted
values of ANN model versus the expected ones and recovery yield (Pravdova, Pravda& Guilbault,
2002; Esteban, Arino & Diaz-Cruz, 2006; Rodionova & Pomerantsev, 2006; Marini, 2009).

Finally, one of the reasons of chemometric growing is the availability of proper sofware for data
analysis.  For  ANN  development  the  table  2  list  the  available  sofware  and  some  custom
implementatons found in this review. 

Architecture Software Reference
MLP MATLAB (Alonso,  Istamboulie,  Noguer,  Marty  &  Munoz,

2012)
MLP NEMO1.15.02 (Bachmann et al., 2000)
MLP Turbo Pascal (Hitzmann et al., 1997)
MLP Stuttgart Neural Network Simulator (Reder, Dieterle, Jansen, Alcock & Gauglitz, 2003)
MLP Python (Glezakos,  Moschopoulou,  Tsiligiridis,  Kintzios  &

Yialouris, 2010)

Table 2. Available software for Artficial Neural Network modeling

4. Applicatons

This secton covers the published works from 1994 to 2013 dealing with single biosensors or
biosensor arrays coupled with artfcial neural networks (ANN) for analytcal purposes. In general
ANNs are preferred as chemometric tools because their ability to accurately model non-linear
data commonly found in single biosensors and biosensor arrays. The applicability of biosensors
coupled with ANN is shown by the broad range felds included in this analytcal methodology.
Even biosensors and biosensors arrays have been modeled with other calibraton tools, only
those applicatons modeled with ANN will be considered for this secton. 

4.1. Modeling and simulaton of biosensor response

In general,  biosensors are characterized by non linear responses towards target analytes.  As
stated, simple calibratons do not represent accurately biosensor response in the whole range of
quantfcaton.  The  works  in  this  secton  focus  on  the  improvement  of  biosensor  analytcal
performance  towards  ANN  modeling.  A  second  approach  considered  is  the  modeling  of
biosensor behavior afer operatonal conditons changes. This is mainly achieved by simulaton
performed  by  ANN  models  and  could  be  applied  for  predictng  biosensor  response  under
changing conditons

Estmaton of formate with a polypyrrole based biosensor signals were performed by Talaie et al.
(Talaie, Boger, Romagnoli, Adeloju & Yuan, 1996). Problems in the quantfcaton were related to
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uncontrolled  changes  in  the  measured  signals  for  diferent  formate  concentratons.  A
preprocessing was applied in order to reduce signal  drifs. Baseline correcton, centering and
standardizaton were applied to the training data set. For the centered data, the highest value in
electrical current and the surrounding 21 values were taken as input values for ANN model.
Conjugated gradient and sigmoid transfer functons were chosen for the fnal model which was
not validated with an external test set. In a diferent study, ANNs were used as multvariate
calibraton tools for a single glucose oxidase polypyrrole biosensor. Calibraton in the direct and
inverse  modeling  was  performed  to  assess  both,  sample  concentraton  and  biosensor
performance  according  with  the  measured  parameters.  For  this  ftng  functon  task  ANN
obtained correlaton coefcients of 0.99 for both models (direct and inverse) with an external
test set (Seker & Becerik, 2004). 

Hitzman et  al.  (1997) quantfed glucose and urea separately from two En-FET using glucose
oxidase and urease as bioreceptor. Segments of FIAgram at a fxed analyte concentraton afer
applying diferent pHs were used as ANN inputs.  Predicton of glucose and urea showed an
average error of 4.5% and 5.5% respectvely. Quantfcaton of phenolic content was assessed
from  an  optcal  tyrosinase  biosensor  and  artfcial  networks.  Five  absorbencies  intensites
measured at selected wavelengths (440,490,560 and 610 nm) were the inputs of an ANN with 23
neurons  in  the  hidden  layer  and  1  neuron  in  the  output  layer,  corresponding  to  phenol
concentraton. Network parameters such as number of neurons in the hidden layers and training
parameters such as learning rate and epochs were extensively studied and optmized to 21,
0.001 and 30000 respectvely. ANN testng with additonal 10 absorpton spectra data showed an
improvement in the range of quantfcaton for the studied biosensor. For simple calibraton
linear range was limited to 0.5-6 mgL-1 while ANN allowed a wider quantfcaton range of 0.5-20
mgL-1 (Abdullah, Ahmad, Heng, Karuppiah & Sidek, 2008).

Mixtures of ethanol and glucose were quantfed in a study exploitng non-specifcity of microbial
biosensors (Lobanov, Borisov, Gordon, Greene, Leathers  & Reshetlov, 2001). Bacterial cells of
Gluconobacter  oxydans and  yeast  cells  of  Pischia  methanolica were  used  to  construct
amperometric biosensors. The frst bioreceptor showed a high sensitvity to glucose an ethanol,
while  the  second showed sensitvity  only  to  ethanol.  Afer  signal  preprocessing  (smoothing,
removal of signal peak outburst and zero drif), the rate of change of electrode current towards
binary  mixtures  was  used  as  biosensor  response.  Obtained  data  for  binary  mixtures  was
represented in a three dimensional space with concentratons of ethanol and glucose as abscise
and  ordinate  and  biosensor  response  as  applicate.  In  a  numerical  approach,  the  resultng
surfaces for both biosensors were approximated by second order polynomials.  When a new
(unknown concentraton) sample was used, the actual concentraton was determined according
with the ftng in calibraton surfaces for both biosensors. Alternatvely, the rates of change of
both biosensors along with the tme from the start of measurement were used as input for an
ANN model. Normalized values were used for estmaton of both glucose and ethanol with a
single model.  Resilient back propagaton was used as training algorithm and sum of squares
errors  (SSE)  was  used to  assess  the  accuracy  of  analyte  determinaton.  Final  coefcients  of
determinaton for  polynomial  approximaton  were  0.976  and 0.993  for  glucose and ethanol
respectvely, while ANN showed a R2 of 0.995 and 0.992 for the same analytes. While polynomial
approximaton showed a comparable performance with ANN a wider range of concentratons
can be analyzed with ANN.

In a diferent approach, experimental signals coming from glucose and sucrose biosensors were
described with ANN models (Ferreira, De Souza & Folly, 2001). The fnal goal was to evaluate, by
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simulaton, the biosensor performance in a control  closed- loop for an alcohol fermentaton
reactor. Inside the control loop biosensor response was simulated with a second order transfer
functon. Predicton between the control model and the biosensor response modeled by ANN
were compared to study the possibility of including a biosensor in on-line control for alcohol
fermentaton process.  Similarly  in  a  simulaton approach,  synthesized data  corresponding to
mixtures  were  analyzed  (Baronas  et  al.,  2004).  Data  sets  in  batch  and  in  fow  mode were
generated by numerical  simulatons following a full  factorial  design MK = 84 = 4096 responses
(M = substrate concentraton, K = enzymatc rate) randomly divided in training and data set.
Correlaton coefcient analysis (CCA) and Principal Component Analysis (PCA) were applied to
extract meaningful features from simulated data. CCA holds the point with the higher correlaton
for every input vector of data, while PCA retains statstcally independent informaton from the
same vector. ANN was used to distnguish between mixture components and to quantfy their
concentraton. Recovery rates of 99% in both, batch and fow mode, were obtained.

Garcia et al. studied the interacton between substrate concentraton, pH, and temperature in
the  fnal  response  of  an  acetylcholinesterase  biosensor  (Garcia,  Burtseva,  Stoytcheva  &
Gonzalez, 2011). A multlayer perceptron with 5 layers and 30 neurons in each one of the hidden
layers was constructed to predict the behavior of biosensor response afer a know variaton of
the input parameters. Experimental data produced afer variatons of substrate concentraton
(from 0.2 μmolL-1 to 1 μmolL-1), pH (from 5 to 9) and temperature from (25oC to 70oC) were used
for training and testng network with a 5 k-fold cross validaton. In additon to ANN, support
vector  machines  (SVM)  were  used  for  modeling  the  same  data.  Average  MSE%  for  ANN
predicton was found to  be 2.45% in contrast  to  SVM with a  low average value of 0.143%.
Similarly, to predict the dynamic response of a potentometric urea fow-through De Gracia et al.
applied ANN to a single biosensor modeling (deGracia, Poch, Martorell,& Alegret, 1996) x. A four
layer network with six input parameters (height at t1 and t2, tme, injecton volume, fow and
concentraton) and 8 neurons in the two hidden layers was used to predict peak height afer
changes of one of the input values. ANN predicton was compared with experimental records as
well as with deterministc model performance. While deterministc model accurately described
biosensor response, ANN exhibited good predicton ability afer training with a reduced data set.

4.2. Environmental monitoring

Pestcide  quantfcaton  is  one  of  the  most  actve  research areas  in  biosensor  feld.  Several
reviews  covered  the  trends,  advances  and  limitatons  in  biosensors  devoted  to  pestcide
quantfcaton  in  single  and  multanalyte  approach  (Llorent-Martnez,  Ortega-Barrales,
Fernandez-de Cordova  & Ruiz-Medina, 2011; Van Dyk  & Pletschke, 2011; Pundir  & Chauhan,
2012;  Liu,  Zheng  &  Li, 2013).  For  pestcide  quantfcaton,  inhibiton  of  acetylcholinesterase
(AChE)  has  been  used  as  analytcal  parameter  in  single  pestcide  determinatons;  but  for
pestcide mixtures, sensor arrays with engineered AChE and multvariate calibraton with ANN
have been proposed and successfully applied. In the frst work of his kind, Bachman  et al. used
the remaining actvity of AChE multsensor array (biosensor array) afer pestcide exposure to
quantfy the presence of malaoxon and paraoxon in binary solutons (Bachmann et al., 2000).
Two arrays  including  wild  type  AChE  and  mutant  varietes  (Y408F,  F368L  and  F368H)  were
constructed  to  generate  a  distnctve signal  pattern for  sensitve multanalyte  determinaton
(Multsensor I and Multsensor II). Network architecture was optmized using magnitude based
pruning  and  skeletonisaton  methods.  Models  with  the  lower  RMSE  were  selected  for  ten
additonal  runs of  3000 epochs.  Multsensor II  with optmized network architecture (4 input
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neurons,  5  neurons  in  the  hidden  layer  and  1  output  neuron)  was  applied  for  paraoxon
quantfcaton and network architecture of 4 input neurons, 4 neurons in the hidden layer and 1
output  neuron was  used  for  malaoxon determinaton  in  the  range  of  0-5  μgL -1.  Even  both
compounds  exhibit  similar  inhibiton  behavior,  afer  cross  validaton  error  predicton  for
paraoxon was 1.6μgL-1 and 0.9μgL-1 for malaoxon, showing the feasibility of this approach for
quantfcaton of compounds with similar behavior. A similar methodology was used by Cortna
del Valle and Marty (2008) to quantfy binary mixtures of dichlorvos and carbofuran mixtures
Three AChEs (wild type AChE and engineered B1 and B394 varietes) were used as bioreceptors
for  the  biosensor  array.  Enzyme  actvity  afer  pestcide  mixture  exposure  was
spectrophotometrically  studied  by  following  Ellman  method.  For  this  assay,  responses  at
wavelength  412  were  used  as  ANN  input,  while  for  the  electrochemical  assay  remaining
biosensor actvites afer pestcide incubaton were used to train the network. In both cases, data
was normalized between -1 and 1 values.  For each method, three layers ANNs were trained
using  bayesian  regularizaton,  values  for  learning  rate  and  momentum were  of  0.1  and 0.4
respectvely.  For  spectrophotometric  measurements  the  fnal  ANN  architecture  had  four
neurons in the hidden layer with logsig functon; amperometric measurements were modeled
with  3  neurons  in  the  hidden  layer  with  tribas  functon.  Optcal  method  results  showed  a
correlaton coefcient  of  0.995 for  dichlorvos and 0.936  for  carbofuran.  By  the other  hand,
electrochemical  method showed correlaton coefcient  of0.969 for  dichlorvos and 0.918 for
carbofuran. Real samples evaluaton for both methods le to recovery rates range of 89-116%.
Following the same strategy, binary mixtures of chlorpyrifos oxon (CPO) and chlorfenvinfos (CFV)
were evaluated with two diferent three layers ANN (Istamboulie, Cortna-Puig, Marty & Noguer,
2009). Both models had four neurons in the hidden layers, but tansig transfer functon was used
in  the  frst  one  (ANN1)  and  logsig  transfer  functon  was  used  in  the  second  one  (ANN2).
Correlatons of 0.998 for CPO predicton and 0.995 for CFV were obtained with the frst model.
Correlatons  of  0.997 for  CPO predicton and 0.986 for  CFV were obtained with the second
model.  Spiked samples  were  prepared to  probe the accuracy  of  ANN modeling  resultng  in
recovery  rates  of  98%  for  the  tested  concentratons.  One  of  the  main  drawbacks  of
methodologies  based  on  measuring  the  remaining  enzymatc  actvity  afer  incubaton  of
pestcide is  the prolonged analysis  tme.  Thus,  an alternatve method based on the slope of
inhibiton caused by the immediate interacton of pestcide over enzyme actvity in steady state
(without incubaton tme) was used by Alonso et al. for pestcide mixtures quantfcaton (Alonso
et  al.,  2012).  In  this  study three electrodes  based on AChE (B131 and B394 varietes)  were
exposed  to  mixtures  of  CPO,  CFV  and  azinphos-methyl  oxon  (AZMO).  The  slope caused  by
pestcide inhibiton was used to train a three layer ANN model with 3 neurons in the input layer,
95  neurons  in  the  hidden  layer  and  three  neurons  in  the  output  layer.  Values  for  training
algorithm were studied in the range of 0.1 to 0.3 for learning rate and 0.4 to 0.9 for momentum.
Network performance was evaluated according to the lower RAE. Final model resulted in a RAE
of 1.82% for CPO (r = 0.985), 1.51% for CFV (r = 0.991) and 2.3% for AZMO (r = 0.997). Real
samples were applied to the model for simultaneous determinaton of pestcide concentraton.
For the evaluated concentratons recovery rates were in the range of 92.05 to 105.31% for 20
evaluated samples.  A method based on the spectrophotometric  measurements  of enzymatc
kinetcs was used for determinaton of mixtures of carbaryl  and phoxim Ni  et  al.  (Ni,  Deng,
Kokot, 2009). The signals were processed with Radial Base Functon Neural Network (RBF-ANN).
In  additon,  the  highly  non  linear  behavior  of  enzymatc  kinetc  data  was  processed  with
chemometric linear methods such as PLS2, PLS1 and PCR. The efciency of proposed models was
evaluated according to the relatve predicton errors (RPE). For the linear methods RPE values
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were in the ranges between 8.3-15.5% for both pestcides, while for RBF-ANN model RPE value
resulted in 5.2% for carbaryl and 6.5% for phoxim. The accuracy of RBF-ANN model was probed
in  spiked samples  of  lake  water.  Satsfactory  recovery  rates  were  obtained  in  the  range of
98.8-103% for carbaryl and phoxim using this model. 

Untl now, all listed applicatons used biocatalytc biosensors taking advantage of the selectvity
showed  by  AChE  family  towards  pestcide  compounds.  The  work  proposed  by  Reder et  al.
employed the cross  reactvity  of  two polyclonal  antbodies  to  quantfy the presence of  two
analytes: atrazine and simazine (Reder et al., 2003). Calibraton experiments, dealing with the
optmizaton of antbody presence (mixed or separated), were performed according with a full
factorial  design.  Obtained signals were mean centered and autoscaled before  ANN training.
While in all cases predicton performance was lower than expected, the inclusion of diferent
antbodies could improve the discriminaton of triazines.

In a diferent applicaton intended for environmental monitoring, Gutes et al. (2005) proposed
the multvariate calibraton of polyphenol oxidase amperometric biosensor with ANN for the
quantfcaton of three polyphenol compounds namely phenol, catechol and m-cresol. Synthetc
mixtures of three polyphenols were electrochemically analyzed with linear sweep voltammetry.
The  record  containing  34  measurements  intensites  was  used  to  feed  ANN  without  any
preprocessing. For the ANN architecture Bayesian regularizaton was used as training algorithm
and neuron number in the hidden layer was investgated along with a combinaton of transfer
functons with the hidden an output layer. A combinaton of logsig and purelin, with fve neurons
in the hidden layers was chosen as optmal architecture according with the low RMSE obtained
as compared with diferent combinatons. Network predictons were near to optmal values with
correlaton coefcients of 0.988 for phenol, 0.997 for catechol and 0.993 for m-cresol. Even the
fnal goal of the work was to apply the develop methodology to environmental polluton real
samples analysis was not performed. 

Contaminaton by mycrocystns mixtures (LR and YR) was assessment by modeling inhibitons of
two protein phosphatase biosensors with ANN (Covaci, Sassolas, Alonso, Munoz, Radu, Bucur et
al., 2012). Signals from diferent incubaton tmes (20, 30 and 60 minutes) were analyzed. The
network was trained using resilient back propagaton, learning rate of 0.05, momentum of 0.005
and logsig transfer functon. The fnal  architecture for the network was 2 input neurons, 10
neurons in the hidden layer and two neurons in the output layer. Signals from 30 minutes of
incubaton tme were chosen for the fnal model. The obtained correlaton for LR was 0.996 and
0.983 for YR,  while absolute errors in the range of 0,0012 to 0,0073 nM for LR and 0,012 to
0,055 nM for YR. For testng subset average recovery yields for LR was 101.73 and 105.66 for YR. 

4.3. Food analysis

Besides the environmental polluton, polyphenols are present in a variety of classes as natural
antoxidants. This is the case of wine and beer where polyphenols are responsible of antoxidant
propertes and organoleptc propertes (e.g. bitterness, astringency and harshness) (Rodriguez-
Mozaz  et  al.,  2004;  Ceto  et  al.,  2012).  Methods  to  quantfy  polyphenols  include  the  Folin-
Ciocalteu (FC) method, the polyphenol index (I280) and High Performance Liquid Chromatography
(HPLC).  An  alternatve  methodology  based  on  a  bioelectronic  tongue  to  quantfy  the  total
polyphenol  content  in  wine  samples  was  proposed  by  Cetó et  al. (Ceto  et  al.,  2012).  The
biosensor array was comprised by four voltammetric sensors with tyrosinase or laccase enzymes
as bioreceptors. The studied polyphenols were gallic acid, (±)-catechin, p-coumaric acid, cafeic
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acid,  catechol,  phenol,  m-cresol,  ferulic  acid,  chlorogenic  acid  and  quercetn.  For  a  frst
qualitatve analysis,  200 μM of each of the listed polyphenols were added to diferent wine
samples  with  low  polyphenol  content.  The  enhanced  individual  polyphenol  samples  were
analyzed with the biosensor array and the obtained signals preprocessed using PCA. The three
frst components were used to represent data, with an accumulated variance of 99%. Eleven
distnguished  classes  (10  individual  polyphenols,  plus  wine  samples  without  extra  added
polyphenol content) were classifed with and ANN fed with the PCA scores. The network with 3
neurons in the input layer, 7 neurons in the hidden layer and 11 neurons with logsig functon in
the output layer classifed the whole data. Thus sensitvity and specifcity of the ANN classifer
was  100% for  both  parameters.  For  a  quanttatve  approach an ANN model  was  trained to
predict total phenolic concentraton from biosensor response afer analysis of 29 wine samples
of  diferent  varietes.  Original  biosensor  array  informaton  with  dimension  268  x  4  x  29
(intensites  recorded x  number  of  sensors  x  number  of  wines)  was pre-processed with Fast
Fourier Transform (FFT) before network training. The frst 32 Fourier coefcients were used to
represent  each  signal,  leading  to  a  compression  of  88.1%  as  compared  with  the  original
informaton.  Network  architecture  for  quantfcaton  was  fxed  in  128  input  neurons  (32
coefcients for each sensor signal), 6 neurons in the hidden layers with logsig functon and two
output neurons with tansig functon. The results provided by the ANN model were compared
with established methods FC and I280.The ANN methodology obtained a correlaton coefcient of
0.978  when  compared  with  FC  method  and  of  0.949  when  compared  with  I280.  The  main
advantage showed by this monitoring proposal is the simplicity, low cost, sensitvity and rapidity.
The  same group,  performed  and individual  polyphenol  analysis  in  beer  samples  following a
similar methodology (Ceto et al., 2013). Basically, the same biosensor array was used to analyze
synthetc  mixtures  of  ferulic  acid,  gallic  acid  and  sinapic  acid.  Resultng  signals  were  pre-
processed using windowed slicing integral (WSI) method. WSI divided the signals into k sectons;
for feature extracton the area under each secton is calculated and taken as a representaton
(coefcient)  of  that  specifc  segment  of  signal.  For  this  applicaton,  biosensors  signals  were
divided in 11 sectons, and therefore represented by 11 coefcients. A network architecture of
44 input neurons, 5 neurons in the hidden layer (with tansig transfer functon) and 3 neurons in
the output layer provided,  respectvely, correlaton coefcients of 0.977, 0.988 and 0.978 for
ferulic acid, gallic acid and sinapic acid for testng set. Spiked real samples were applied to the
system resultng in average recovery yields of 103%, 103% and 106% for ferulic, gallic and sinapic
acid. 

4.4. Biomedical applicatons

A quantfcaton of urea and interfering alkaline ions (ammonium, potassium and sodium) with a
potentometric bioelectronic tongue in urine samples was carried out by Guterrez et al. The
biosensor array comprised all-solid state potentometric chemosensors and biosensors modifed
with  urease  enzyme.  The  approach  was  proposed  as  a  simple  method  for  simultaneous
quantfcaton of urea and their common interference species in clinical samples. The data set
produced by biosensor array was designed accordingly to a fractonal factorial design with three
levels and four factors (34-1). Calibraton was performed by linear and non-linear tools (PLS1 and
ANN). Network architecture of 12 input neurons (corresponding to 12 sensors in the array), 5
neurons in the hidden layers with tansig functon and 4 neurons in the output layer was chosen
as optmal. The network was trained with Bayesian regularizaton algorithm, learning rate of 0.1
and momentum of 0.4.  Network architecture showed a RMSE = 0.0024 when applied to 10
additonal  samples  used  as  testng  set.  Correlatons  of  0.81,  0.978,  0.995  and  0.992  were

154



Biosensors: Recent Advances and Mathematcal Challenges

obtained for urea, ammonium, potassium and sodium respectvely. The PLS1 model was tested
with the same additonal samples and obtained correlatons of 0.727, 0.818, 0.994 and 0.919 for
the same analytes.  The superior performance of ANN could be attributed to the highly non-
linear nature of biosensor array signals, which was accurately modeled by the non linear transfer
functons in the hidden layer of ANN model. Finally, 18 urine samples were presented to both
models  to  assess  their  accuracy  in  real  clinical  applicatons.  Urine samples  were  previously
analyzed with  reference determinaton procedures  and the obtained results  compared with
those computed by the models. Both, ANN and PLS1 showed a lower performance as compared
with synthetc samples with slopes and intercepts away from ideal values when compared with
reference methods. For ANN model this could be attributed to the high variability introduced by
urine matrix in the biosensor array response, which is not considered in the training data set.
Final average errors were 8% for ANN and 13% for PLS1. 

The same authors extended this study adding creatnine as ffh analyte. By following the same
methodology,  a biosensor based on creatnine deaminase was added to the biosensor array
(Guterrez, Alegret & del Valle, 2008). Training parameters were kept but neurons in the hidden
layer  were  fxed  to  6.  A  superior  performance  as  compared  with  the  previous  study  was
observed in the real urine samples testng. Achieved correlaton coefcients were 0.967, 0.94,
0.97,  0.995  and  0.991  for  urea,  creatnine,  ammonium,  potassium and sodium respectvely.
However  slopes  and  intercepts  were  near  to  ideal  values  when  compared  with  reference
established  methods.  This  could  be  attributed  to  the  optmizaton  of  biosensor  array  as
compared  with  the  frst  study,  showing  the  importance of  signifcant  and  meaningful  input
signals for an accurate modeling. 

In  this  secton  some important  analytes  in  clinical  analysis  such  as  glucose  and  urea  were
determined  by  biosensor  array  and  ANN  modeling.  These  studies  probed  the  potental
applicaton of  a  simple  and low cost  methodology  with  reasonable  performance for  clinical
samples analysis.

4.5. Agricultural applicatons

Identfcaton of Tobacco Ratle Virus and Cucumber Green Motle Mosaic Virus was determined
by  analyzing  signals  coming  from  BERA  biosensor  and  ANN  (Glezakos  et  al.,  2010).  BERA
provided  tme series  data  with  a  specifc  pattern  for  each  virus;  since  informaton  may  be
afected  by  external  factors  which  can  afect  its  performance  and  interactve preprocessing
based on genetc algorithms was applied to the tme series informaton. The obtained data was
interpreted by ANN model to identfy each virus variety and success rate of 0.899 was achieved.

4.6. Pharmaceutcal applicatons

Evaluaton of signal contour by ANN was used to quantfy both penicillin concentratons and
potassium ion concentratons with a single enzyme feld efect transistor (En-FET) coupled with
fow injecton analysis (Hitzmann & Kullick, 1994). Penicillin G amidase was used as bioreceptor.
The efect of ion concentraton (5, 15, 25, 35 and 50mM) over a fxed penicillin concentraton
(1.5, 2.5, 5.0, 7.5 and 10 g/L) was recorded and 7 amplitude values (from 20 to 44 seconds in
steps of 4 seconds) were used as ANN inputs. For architecture, three layers networks with 3, 5, 7
and 9 neurons in the hidden layer were tested. Penicillin showed a consisted quantfcaton with
average error of 5.4% and deviatons of near 10%, while potassium ion concentraton showed a
lower performance with an error of 3.3% but deviatons as high as 38.9%.This was one of the
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frst  approaches  using  signal  features  from  the  same  biosensor  to  perform  multanalyte
quantfcaton.

4.7. Dedicated devices

The inclusion of automatc systems based on fow injecton for liquid handling in conjuncton
with biosensor arrays and ANN is listed in this secton. Main advantages of this approach are the
full automaton of the overall monitoring process, contnuous operaton and repeatability of the
measurements and possibility of real tme analysis.

Gutes et al. proposed the implementaton of a Sequental Injecton Analysis (SIA) System coupled
with a voltammetric biosensor array for the determinaton of mixtures of glucose and ascorbic
acid in fruit juices (Gutes et al., 2006). The array was composed by 3 biosensors with glucose
oxidase enzyme immobilized over electrodes with diferent metallic catalyst (Au/Pd, Pt or Pd).
Mixtures  of  glucose  and  ascorbic  acid  were  automatcally  prepared  by  the  SIA  system and
biosensors  records (52 intensites)  for  each mixture were taken.  Instead of  using the whole
records as ANN inputs record (52 intensites x 3 biosensors = 156 intensites), records from the
three biosensors were added and baseline was subtracted; therefore ANN inputs were reduced
to  52.  A  fnal  architecture  of  52  inputs,  3  neurons  in  the  hidden layer  with  tansig  transfer
functon and 2 neurons in the output layer with purelin transfer functon was chosen accordingly
a  low RMSE of  0.4680.  Correlatons  for  this  model  were 0.9954 for  glucose and 0.9791 for
ascorbic acid in the testng test. Slopes and intercepts values were 1.015 ± 0.034 and -2.3 x 10 -2 ±
5.6 x 10-2 for glucose while 0.915 ± 0.067 and 5.8 x 10 -3 ± 5.6 x 10-3 were obtained for ascorbic
acid.  Afer  modeling,  an  automatc  analysis  with  orange  juice  samples  was  performed.  An
acceptable performance glucose determinaton was obtained, with errors in a range of 0.87-
12%. Determinaton of ascorbic acid was poorer as compared with glucose. This was attributed
to the low concentraton of ascorbic acid present in the samples. 

A  similar  approach was used for the automatc determinaton of  insectcides dichlorvos and
methylparaoxon (Valdes-Ramirez, Guterrez, del Valle, Ramirez-Silva, Fournier  & Marty,  2009).
As in previous studies, inhibiton of AChE was used as analytcal indicator of insectcide presence.
In the frst study, a multchannel Flow Injecton System (FIA) was coupled with an enzymatc
biosensor array for automatc liquid handling. Stocks of pestcides mixtures were dispensed by
FIA  system to  the biosensor  array  and measurements  of  remaining  enzymatc actvity  were
taken. Generated data was modeled by ANN architecture of 3 input neurons, 3 neurons in the
hidden  layer  with  tansig  functon  and  2  neurons  in  the  output  layer  with  purelin  transfer
functon. Resultng slopes and intercepts from predicted values of ANN model were 0.98 ± 0.61
and 0.005 ± 0.035 for dichlorvos, while values of 0.91 ± 0.54 and 0.09 ± 0.60 were obtained for
methylparaoxon. When tested with real water samples, recovery yields for dichlorvos was 104%
and 118% for methylparaoxon. A similar system for in-situ analysis was developed by Crew et al.
A multchannel fow system was coupled with an enzymatc biosensor array with diverse AChE
varietes  to  obtain  a  distnctve  inhibiton  pattern  for  organophosphate  insectcides  (Crew,
Lonsdale, Byrd, Pittson & Hart, 2011). Calibraton patterns for CFV, CPO, dichlorvos, malaoxon,
chlorpyrifos  methyl  oxon  and  pyrimiphos  methyl  oxon  were  presented  to  the  network  for
training. The system was applied to the detecton of organophosphate insectcide presence in
water and food samples by comparing the input pattern produced by biosensor array interacton
with the sample with those obtained during calibraton. When no signifcant diferences from
calibraton were found, the absence of insectcide was assumed in both food and water. An
alternatve  for  portable  instrumentaton  was  presented  by  Alonso et  al.  with  a  hardware

156



Biosensors: Recent Advances and Mathematcal Challenges

implementaton of an ANN in a low cost chip for insectcide quantfcaton (Alonso, Istamboulie ,
Ramirez-Garcia, Noguer, Marty & Munoz, 2010). A study of networks confguratons (number of
layers, neurons in the hidden layer, training algorithm, etc) were previously tested in MATLAB.
Two  networks  (ANN1 and  ANN2)  were  selected  and  implemented  in  a  dsPIC30F6010
microcontroller. Concentratons of CPO and CFV were evaluated with the trained model. The
correlaton coefcients obtained for the training test with ANN1 model were 0.992 for CPO and
0.987 for CFV with a RAE of 4.40%. For the second model (ANN2) correlatons were 0.996 for CPO
and 0.994 for CFV with a RAE of 0.23%. The tme for system response was 948μs ANN 1 and
800μs for ANN2 which can be considered a real-tme applicaton.

5. Conclusions

The applicatons and advances of biosensor monitoring coupled with ANN in diferent felds
were presented. First applicatons were mostly focused on the improvement of single biosensor
performance. Usually, signal preprocessing was null and feature extracton (when utlized) was
based on user experience. The main goal was improved analytcal performance trough a more
sophistcated  calibraton  tool.  Even  good  results  were  obtained  with  this  approach,  highly
attractve applicatons resulted from the coupling of biosensor arrays and ANN modeling.  By
exploitng  higher  input  dimensionality,  cross  sensitvites  and  non  specifcites  in  biosensors
(traditonally  considered  as  undesirable  features)  multanalyte  detecton,  determinaton  of
target analytes in presence of interfering species and quantfcaton in complex samples were
achieved by using ANN modeling. These advantages has been achieved with other multvariate
calibraton tools; however ANN exposed a superior performance when modeling non-linearites
usually found in biosensors and biosensor arrays as compared with linear models. Improvements
in biosensor design, bioreceptors, transducers and measurements techniques will provide signals
with higher informaton that could be used to improved analytcal performance of the exposed
approach.
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