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1. Introduction

Biosensors are analytc compact devices that embody a biological piece of detecton called a
bio-receptor, usually formed by enzymes, microorganisms, immunoreceptors, cell receptors or
chemoreceptors in current technology. They are coupled to a physical-chemical transducer that
translates  the  biological  signal  to  a  measurable  electrical  signal,  that  is  proportonal  to  the
concentraton of the target compound or group of compounds to be assessed. Enzymes are
mainly favored in biosensor constructon because they have the capability to recognize a specifc
molecule (Thévenot, Toth, Durst & Wilson, 2001). One of the most attractve advantages of this
sensing technology is its capacity to provide electrochemical readings in a fast, contnuous and
highly  sensitve  way.  Moreover,  they  are  susceptble  to  be  miniaturized  and  its  electrical
response  potental  (or  electric  current)  can  be  easily  processed  by  cheap  and  compact
instrumentaton devices (Morrison, Dokmeci, Demirci & Khademhosseini, 2008).

The potental use of biosensors has been extended to several felds of science and engineering.
Contaminant  detecton  of  the  water  resources  (Saharudin & Asim,  2006);  pathogen  agent
detecton (Pohanka, M., Skládal & Kroca, M. (2007); drug detecton in the food industry (Elliott,
2006) are only a few examples.  In partcular, the impact and benefts in the medical  feld is
beyond doubt. The monitoring of lactate, urea, cholesterol or glucose are some of the body-
essental features related to this technology (Department of Trade and industry, 2012; Malhotra
& Chaubey,  2003).  Disease  monitoring  and  diagnosis  require  well-trained  and  qualifed
personnel for data acquisiton and testng. It is worth mentoning that these medical tasks are
highly delicate, in both sensitvity –the possibility to measure a false positve– and specifcity –a
false negatve detecton (Malhotra & Chaubey, 2003). In an ordinary scenario, a patent requires
a physical examinaton and laboratory tests needing a few days to obtain medical results. Such a
delay can sometmes derive in complicatons due to the lack of the proper medical treatment.
The fast response, low cost and design simplicity of the biosensor approach makes it a very
promising technological device in public health applicatons.

In the following sectons, the modeling of Second-generaton Electrochemical Glucose Oxidase
Amperometric  Biosensors  (GOABs  from now  on)  will  be  discussed.  The  importance  of  such
devices will be contextualized in one of the most critcal and prevalent diseases nowadays, the
Diabetes Mellitus (DM). Machine Learning (ML) is a feld within computer science and a very
actve area, playing an important role in science, fnance and industry.  It consists of a wide
spectrum of methods, techniques and algorithms that aim at learning from data to fnd useful
informaton or predictve models of a phenomenon. Classical and statstcal ML techniques for
regression are used for the modeling of the response of a GOAB. The rest of this chapter is
organized as follows: In secton 2, a few general ideas about DM are given, to introduce the
reader into the importance and convenience to deal with the DM in its collateral consequences
with this arising technology. Some general concepts about GOABs and GOAB modeling are given
in secton 3; secton 4 describes the specifc GOAB dataset and the statstcal machine learning
techniques used in this study. The experimental results are presented and discussed in secton 6.
The chapter ends with the conclusions and fnal thoughts.
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2. Diabetes Mellitus

The DM is a serious conditon where patents present high levels of blood glucose. This is due to
two possible causes: a defcient insulin producton or a malfuncton in a partcular type of cells
called  islets.  These cells  do not  respond properly  to  insulin  in  the blood-glucose  regulaton
process. In the food consumpton process by humans, the body converts the inputs into glucose.
A critcal organ in the human body, the pancreas, produces insulin to convert this glucose into
energy. When a patent is diagnosed with the DM disease, the whole process presents an erratc
dynamics (Diabetes Research Insttute, 2012).

There exist two types of DM: Type I includes patents that are insulin-dependent, where the islet
cells  are  not  recognized  as  part  of  the body  by  the  Immune System and  are  consequently
destroyed;  as  a  result,  insulin  is  not  produced  anymore;  Type II  embraces  those diagnosed
patents  that  produce  part  of  their  insulin  needs,  but  not  enough  to  maintain  acceptable
blood-glucose levels.

Figure 1. General scheme of an enzimatic biosensor

World Health Organizaton (WHO) statstcs report that around 347 million of people worldwide
have diabetes. Mortality estmates hits around 3.4 million deaths from consequences of high
fastng blood sugar. Low- and middle-income countries have the worst mortality scenario, where
more than 80% of diabetes patents die today. The WHO foresees the DM to be the 7th leading
cause  of  death  by  2030  (World  Health  Organizaton,  2013).  Thus  the  contnuous  glucose
monitoring by biosensors can be very helpful to diagnosed patents to prevent acute or chronic
complicatons; however, accuracy and stability issues are stll under development, preventng a
more widespread use in the market (Keneth, 2007).
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3. Modeling Glucose Oxidase Biosensors

3.1. Glucose Oxidase Amperometric Biosensors

Nowadays  there exist  diverse  techniques  to  measure glucose levels  in  the blood.  The most
common are spectrophotometric using small  devices called  glucometers.  Some of these take
advantage of the oxidaton of glucose to gluconolactone catalyzed by glucose oxidase. Others
use a similar reacton but with another enzyme, the glucose dehydrogenase. This latter brings up
the  advantage of  more  sensitvity  but  is  less  stable  in  presence  of  other  substances.  Some
alternatves  in  glucose  monitoring  include  control  of  the  ketones  in  the  urine,  in  case  that
glucose detecton in blood becomes difficult (American Diabetes Associaton, 2013).

Currently, there exists an alternatve monitoring technology based on electrochemical enzymatc
sensors. They consist of the elements, biochemical and physical, assembled in direct contact, or
close enough to establish a relatonship with the analyte, to produce a measurable signal, as
indicated in Figure 1.  An enzymatc amperometric sensor works due to oxygen consumpton,
hydrogen peroxide producton, or b-nicotnamide adenine obtaining during the process of the
catalytc conversion of the substrate (Equatons 1 and 2) (Prodromidis & Karayannis, 2002). The
occurring electrochemical reactons are commented below.

Enzyme
Substrate + O2        →        Product + H2O2 

(1)

Enzyme
     Substrate + NAD+        →        Product + NADH + H+ (2)

The enzyme useful for measuring and assessing blood-glucose levels in biological fuids is known
as  glucose  oxidase.  The  enzyme  Glucose  Oxidase  belongs  to  the  oxidoreductase  class  that
catalyzes the β-D-glucose oxidaton to D-glucone-1, 5-lactone and hydrogen peroxide (Equaton
3). It is produced by the  Penicillium Notatum and other fungi in the presence of glucose and
oxygen. It is used to measure the glucose concentraton in blood and urine samples. The general
reacton equatons can be described as:

β−D−Glucose+Eox⇌E red+Gluconic Acid
E red⇌Eox

(3)

where Eox and Ered are the oxidized and the reduced form of the glucose oxidase enzyme. Given
this, there exist three generatons of GOAB:

1st Generaton. With O2 added to the equaton:

E red+O2 ⇌ E ox+H 2O 2

H 2O 2 ⇌ 2H++O 2+2 e− (on theelectrode )
(4)
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2nd Generaton. A mediator is present:

E red+M ox⇌ Eox+M red

M red⇌ M ox+ne−(onthe electrode )
(5)

3rd Generaton. Without oxygen or other mediator:

E red ⇌ Eox (6)

It  is  known  that  1st Generaton  GOABs  have  a  number  of  disadvantages,  mainly  oxygen
concentraton  fuctuatons;  H2O2 inhibits  the  glucoseoxidase,  among  others.  A  soluton  that
circumvents  these  problems was  found  in  the  2nd  and  3rd  Generaton GOABs  (Stoytcheva,
Nankov & Sharkova, 1995). This study focuses precisely in the 2nd generaton GOABs.

3.2. GOAB Mathematcal modeling

Mathematcal  modeling  represents  a  powerful  tool  in  the electrochemical  biosensors  design
cycle, allowing for considerable reductons in costs and tme  (Wang,  2011).  Despite the high
benefts that GOAB technology brings to real life applicatons, it stll bears some delicate design
issues  that  make a  better  analysis  and understanding stll  necessary  (Petrauskas & Baronas,
2009). The GOAB response and its performance is afected by a number of factors, including
electrode  constructon  features  (material,  area  and  geometry),  electrical  factors  (potental,
current,  charge,  impedance),  electrolytc  factors  (pH,  solvents),  and  reacton  variables
(thermodynamic and kinetc parameters) (Borgmann, Schulte, Neugebauer & Schuhmann, 2011).

Given that Amperometric Electrochemical Biosensors (AEB) are used in combinatory synthesis
procedures, the chemical reactons end-product might be scarce and limited, being measured
from micrograms to miligrams scale; moreover, substrates inside enzymes can not be measured
with analytcal devices. Since the late 70s, several mathematcal models have been used and
proposed to this end, as an important tool looking for higher precision and simplicity (Malhotra
& Chaubey, 2003). First AEB modeling eforts dealt with quanttatve descriptons of biosensors
kinetc behavior of simple idealized enzymes  (Blaedel, Kissel  & Boguslaski,  1972). Steady-state
fux and distributon equatons were used to show how enzymes fxed in gels may be used for
immobilized enzyme kinetcs analysis. The urease electrode potentometric response were used
in the experiment. Steady-state  modeling of the current response by means of digital devices
was one of the frst digital simulaton in glucose oxidase biosensor analysis (Mell & Maloy, 1975).
Current modeling approaches range from analytcal  solutons of partal diferental equatons
applied  to  simple  biocatalytc  processes  to  complex  computer  simulatons  of  catalytc
conversions and multple transducer geometry  (Baronas,  2010). Recent advances contemplate
the use of  machine learning (ML)  algorithms,  such as  Artfcial  Neural  Networks  or Support
Vector Machines. The use of these tools in AEB modeling is an emerging topic in the specialized
scientfc  literature  (Rangelova,  Tsankova  & Dimcheva,  2010;  Alonso,  Istamboulie,  Ramírez-
García Noguer,  Marty  & Muñoz,  2010).  In  this  sense,  model  constructon by ML techniques
becomes a reasonable strategy, given that its black-box point of view liberates the modeler to
fully and clearly express the mathematcal laws underlying the physical phenomenon – in our
case, the amperometric response of a biosensor.
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4. Materials and Methods

4.1. Available data

Second Generaton biosensors incorporate a mediator, in this case a p-benzoquinone mediated
amperometric  graphite  sensor  with  covalently  linked  glucoseoxidase.  This  mediator  is
responsible  for  the  electronic  transfer  between  the  enzyme  and  the  electrode  surface.
Additonally, the following reagents were used: glucose oxidase (E.C. 1.1.3.4. from Aspergillus,
1000  U/mg),  N-cyclohexyl-N’-[2-(methylmorpholino)ethyl]carbodiimide-4-toluenesulphonate
(Merk) and glucose.

Amperometric  data  acquisiton  was  achieved  using  a  Radelkis  OH-105  polarograph.  The
enzymatc working  electrode  used was  a  rotatng  disk  electrode  with  a  diameter  of  6  mm,
prepared  from  a  spectrally  pure  graphite  with  glucoseoxidase  immobilized  on  its  surface.
Saturated calomel electrode was used as  reference electrode.  The auxiliary  electrode was a
glassycarbon electrode.

The amperometric response was analyzed under diferent conditons of the Glucose (Glucose),
pH  (PH), temperature  (T) and  concentraton  of  the  mediator,  the  p-benzoquinone
(Benzoquinone).

Values for these input parameters (used as predictors) were Glucose (in mM) ∈ {4, 8, 12, 16,
20};  p-benzoquinone  (in  mM)  ∈  {1,  0.8,  0.4,  0.2};  pH  (dimensionless)  ∈  {4,  5,  6,  7}  and
Temperature  (in  Celsius  scale)  ∈  {20,  37,  47,  57}.  The response or faradaic  current  (I)  was
measured in mA.

The resultng data fle consists of 320 rows (observatons) and 5 columns (4 predictve variables
and  a  contnuous  target  variable,  which  corresponds  to  the  biosensor  response).  As  stated
above, the predictve variables are: Glucose, Benzoquinone, T and PH. These predictve variables
are standardized to zero mean, unit standard deviaton. Finally the data fle is shufed to avoid
predefned ordering biases.

4.2. Regression Methods

Suppose we are given training data of the form {(xn, tn)}N
n=1 ⊂  X × R, where X = Rd denotes the

space of input vectors.

4.2.1. Classical regression analysis

Generalized linear models (GLMs) are a commonly used form of model for regression modelling.
A GLM takes the form:

f GLM (x )=∑
m=0

M

β mΦ m( x) (7)

where φ is a set of M basis functons (which can be arbitrary real-valued functons) with φ0(·) = 1
and β is a vector of coefficients. 
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The number and form of the basis functons has to be decided beforehand. In this work we
consider two useful GLM settings: linear and restricted polynomial regression:

Linear regression We consider the choices φm(x) = xm and M = d

Polynomial regression We consider the choices  φm(x) to be polynomials in  x of limited degree
(three, at most); in this case, every monomial will have its own β coefficient and M will be the
total number of monomials.

The basis functons defne a projecton of the input data into a higher-dimensional space where
the data is more likely to be linear. Since the obtained expressions are linear in the coefficients,
these coefficients are optmized using standard least squares methods.

In  order  to  assess  how  well  these  models  ft  the  data,  the  leave-one-out  cross-validaton
(LOOCV) method can be used. Every observaton is excluded from the training set, the model is
ft using the remaining points, and then is made to predict the lef out observaton. The process
is repeated over the entre training set, and the LOOCV error is computed by taking the average
over these predictons. This method provides an almost unbiased estmate of the generalizaton
error and has the added advantage of being fast to compute for linear models. Typically one has
to maximize:

R2cv=1−
G E cv( ŷ)

1
N
∑
i=1

N

( ŷ− y )2

where G Ecv( ŷ ) = 1
N ∑

i=1

N

(
ei

1−hii

)
2

 is the LOOCV error, and ei, hii  are the residual and the

leverage of observaton xi. A related measure of performance (to be minimized) is given by the
normalized root mean-square error (NRMSE) (Bishop, 1996):

√ ∑i=1
N

( e i

1−h ii )
2

∑
i=1

N

( ŷ− y ) 2

which can be interpreted as the fracton of output standard deviaton that is explained by the
model. Note that we can obtain the corresponding cross-validaton NRMSE as √ 1−Rcv

2

4.2.2. Support Vector Machines

Support Vector Machines for regression (SVMR) have become a popular tool for the modelling of
non-linear regression tasks (Smola, & Schölkopf, 2004). The SVMR is one of the several kernel-
based techniques available in machine learning. These are methods based on implicitly mapping
the data from the original input space to a feature space of higher dimensionality and then
solving a linear problem in that space. The used E-insensitve loss functon |z|E = max{0, |z| − E}
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penalizes errors that are greater than a threshold E, usually leading to sparser representatons,
entailing algorithmic and representatonal advantages, (Vapnik, 1998).

Let H be a real RKHS with kernel κ. The input data is transformed with a feature map Φ: X → H,
to  obtain  the  new  data  set  {(Φ(Xn),  tn)}N

n=1.  In  a  SVMR,  the  aim  is  to  fnd  a
function fSVMR: (Φ(x), w)H +  a0, for  some  w ∈  H and  a0 ∈  R,  which is as  fat  as possible and
deviates a maximum of E from the given target values tn, for all n = 1,..., N.

The  usual  formulaton  of  the  optmizaton  problem  is  as  the  dual  of  the  convex  quadratc
program:

min
w∈H ,ao∈R

1
2
∥w∥2

h
+ c

N
∑
n=1

N

( ξn+ξ̂ )

Subject to { 〈Φ (xn) , w〉 H +ao−t n ≤ ε+ξn

tn−〈Φ (x n) ,w〉 H−a0 ≤ ε+ξn

ξn , ξ̂n ≥ 0

(8)

for n = 1, ..., N. To solve (8), one considers the dual problem derived by the Lagrangian:

max
a ,â {−12 ∑

n ,m=1

N

(ân−an)( âm−am)k (x n , xm)

−ϵ∑
n=1

N

( ân−an)+∑
n=1

N

t n ( ân−an )

Subject to ∑
n=1

N

( ân−an )=0  and an , ân  ∈ [0,C/N]

(9)

Exploitng the saddle point conditons, it can be proved that W =∑
n=1

N

( ân−an) Φ( xn) ; given

that k (x , x ')= 〈Φ ( x ) , Φ (x ' )〉 H , the soluton becomes'

fSVMR ( x )=∑
n=1

N

( ân−an ) k ( xn , x )+a0 , x∈X (10)

4.2.3. Relevance Vector Machines

The Relevance Vector Machine (RVM) is a sparse Bayesian method for training GLMs which has
the  same functonal  form as  the  SVMR  (Tipping,  2001).  It  is  a  kernel-based  technique that
typically leads to sparser models than the SVMR, and may also perform better in many cases.
The  RVM  introduces  a  prior  over  the  weights  governed  by  a  set  of  hyperparameters,  one
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associated with each weight,  whose most probable values are iteratvely estmated from the
data. The RVM has a reduced sensitvity to hyperparameter settings than the SVM.

In the RVM, a zero mean Gaussian prior with independent variances (actng as hyperparameters)
α j ≡1/σw j j

2  is defned over each weight:

p (w∣α)=∏
j=1

M √ α j

2π
exp (−1

2
α j w j

2)

As  in  standard  regression,  assuming  an  independent  zero-mean  Gaussian  noise  model  of
variance σ2 for the targets, the likelihood of a target vector t is:

p (t∣w ,σ2)= ( 2πσ 2)
−N
2
exp ( −1

2σ2
‖ t−Φw ‖2)

where Φ is the Gram or kernel matrix of the inputs. In these conditons, the posterior over the
weights p ( w∣t ,α , σ 2)  is also a Gaussian N (µ, Σ) that can be obtained using the Bayes rule:

p ( w∣t ,α , σ2 )=∫ p ( t∣w ,σ 2) p ( w∣α ) d w
p ( w∣t ,α , σ 2)

where  µ =  σ−2ΣΦT t and  Σ =  (σ−2ΦT Φ +  Λ)−1,  being  Λ =  diag(α1,...,αM).  Now  the  likelihood
distributon over the training targets can be calculated by integratng out the weights to obtain
the marginal likelihood for the hyperparameters:

This marginal distributon is again Gaussian N (0, A), where A = σ2I + ΦΛ−1ΦT. For computatonal
efficiency, the logarithm of the evidence is maximized:

The  estmated  value  of  the  model  weights  is  given  by  their  maximum  a  posteriori  (MAP)

estmate, which is the mean of the posterior distributon p ( w∣t , α , σ2 ) . This MAP estmate
depends on the hyperparameters  α and  σ2.  These variables are obtained by maximizing the
marginal likelihood L(α). Sparsity is achieved because in practce many of the hyperparameters
αj tend to infnity, yielding a posterior distributon of the corresponding weight wj that is sharply
peaked  around zero.  These  weights  can  then  be  deleted  from  the  model,  as  well  as  their
associated basis functons.
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5. Experimental setup

The experimental part explores the modeling of the biosensor output from two diferent points
of view. In the frst set of experiments,  we treat  the inputs as they are,  namely contnuous
regressors.  In  the  second  set  of  experiments,  we  consider  the  possibility  of  treatng  the
regressors  as  categorical  instead  of  contnuous.  This  is  supported  by  the  fact  that  all  four
predictors take on a limited number of values (to be precise, four for the Benzoquinone, T and
PH,  and fve for the Glucose). Categorical predictor variables cannot be entered directly into a
regression  model  (and  be meaningfully  interpreted).  Typically,  a  categorical  variable  with  c
modalites will be transformed into c − 1 binary variables (each with two modalites).

For example, if a categorical variable had fve modalites, then four binary variables are created
that would contain the same informaton as the single categorical variable. In partcular, all the
distances between the modalites are equal,  regardless of  the specifc coding chosen. These
variables have the advantage of  simplicity  of interpretaton and are sometmes preferred to
correlated  predictor  variables.  They  are  also  useful  to  assess  non-linearites  between  the
regressors and the output.* In the present situaton, the new values for the  Glucose are “very
low”, “low”, “medium”, “high” and “very high” (64 observatons each), whereas new values for
the  other  three  predictors  are  “low”,  “low-medium”,  “medium-high”  and  “high”  (80
observatons each). 

5.1. Optmizaton of the SVMR and the RVM

First, the available data were randomly split into two sets: 220 observatons (68.75%) for training
and the remaining 100 observatons (31.25%) for testng.

The standard regression methods need no additonal parameter specifcaton. In order to obtain
the  soluton  for  a  kernel  method,  one  has  to  choose  the  kernel  functon,  and  determine
appropriate values for the associated hyperparameters. In the SVMR, the E parameter controls
the width of the  E-insensitve zone. The cost parameter  C determines the trade-of between
model complexity (fatness of the soluton) and the degree to which deviatons larger than E are
tolerated.  The  value  of  E can  afect  the  number  of  support  vectors  used  to  construct  the
regression functon.  The bigger the  E,  the fewer support  vectors  are selected and smoother
regression  functons.  An  efectve  approach  is  to  estmate  the  generalizaton  error  –usually
through cross-validaton– and then optmize  for  these parameters  so  that  this  estmaton is
minimized. For the SVMR, C is varied logarithmically between 10−1.5 and 101.5 (20 equally-spaced
values for the exponent), and E is varied logarithmically between 10−3 and 100 (10 equally-spaced
values for the exponent).

Among the kernels  that  are available in  the literature,  we select  the  polynomial  kernel:  the
functon

k Poly ( x , y )=( 〈 x , y 〉 + R) m

is called the polynomial kernel, with R ≥ 0 and integral m ≥ 1.

* In rigour these are categorical ordinal predictors, although we will treat them as categorical nominal ones, given the
absence of specifc methods for ordinal predictors (Agrest, 2002).
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Another kernel that can be used is the Gaussian Radial Basis Functon (RBF) kernel, known
to be a safe default choice for kernel  methods working on real  vectors  (Schölkopf & Smola,
2001):

k RBF ( x , y )=exp  (−γ∥x− y∥2) (11)

where γ > 0 is the smoothing parameter. The γ parameter in the RBF kernel is estmated using
the  sigest method,  based  upon  the  10%  and  90%  quantles  of  the  sample  distriubion  of

‖ x− x' ‖2  (Caputo, Sim, Furesjo & Smola, 2002). We try diferent polynomial kernels, given
by degrees m from 1 to 5 and R = 1. 

The parameters were optmized through 30 tmes 10-fold cross-validaton (30 x 10 cv) usingthe
training set; a model is then reft in the training set using the best parameter confguraton; this
model  is  now made  to  predict  the held  out  test  set.  The error  reported in  all  cases  is  the
normalized root mean-square error (NRMSE) in the test set. A model showing a NRMSE of 1
corresponds  to  the  best  constant regression;  good  models  should  then  have  a  NRMSE
considerably smaller than 1 (and reasonably close to 0).

For the RVM, the same consideratons apply for the kernels and their parameters (the RVM
needs no specifcaton of C or the E parameter). Theoretcally, the whole training set could be
used to ft the RVM (without cross-validaton). However, resampling is stll needed to choose the
best  kernel  confguraton;  therefore,  the  same  30  x  10  cv  procedure  is  used  to  evaluate
performance in the training set.

6. Results and Discussion

6.1. Basic statstcal analysis

Afer the pre-process described in secton 4.1, we get a data set with the summary described in
Table 1. The ’Target’ variable refers to the biosensor output.

Glucose Benzoquinone T PH Target
Min.: -1.412 Min.: -1.2629 Min.: -1.4797 Min.: -1.3395 Min.: 0.2848
1st Qu.: -0.706 1st Qu.: -0.7893 1st Qu.: -0.5481 1st Qu.: -0.6698 1st Qu.: 1.9575
Median: 0.000 Median: 0.0000 Median: 0.1279 Median: 0.0000 Median: 4.2178
Mean: 0.000 Mean: 0.0000 Mean: 0.0000 Mean: 0.0000 Mean: 12.3994
3rd Qu.: 0.706 3rd Qu.: 0.7893 3rd Qu.: 0.6759 3rd Qu.: 0.6698 3rd Qu.: 14.9122
Max.: 1.412 Max.: 1.2629 Max.: 1.2240 Max.: 1.3395 Max.: 75.5506

Table 1. Descriptive statistics after pre-processing

We can see that all the predictve variables are perfectly symmetrical (the mean and median are
equal), with the excepton of T, whose distributon is skewed to the lef (negatve skew), since its
mean is smaller than its median (see the set of boxplots in Figure 2).
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Figure 2. Box plots of predictive variables

A convenient frst step is to take the natural log of the target variable. The efect of this change is
clearly visible (Figure 3).

Now we compute the Pearson’s product-moment correlatons (Table 2).

First variable Second variable Correlaton
PH Target -0.332
Glucose Target 0.267
T Target 0.167
Benzoquinone Target 0.063

Table 2. Pearson’s variable correlations; only the four largest are shown

These very small correlatons suggest that only  PH bears some linear relaton with the target
variable,* in additon, there is no linear relaton concerning the predictve variables with one
another.  In  order  to  refne  this  result,  we  compute  Spearman’s  ρ correlaton  coefficient.
Although  this  coefficient  does  not  detect  general  quadratc  non-linearites,  it  is  good  for
detectng possible outliers and monotonic non-linearites (Table 3).

Figure 3.Box plots of the target (output) variable

* Although true correlatons are not equal to 0 (PH-Target: t = -6.2685, df = 318, p-value = 1.187e-09, Glucose-Target:
t = 4.9337, df = 318, p-value = 1.303e-06, T-Target: t = 3.0135, df = 318, p-value = 0.00279).
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First variable Second variable Correlaton
PH Target -0.569
Glucose Target 0.405
T Target 0.195
Benzoquinone Target 0.082

Table 3. Spearman’s variable correlations; only the four largest are shown

The correlatons are larger for some variables –notably PH and the Glucose, suggestng a relaton
of non-linear nature with the biosensor output.

6.2. Regression with contnuous predictors

6.2.1. Standard Linear Regression

Estmate Std. Error t value Pr(>|t|)
(Intercept) 1.6182 0.0653 24.7764 6.3e-65
Glucose 0.5072 0.0666 7.6171 8.1e-13
Benzoquinone 0.1151 0.0658 1.7480 8.2e-02
T 0.3436 0.0650 5.2883 3.0e-07
PH -0.6896 0.0647 -10.6570 1.5e-21

Table 4.Coefficients and significance of the linear regression analysis with continuous predictors

The results of linear regression are shown in Table 4. These results show that all the coefficients
are signifcantly diferent from zero, as given by the negligible p-values, with the excepton of
that for Benzoquinone, which is barely signifcant (p-value = 0.082). Since the predictve variables
are standardized, the coefficients can be related to the relevance of the corresponding variables.
The most important predictor is PH, followed by Glucose and T; the Benzoquinone is by far the
less important predictor. The importance of variables can be further assessed by an Analysis of
Variance (ANOVA) (Table 5).

Df Sum Sq Mean Sq F Value Pr(>F)
Glucose 1 54.6828 54.6828 58.5062 6.7e-13
Benzoquinone 1 1.0242 1.0242 1.0958 3.0e-01
T 1 24.7466 24.7466 26.4768 6.0e-07
PH 1 106.1500 106.1500 113.5718 1.5e-21
Residuals 215 200.9500 0.9347

Table 5. ANOVA in the training set with continuous predictors 

According to the ANOVA, PH is by large the most important predictor, followed by Glucose and
T; the  Benzoquinone is by far the less important predictor. However, an AIC analysis does not
suggest to remove any of the regressors, and therefore we keep all of them. We may now wish
to see how well  the model fts and predicts the training data. We get a relatvely low  R2

CV =
0.4724 (corresponding to a NRMSE of 0.7264), which indicates a rather poor model.
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The previous results using linear regression again suggest that the possible relaton between the
output of the biosensor and the predictve variables is a non-linear one. Therefore polynomial
regression as described in secton 4.2 is  considered.  Afer  preliminary modeling trials  in  the
training set, one ends up with a set of regressors formed by a third-degree polynomial on PH and
a second-degree polynomial on both  T and the Glucose. The additon of other terms does not
increase the model quality and adds further complexity. The results of this polynomial regression
are shown in Table 6.

Estmate Std. Error t value Pr(>|t|)
(Intercept) 1.6468 0.0103 159.1228 1.0e-221
poly(PH, 3)-1 -12.9545 0.1831 -70.7585 5.8e-149
poly(PH, 3)-2 -7.6297 0.1857 -41.0931 1.2e-102
poly(PH, 3)-3 13.3168 0.1871 71.1572 1.9e-149
poly(T, 2)-1 5.7589 0.1839 31.3108 3.0e-81
poly(T, 2)-2 -5.1793 0.1836 -28.2150 1.5e-73
Benzoquinone 0.1012 0.0105 9.6714 1.5e-18
poly(Glucose, 2)-1 9.3897 0.1882 49.8934 9.0e-119
poly(Glucose, 2)-2 -3.5097 0.1842 -19.0517 9.7e-48

Table 6. Coefficients of the non-linear (polynomial) regression analysis with continuous predictors. The
notation poly(V, r)-s stands for the s-degree monomial of an r-degree polynomial on regressor V 

The results show that all the coefficients are signifcantly diferent from zero, as given by the
negligible p-values, with no excepton. Indeed, the AIC analysis does not suggest to remove any
of the regressors. Variable importance can again be further assessed by the ANOVA (Table 7).

We may now wish to see how well the model fts and predicts the training data. We get an
excellent  R2

CV =  0.9872  (corresponding  to  a  NRMSE of  only  0.1132),  which  indicates  a  very
promising model, remarkably better than the linear one.

Df Sum Sq Mean Sq F Value Pr(>F)
poly(PH, 3) 3 273.3378 91.1126 3899.0107 1.9e-184
poly(T, 2) 2 40.3336 20.1668 863.0042 2.6e-102
Benzoquinone 1 2.3375 2.3375 100.0308 1.6e-19
poly(Glucose, 2) 2 66.6140 33.3070 1425.3161 2.8e-123
Residuals 211 4.9307 0.0234

Table 7. ANOVA in the training set with continuous predictors. The notation poly (V, r) stands for an r-degree
polynomial on regressor V 

6.2.2. Regression with the SVMR

We now turn to results obtained with the kernel-based methods (Table 8). Using a linear kernel,
the  best  set  of  parameters  for  the  SVMR (optmized through  30 x  10  cv)  is  E  = 0.464  and
C = 0.695. The cross-validaton NRMSE of this choice is 0.7387. Actually all the results are in the
range 0.73-0.80, no matter the value of  C and  E. Something similar happens for the quadratc
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kernel,  although  in  this  case  the  range  is  0.60-0.80.  These readings  suggest  a  general  poor
model, in consonance with the linear regression model previously reported. Using higher degree
kernels, the results are much better, in accordance to those found for the polynomial regression
model. Indeed, the result with a cubic polynomial is similar to the polynomial regression (which
used  cubic  polynomials  in  the  PH).  The  best  result  corresponds  to  the  quartc  polynomial,
markedly better than the polynomial regression.

Kernel degree C E cv NRMSE
Linear 1 0.695 0.464 0.7387
Quadratc 2 0.036 0.464 0.6017
Cubic 3 1.623 0.046 0.0867
Quartc 4 0.215 0.046 0.0491
Quintc 5 0.183 0.046 0.0942
RBF - 0.069 0.215 0.4441

Table 8. Results for the SVMR with polynomial kernels of different degrees and the RBF kernel with
continuous predictors; cv NRMSE is the cross-validation NRMSE 

The results seem to confrm the need for at least third-order informaton extracted from the
original regressors; however, higher-order terms start to overft the data. The relatvely poor
results obtained by the RBF kernel can also be explained in this light. A nice aspect of the results
is that, for all kernels, for same values of E, predictve performance is ted for many values of the
C parameter; in these cases, we selected the smallest value of C, in accordance with Statstcal
Learning Theory (Vapnik, 1998).

6.2.3. Regression with the RVM

The  results  for  the  RVM  with  the  diferent  kernels  are  displayed  in  Table  9.  They  are  in
consonance with those for the SVMR previously reported, although they are consistently better.
Remarkably, there is a coincidence with the SVMR in that the best result corresponds to the
quartc polynomial. 

Kernel degree cv NRMSE
Linear 1 0.7356
Quadratc 2 0.5973
Cubic 3 0.0845
Quartc 4 0.0301
Quintc 5 0.0392
RBF - 0.2148

Table 9. Results for the RVM with polynomial kernels of different degrees and the RBF 
kernel with continuous predictors; cv NRMSE is the cross-validation NRMSE 
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6.3. Regression with categorical predictors

6.3.1. Standard Linear Regression

The results of linear regression are shown in Table 10. 

Estmate Std. Error t value Pr(>|t|)
(Intercept) 1.1474 0.0364 31.5440 8.3e-81
Glucose (low) -0.6432 0.0295 -21.8069 2.0e-55
Glucose (medium) -0.1810 0.0286 -6.3219 1.6e-09
Glucose (very high) 0.1067 0.0298 3.5778 4.3e-04
Glucose (very low) -1.4215 0.0298 -47.7724 2.1e-113
Benzoquinone (low) -0.2697 0.0268 -10.0788 1.1e-19
Benzoquinone (low-medium) -0.0804 0.0260 -3.0866 2.3e-03
Benzoquinone (medium-high) 0.0220 0.0267 0.8220 4.1e-01
T (low) -0.7716 0.0260 -29.6715 2.6e-76
T (low-medium) 0.1902 0.0257 7.4008 3.4e-12
T (medium-high) 0.3650 0.0271 13.4747 4.3e-30
PH (low) 1.2709 0.0258 49.2501 6.4e-116
PH (low-medium) 2.8093 0.0268 104.6867 1.4e-180
PH (medium-high) 0.1746 0.0265 6.5778 3.9e-10

Table 10. Coefficients of the linear regression analysis with categorical predictors in the training  set 

These results show that all the coefficients are signifcantly diferent from zero, as given by the
negligible p-values, with the excepton of that for  Benzoquinone (medium-high), which is not
signifcant. The importance of variables can be further assessed by the ANOVA on the previous
regression (Table 11).

According to the ANOVA, PH is by large the most important predictor, followed by Glucose and
T; the Benzoquinone is by far the less important predictor. Again, AIC analysis does not suggest
to remove any of the regressors, and therefore we keep all of them. We may now wish to see
how  well  the  model  fts  and  predicts  the  training  data.  We get  an  excellent  R2

CV =  0.9887
(corresponding to a NRMSE of 0.1062). This result vastly improves that of linear regression with
contnuous predictors (NRMSE of 0.7264). Sadly, there is no possibility of developing a standard
polynomial regression model using categorical predictors.

Df Sum Sq Mean Sq F value Pr(>F)
Glucose 4 66.2744 16.5686 891.6448 8.5e-129
Benzoquinone 3 4.1249 1.3750 73.9946 1.6e-32
T 3 52.4748 17.4916 941.3168 6.1e-120
PH 3 260.8515 86.9505 4679.2708 3.6e-189
Residuals 206 3.8279 0.0186

Table 11. ANOVA in the training set with categorical predictors 
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6.3.2. Regression with the SVMR

We now turn to results obtained with the kernel-based methods  (Table 12).  The best set of
parameters is  E = 10−3 and  C around 1, using the quadratc kernel. Actually all the results are
markedly better than those obtained with the SVMR in the same conditons but using contnuous
predictors.  This  result  is  in  consonance  with  that  previously  reported  for  the  standard
regression.  Again,  using  non-linear  (higher  degree)  kernels,  the results  are  better  than with
linear ones, although in this case the technique starts to overft at cubic polynomials. The RBF
kernel performs much better too, and is comparable to the cubic polynomial.

Kernel degree C E cv NRMSE
Linear 1 3.793 0.1 0.1077
Quadratc 2 1.062 0.001 0.0026
Cubic 3 0.455 0.001 0.0307
Quartc 4 0.195 0.0022 0.1065
Quintc 5 0.127 0.001 0.2000
RBF - 5.796 0.001 0.0371

Table 12. Results for the SVMR with polynomial kernels of different degrees and the RBF kernel with
categorical predictors; cv NRMSE is the cross-validation NRMSE 

The results make perfect sense in the light of model complexity, the linear kernel  being too
simple, and polynomials beyond the cubic one being too complex. In additon, it was observed
that E was the critcal parameter; for all kernels, for similar values of E, predictve performance
varies smoothly with the C parameter, and many tmes it is rather independent; again, in these
cases, we selected the smallest value of C.

6.3.3. Regression with the RVM

The  results  for  the  RVM  with  the  diferent  kernels  are  displayed  in  Table  13.  They  are  in
consonance with those for the SVMR previously reported, although this tme those for the SVMR
seem  slightly  better.  Again,  there  is  a  coincidence  with  the  SVMR  in  that  the  best  result
corresponds to the quartc polynomial.

6.4. Discussion

In view of the results reported so far, two methods stand out from the rest: the two nonlinear
kernel  methods  of  moderate  complexity.  Specifcally,  both  the  SVMR  and  the  RVM  with
quadratc kernel and using categorical predictors deliver very good 30 x 10 cv errors, around or
below 10−3 of NRMSE. The decision among these two methods is not an easy one, given that the
errors are similar (with a slight advantage of the SVMR). On the other hand, the RVM is expected
to deliver  a  sparser  model.  In  order to  decide,  we proceeded to  reft  both methods in  the
training set using the best parameter confguraton. The SVMR (C = 1.062 and E = 10−3) delivers a
modeling NRMSE of 0.0023 with 142 support vectors (a 64.5% of the training data); the RVM
delivers a modeling NRMSE of 0.0020 with 63 relevance vectors (a 28.6% of the training data).
Now the decision is clear: given that the models now have the right complexity (because they
have been optmized towards  minimizing predictve error),  the modeling  error  is  a  relevant
quantty. The RVM then achieves a smaller NRMSE with less than half of the regressors than the
SVMR does.

179



L. Rentería-Gutiérrez, L.A. Belanche-Muñoz, F.F. González-Navarro, M. Stilianova-Stoytcheva

Kernel degree cv NRMSE
Linear 1 0.1066
Quadratc 2 0.0030
Cubic 3 0.0371
Quartc 4 0.1133
Quintc 5 0.2239
RBF - 0.0454

Table 13. Results for the RVM with polynomial kernels of different degrees and the RBF 
kernel with categorical predictors; cv NRMSE is the cross-validation NRMSE 

Therefore we make the choice of the RVM with a quadratc kernel and categorical predictors.
This model is then made to predict the held out test set, yielding a predictve NRMSE of 0.0022.
This is a very nice result for two reasons:

• The predictve NRMSE of 0.0022 is equivalent to a residual (non-explained) variance of
only 0.22% of the total variance of the (test)  predicted target values; therefore the
model is indeed a very accurate one.

• The training (or modeling) NRMSE of 0.0020 and the predictve NRMSE of 0.0022 are in
very good agreement, and an indicaton of a model of the right complexity.

The predictve results can also be displayed. In Figure 4 the predictons are plotted against the
true values.  It  can be seen that  the predictons are very good even when expressed in the
original units (exponentatng the predicton). To be precise, the predicton error expressed in
the original units amounts to an NRMSE of 0.0027. In order to obtain a fnal model that could be
used in the future, we reft the RVM with a quadratc kernel (using categorical predictors) in the
entre dataset. The obtained model has a modeling NRMSE of 0.00184 with 62 relevance vectors
(a 19.4% of the training data). Expressed in the original units, this error corresponds to a NRMSE
of 0.00176.

Figure 4. Final test set predictions. Left: in the log units; right: in the original units 

At this point  it  is of great interest to make a comparison of all  the results for the diferent
regression methods and types of modeling.

Linear vs. non-linear methods. Given the poor (and consistent) results obtained by the three
linear methods (linear regression, linear SVMR and linear RVM), it can be concluded that the
true relaton between the predictve variables and the biosensor output is a non-linear one.
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Classical regression vs. kernel methods. Using contnuous predictors, polynomial regression is
able to give a fairly good result (NRMSE of 0.1132); kernel regression with the SVMR is able to
improve this to half the error (NRMSE of 0.0491); kernel regression with the RVM delivers an
NRMSE of 0.0301, both using a fourth-degree polynomial.

Contnuous vs. categorical predictors. Although the non-linear methods make good use of the
contnuous variables, the limited amount of informaton they give (only 4 to 5 diferent values)
makes the modeling a non-trivial  undertaking; in contrast,  standard regression and both the
SVMR and  the RVM  deliver  consistently  better  results  using  the  categorized  version of  the
dataset.

SVMR vs. the RVM Both methods can be seen as sparse GLM trainers, and indeed the RVM was
initally presented as an alternatve (and direct  compettor) to the SVMR. The results follow
similar paths for same kernels and it  is not  clear which one is  performing better;  the SVMR
shows slightly lower errors but the RVM needs no parameter specifcaton and delivers a sparser
soluton.

7. Conclusions

The contnuous amperometric response of a GOAB has been successfully modelled by means of
several classic and statstcal learning methods. Specifcally, kernel-based regression techniques
have been used. The reported experimental  results show a very low predicton error of the
biosensor output, obtained using a relevance vector machine (RVM) with a quadratc kernel and
categorical predictors. This consttutes a rather simple model of the biosensor output, because it
is sparse and uses only four regressors with a limited number of values. We have also found that
the pH is  the most  important  predictor,  followed  by  the  Glucose and the temperature.  An
alternatve technique could be grounded in the support vector machine for regression (SVMR).
While SVMR can only be applied to the subset of generalized linear models (GLM) that can be
defned  by  a  valid  kernel  functon,  the  RVM  can  train  a  GLM  with  any  collecton  of  basis
functons.

Contnuous glucose monitoring by means of a GOAB can consttute a remarkable ally to diabetc
patents involved in serious collateral chronic complicatons. However, their design is stll under
development,  in order to improve both accuracy and stability.  In electrochemical biosensors
design,  mathematcal  modeling  is  a  highly  recurrent  tool,  given  that  it  facilitates  the
computatonal  simulaton  saving  design  and  testng  tme  and  resources.  The  experimental
proposal and conditons developed in this chapter could be applied for other scenarios in the
wide spectrum of biosensing technology.

181



L. Rentería-Gutiérrez, L.A. Belanche-Muñoz, F.F. González-Navarro, M. Stilianova-Stoytcheva

References

Agrest,  A.  (2002). Categorical  Data  Analysis.  Wiley  Series  in  Probability  and  Statstcs,  2nd
editon. Wiley-Interscience.

Alonso, G., Istamboulie, G., Ramírez-García A., Noguer, T., Marty, J., & Muñoz, J. (2010). Artfcial
neural  network  implementaton  in  single  low-cost  chip  for  the  detecton  of  insectcides  by
modeling  of  screen-printed  enzymatc  sensors  response.  Computers  and  Electronics  in
Agriculture, 74(2), 223-229. http://dx.doi.org/10.1016/j.compag.2010.08.003

American Diabetes Associaton. (2013). Available at http://www.diabetes.org

Baronas,  R.  (2010). Mathematical  modeling  of  biosensors  an  introduction  for  chemists  and
mathematicians. Springer. http://dx.doi.org/10.1007/978-90-481-3243-0

Bishop, C. (1996). Neural Networks for Pattern Recognition. Oxford University Press, USA.

Blaedel, W.J., Kissel, T.R., & Boguslaski, R.C. (1972). Kinetc behavior of enzymes immobilized in
artfcial  membranes.  Analytical  Chemistry,  44(12),  2030-2037.  PMID:  4657296.
http://dx.doi.org/10.1021/ac60320a021

Borgmann, S., Schulte, A., Neugebauer, S., & Schuhmann, W. (2011). Amperometric biosensors.
In R. Alkire, D. Kolb  & J. Lipkowski  (Eds.). Bioelectrochemistry: Fundamentals, Applications and
Recent Developments. Wiley-VCH.

Caputo, B., Sim, K., Furesjo, F., & Smola, A. (2002). Appearance-based Object Recogniton using
SVMs:  Which  Kernel  Should  I  Use.  Proc.  of  NIPS  workshop  on  Statistical  methods  for
computational experiments in visual processing and computer vision.

Department of Trade and industry.  (2012). Biosensors for Industrial Applications, A review of
Biosensor Technology. United Kingdom Goverment.

Diabetes Research Insttute. (2012). Available at http://www.diabetesresearch.org

Elliott, C. (2006). Biosensor detects toxic drugs in food. Trac-trends in Analytical Chemistry, 25.

Keneth, W. (2007). How to design a biosensor. Journal of Diabetes Science and Technology, 1(2),
201-204. http://dx.doi.org/10.1177/193229680700100210

Malhotra,  B.,  & Chaubey,  A.  (2003).  Biosensors  for  clinical  diagnostcs  industry.  Sensors  and
Actuators B: Chemical, 91(1-3), 17-127. http://dx.doi.org/10.1016/S0925-4005(03)00075-3

Mell,  L.D.,  & Maloy,  J.T.  (1975).  Model  for  the  amperometric  enzyme  electrode  obtained
through digital  simulaton and applied to the immobilized glucose oxidase system.  Analytical
Chemistry, 47(2), 299-307. http://dx.doi.org/10.1021/ac60352a006

Morrison,  D.,  Dokmeci,  M., Demirci,  U.,  & Khademhosseini,  A.  (2008). Clinical applicatons of
micro- and nanoscale biosensors. In K. Gonsalves, C. Halberstadt, C. Laurencin & L. Nair  (Eds.).
Biomedical Nanostructures. Wiley.

Petrauskas,  K.,  & Baronas,  R.  (2009). Computatonal  modelling  of  biosensors  with  an  outer
perforated membrane. Nonlinear Analysis: Modelling and Control, 14(1), 85-102.

182

http://dx.doi.org/10.1021/ac60352a006
http://dx.doi.org/10.1016/S0925-4005(03)00075-3
http://dx.doi.org/10.1177/193229680700100210
http://www.diabetesresearch.org/
http://dx.doi.org/10.1021/ac60320a021
http://dx.doi.org/10.1007/978-90-481-3243-0
http://www.diabetes.org/
http://dx.doi.org/10.1016/j.compag.2010.08.003


Biosensors: Recent Advances and Mathematical Challenges

Pohanka, M., Skládal,  P., & Kroca, M. (2007). Biosensors for biological warfare agent detecton.
Defence Science Journal, 57.

Prodromidis,  M.,  & Karayannis,  M.  (2002).  Enzyme based amperometric  biosensors  for food
analysis. Electroanalysis, 14(4), 241-261. http://dx.doi.org/10.1002/1521-4109(200202)14:4<241::AID-
ELAN241>3.0.CO;2-P

Rangelova, V., Tsankova, D., & Dimcheva, N. (2010). Sof computng techniques in modelling the
infuence of ph and temperature on dopamine biosensor. In V. Somerset  (Ed.).  Intelligent and
Biosensors. INTECH. http://dx.doi.org/10.5772/7029

Saharudin,  H.,  & Asim,  R.  (2006). Optcal  biodetecton of  cadmium  and  lead  ions  in  water.
Medical engineering & physics, 28(10), 978-981. http://dx.doi.org/10.1016/j.medengphy.2006.04.004

Schölkopf,  B.,  & Smola,  A.  (2001).  Learning  with  Kernels:  Support  Vector  Machines,
Regularization, Optimization, and Beyond. Cambridge, MA, USA: MIT Press.

Smola,  A.,  & Schölkopf,  B.  (2004).  A  tutorial  on  support  vector  regression.  Statistics  and
Computing, 14(3), 199-222. http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88

Stoytcheva, M., Nankov, N., & Sharkova, V. (1995). Analytcal characterisaton and applicaton of
a  p-benzoquinone  mediated  amperometric  graphite  sensor  with  covalently  linked
glucoseoxidase.  Analytica  Chimica  Acta,  315(12),  101-107.  http://dx.doi.org/10.1016/0003-
2670(95)00314-P

Thévenot, D., Toth, K., Durst, R., & Wilson, G. (2001). Electrochemical biosensors: recommended
defnitons  and  classifcaton.  Biosensors  and  Bioelectronics,  16(1-2),  121-131.
http://dx.doi.org/10.1016/S0956-5663(01)00115-4

Tipping,  M.  (2001).  Sparse  bayesian  learning  and  the  relevance  vector  machine.  Journal  of
Machine Learning Research, 1, 211-244.

Vapnik, V. (1998). Statistical learning theory. Wiley.

Wang,  Q (2011).  Mathematical Methods for Biosensor models. PhD thesis, Dublin Insttute of
Technology.

World Health Organizaton. (2013). Available at http://www.who.int

183

http://www.who.int/
http://dx.doi.org/10.1016/S0956-5663(01)00115-4
http://dx.doi.org/10.1016/0003-2670(95)00314-P
http://dx.doi.org/10.1016/0003-2670(95)00314-P
http://dx.doi.org/10.1023/B:STCO.0000035301.49549.88
http://dx.doi.org/10.1016/j.medengphy.2006.04.004
http://dx.doi.org/10.5772/7029
http://dx.doi.org/10.1002/1521-4109(200202)14:4%3C241::AID-ELAN241%3E3.0.CO;2-P
http://dx.doi.org/10.1002/1521-4109(200202)14:4%3C241::AID-ELAN241%3E3.0.CO;2-P



