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1. Introduction

Among the chemicals that damage the environment, the ones based on the inhibitons of the
enzyme acetylcholinesterase (AChE) are the predominant agriculture insectcides, carbamates or
organophosphates,  but  they  bring  serious  health  and  environment  risks.  The  use  of
electrochemical biosensors is the most commonly way of detecton for AChE inhibitors based on
carbamates.  A biosensor is  a device capable to  produce an electrical  signal resultng from a
chemical reacton between a biological compound and any other substance, producing valuable
informaton that can be analyzed.

The  induced  chemical  reacton  (between  the  enzyme  AChE  and  the  neurotransmitter
acetylcholine (ACh) is highly dependent of external factors, such as pH and temperature; they
afect the reacton and similarly, afect the biosensor readings –i.e its accuracy and the observed
electrical power. The pH takes diferent values, one of which shows the largest electric power
and is considered as the optmum value. In the case, of temperature, the electric current has an
exponental behavior, however it reaches a maximum point around 60°C, where the enzyme
undergoes a denaturaton process causing the current decrease untl disappears.

Since  the  current  produced  by  the  chemical  reacton  depends  on  the  interacton  of  many
variables, it cannot be explained by simple observaton; therefore a computatonal approach is
needed in order to model the faradaic current behavior. So far, several eforts have been made
to model the resultng current using diferent biosensors:

• Digital simulaton of the current response in steady state obtained by an amperometric
biosensor  for  a  glucose  system;  it  maintains  a  solid  mathematcal  basis,  but  the
development of the model is committed to low electrical simulatons, otherwise the
margin of error increases (Mell & Malloy, 1975). 

• Modeling of the resultng current from an electrochemical oxygen biosensor, however it
only shows the models used and do not describe how it was implemented or tested
(Rangelova, Tsankova & Dimcheva, 2010).

• A chip implementaton using a neural network to simulate the current on an enzymatc-
biosensor; it shows the process used, but not the number of samples used to test the
model, or how the experiments were performed (Alonso, Istamboulie, Ramirez-Garcia,
Noguer, Marty & Muñoz, 2010).

In this work, we step aside from these traditonal approaches by tanking advantage of powerful
computatonal  regression  models,  whose  theoretcal  background  comes  from  the  statstcal
pattern recogniton field. 

The proposal explained trough this contributon embodies several stages briefed as follows:

• Data analysis

• Pre-processing

• Algorithm settings

• Training

• Validaton
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As well as its evaluaton:

• Tests

• Comparatve analysis

Given  an  electric  charge  produced  by  the  interacton  between  the  enzyme  AChE  and  the
substrate  Ach,  with  specific  temperature  and  pH;  the  regression  model  is  selected  by  a
comparatve analysis of diferent regression algorithms trough a certain performance measure
explained later. Under this general approach, the response of an acetylcholinesterase biosensor
will be studied, and a final mathematcal model will be explained.

2. The Biosensors

2.1. Electrochemical Biosensor

According  to  the  IUPAC  (Internatonal  Union  of  Pure  and  Applied  Chemistry)  definiton,  a
biosensor is an analytcal device that combines a biological component for molecular recogniton
and a signal processing device called a transducer, which can detect and measure, quickly and
accurately, the signal produced by the interacton of the biological element and the substance of
interest. The transducer, which normally ensures high efciency of the sensor, can be thermal,
optcal, magnetc, nano-mechanic, piezoelectric or electrochemical. Furthermore, the selectvity
of  detecton is  ensured by a  biological  recogniton element,  which  is  based on a  bio-ligand
deoxyribonucleic acid (DNA, RNA ribonucleic acid, antbodies, etc.), or a biocatalyst (some redox
proteins,  individual  enzymes  and  enzymatc  systems,  such  as  cell  membranes,  complete
microorganisms) (Thevenot, Tóth, Durst  &  Wilson, 1999). Table 1 shows several classificaton
criteria for biosensors depending on:

• Interacton type between the components to be detected;

• Interacton detectng method;

• Biological element to recognize;

• Device transducer type.

Interaction Type Interaction Detecting Method
Biocatalitc
Bioafinity

Direct
Indirect

Biological Element to Recognize Transducer Type
Enzyme
Organelle, tssue or complete cell
Biological receptor
Antbody
Nucleic acid 
Aptamers

Electrochemical
Optc
Piezoelectric
Thermometric
Nanomechanic

Table 1. Biosensors classificaton criteria

The electrochemical biosensors are divided into two types:

• Potentometric.

• Amperometric.
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Biosensors that measure only a change in potental at the interface-analyte sensor with respect
to the reference electrode are known as potentometric  sensors or biosensors.  Sensors  that
impose  external  potental  to  efect  the  transformaton  are  referred  to  as  electrochemical
amperometric  biosensors. Inhibiton of  the enzyme in  these  biosensors  is  monitored by the
current change, detectng to a certain potental oxidaton or reducton. Table 2 describes various
environmental  biosensors  according  to  the  type  of  transducer  used  on  certain  biological
elements, compound to detect and the area possibly analyzed.

Transducer type Biological element Analite Area
Electrochemical Antbodies Atrazine *
Optc Antbodies Simazine Ground, water mass
Optc Antbodies Pestcides Rivers
Electrochemical Antbodies Tensoactves (alkylfenols) *
Electrochemical Antbodies Estradiol *
Electrochemical Antbodies Eschenchacoll Drinking water

Optc Antbodies
Enterits Listeria monocytogenes 
Salmonella

*

Acoustc Antbodies Salmonella typhymurium *
Optc Enzyme (AChE) Organophosphates compounds Water
Electrochemical Enzyme (AChE) Paraoxon y carbofuran (pestcides) Residual waters
Electrochemical Enzyme (tyrosinase) Fenols Ground, dirt, waters 

Table 2. Biosensors with environmental applicatons

2.2. Enzyme Reaction

The measurements were performed using an electrochemical biosensor with two electrodes, a
counter electrode and a reference electrode in conjuncton with an insulated electrode (working
electrode), which in its lower part, has a porton (mg/cm3) of the enzyme AChE. Figure 1 shows
the schematc AChE biosensor used in the experiment.

The biosensor (working electrode) used in the experiment was prepared by immobilizing the
AChE enzyme, chemically bonded on the surface of a graphite electrode. The auxiliary electrode
was glassy-carbon type and the reference electrode a saturated calomel.

Thereafer the electrodes are immersed into a conventonal electrochemical cell, which contains
a  bufer  soluton  with  a  given  concentraton  (mmols/L)  of  the  substrate  ACh.  The  soluton
receives  a  fixed  acidity  (pH)  amount  and  temperature  (˚C).  During  the  study  the  electrode
maintained a constant rotaton speed of 1000 rpm. 

Equatons of chemical reactons where the AChE is involved are shown below:

AChE

ACh + H20 ⇒ Ch + Acetc Acid (1)

2Ch = Ch-Ch + 2e- + 2H+ (2)

During  the  study  we  measured the  current  produced  by  the  oxidaton reacton  product  Ch
(Equaton 2) to the enzymatc reacton (Equaton 1).
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Figure 1. Acetlcholinesterase biosensor scheme

2.3. Infuencing Factors

2.3.1. Substrate concentration

The  behavior  of  the  current  change  with  the  concentraton  of  ACh  is  total.  At  higher
concentratons, better results are obtained depending on the current. Current functon I vs. Cs is
described by a hyperbolic functon:

I = Imax * Cs / (Cs + Km), (3)

where Km is a called Michaelis-Menten constant. Thus, the optmum concentraton of ACh is the
highest level used: 1.0 mM / L. Table 3 shows the typical experimental results.

pH
Steady-state current, µA

25˚C 30˚C 40˚C 50˚C 60˚C 70˚C
5 8.80 14.06 15.67 17.27 18.88 0.72
6 20.30 32.44 36.14 39.14 43.56 1.66
7 21.90 35.00 39.00 43.00 47.00 1.80
8 17.90 25.09 31.87 35.14 38.41 1.47
9 15.70 25.09 27.95 30.82 33.69 1.29

Table 3. Optmal results as a functon of ACh concentraton fixed at 1.0 mM/L 
(pH 5-9 and temperature 25-70˚C)

2.3.2. pH

The  response  of  the  steady-state  current,  to  the  increase  of  the  acidity  levels,  behaved  in
ascending form. The optmum pH greatly varies depending on temperature and Cs changes. If Cs ≤
0.6 mM/L, and t ≤ 30˚C, the optmum pH is found at level 7; if the t > 30˚C, then it is found at level
8. If Cs > 0.6 mM / L, the optmum pH is found at level 7.The obtained data is presented in Table 4. 
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Substrate Concentration,
mM/L

Steady-state current, µA
pH 5 pH 6 pH 7 pH 8 pH 9

0.2 8.56 11.22 10.65 15.79 13.13
0.4 13.32 22.27 21.32 28.36 24.55
0.6 15.68 30.98 31.98 32.35 28.62
0.8 18.11 39.85 42.63 36.87 32.39
1.0 18.88 43.56 47.00 38.41 33.69

Table 4. Optmal results in terms of pH and Cs, with a preset temperature at 60˚C

2.3.3. Temperature

The response of the steady-state current to the increase in temperature is upward from 4.5 μA
to 47 μA. The latter value is the maximum current found at a temperature of 60 ˚C. When the
temperature  goes  from  60  to  70˚C,  the  current  decreases  drastcally,  such  that  the  value
obtained at maximum temperature (0.382075μA, found at 70˚C, pH 7, 0.2 Cs) is lower than the
found at 25˚C (minimum temperature) (Table 5). 

Substrate Concentration,
mM/L

Steady-state current, µA
25˚C 30˚C 40˚C 50˚C 60˚C 70˚C

0.2 5.60 7.63 8.68 9.60 10.65 0.38
0.4 11.20 15.26 17.37 19.20 21.31 0.76
0.6 16.30 22.89 26.06 28.80 31.97 1.14
0.8 20.00 30.52 34.75 38.40 42.63 1.52
1.0 21.90 35.00 39.00 43.00 47.00 1.80

Table 5. Optmum results in terms of temperature and Cs, with fixed pH at level 7

3. Machine Learning Algorithms

3.1. Neural Networks

Neural networks are computatonal  models based on the structure of nerve cell  connectons
found in the brain of living things, and likewise try to imitate their operaton (Russell & Norvig,
2010; Wolfgang, 2011; Luger, 2009; Mitchell, 1997). 

A  neural  network  is  composed  by  one  or  more  units  (neurons),  which  possess  a  series  of
connectons serving as inputs (dendrites), outputs (axioms),  or to communicate with another
unit (synapses). Each connecton has an associated numerical weight given. A neuron processes
the input informaton and produces an output, which could be considered as an input to another
neuron or as a final result.

A neural network operates in the following way. A vector x = (x1, …, xn), where xj ∈ R, j = 1,…,n, is
used as input. A numerical weight  wji, where  i is the index of neuron, is associated with each
element xj. These values are then summed on each neuron y, and it is applied a transfer functon
(actvaton) f, which determines the output value yi:

y i= f (∑
j=1

n

(w ji x j) ) (4)
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The actvaton functon most ofen used are the hyperbolic tangent functon (5) or a sigmoid
functon (6):

tanh ( x )=1−e
x

1+e x
(5)

sig ( x )= 1
1+e x

(6)

There are diferent neural network architectures, developed for diferent types of problems. If
the problem is to model (regression) or predict (classificaton) data, then the architectures are
used as a single layer perceptron (SLP), for linearly separable problems, or multlayer perceptron
(MLP), for high-dimensioned problems or not linearly separable. In additon, these architectures
are based on diferent learning algorithms, such as the Least-Mean-Square (LMS) algorithm or
the back-propagaton error algorithm (BP), considered as the learning algorithm used by MLP
type networks.

The MLP-BP is one of the most solicited neural network architectures in regression tasks, given
its adaptability to diferent problems. In this case, the regression problem of approximatng a
possible nonlinear functon f(x) with a neural network Y(x) BP MLP architecture, where x ∈ Rn.
Figure 2 shows the scheme of a network MLP-BP.

Figure 2. Example of a net MLP-BP

Inputs xj, j = 1... n, of the neuron i are multplied by the weights wji and are summed with the bias
value θi.. The result gi is the input to the actvaton functon Yi. The output node i becomes:

Y i= y(∑
j=1

n

w ji x i+θi) (7)

3.2. Support Vector Machines

The support vector machines (SVM) are supervised learning methods that generate a mapping
functon from a set of pre-labeled training data. The mapping can be either a classificaton or a
regression functon.

In a classificaton problem, a mapping is used to transform the input data, which is not linearly
separable in the original space, to a space of greater dimension, which happens to be separable.
The produced model depends only on a subset of the original input data whose characteristc is
that it creates a boundary that separate one data class from the others. The data belonging to
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that  subset  are  called  support  vectors.  This  boundary  named  margin  assure  us  a  maximum
distance between the diferent classes (Figure 3).

The goal of the SVM is to create a computatonal model to predict the class label of new data
samples.

In additon to their solid mathematcal foundaton based on statstcal learning theory, the SVMs
have shown a highly compettve performance in many applicatons such as bioinformatcs, text
mining, face recogniton, image processing, which have been established the SVM as one of the
basic tools of machine learning.

A regression problem is expressed in terms of the MSV as follows:

Figure 3. Classificaton of linearly separable data

There are given a training data set D = {xi,  yi},  i = 1… l, of input vectors xi ∈ Rn and their labels
yi ∈ R1. Through parameter C > 0 and ε > 0, the standard form of the SVM applied to a regression
problem is (Vapnik, 1998; Chang & Lin, 2011):

min
α ,α*
1
2
(α−α*)TQ (α−α* )+ɛ∑

i=1

l

( αi+αi* )+∑
i=1

l

yi (αi−αi
*) (8)

s. t.
eT ( α−α* )=0, (9)

0≤ αi , αi
*≤ C , i=1,… ,l , (10)

where

Qij=K ( x i , xm )≡ɸ( x i )
T
ɸ(xm) (11)

Afer solving the problem (8), the approximaton functon is:

g( x)=∑
i=1

l

(−αi+αi* ) K ( xi , x )+b (12)

where  ε is a predefined constant that controls the noise tolerance. With the insensitve loss
functon ε, the objectve is to find the functon g(x) whose deviaton is (at most) the value of the
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loss  functon  ε from obtained  etquettes  yi for  all  training data,  which  should  be as  fat  as
possible.

In other words, the regression algorithm does not afect errors as long as they are less than ε,
but any deviaton greater than ε is not accepted.

The defined functon:

K (x i , xm)≡ɸ(x i)
T (xm) (13)

is  called  kernel  functon  (Figure  4).  Although  researchers  frequently  propose  new  kernel
functons, we suggest the use of the following (Pedroza, 2007; Hammel, 2009; Hsu, Chang, & Lin,
2003; Chang & Lin, 2011): 

• Linear: K (x i , xm)=x i
T xm .

• Polynomial: K (x i , xm)=(xi
T xm+r )

d , d > 0.

• Radial Basis Functon: K (x i , xm)=exp(−γ ‖ xi−xm ‖
2) , γ>0.

• Sigmoidal: K (x i , xm)= tanh(γ x i
T xm+r ) .

Note: r and d are specific parameters of the functons.

Figure 4. Transformaton scheme from a set of data using a radial basis functon kernel

The kernel functon that reaches the objectves previously described is not known a priori; hence
the procedure for its finding has not been established. The way to meet the functon φ is based
on the performance of diferent tests on known φ functons. This procedure is called grid search;
some  functons  (polynomial,  radial,  sigmoidal,  etc.),  require  specific  parameters,  which
determine  the  separability  between  classes.  The  consumpton  of  computatonal  resources
depends on the dimensions of the grid search (amount of features to be compared and the
amount of diferent parameters for each functon to be used), as well as the size of the data set.

Although there are diferent kernel functons, it is common the use of Radial Basis Functon.
However it can be chosen using other kernels depending on the results obtained for a partcular
case.

3.3. Data PreProcessing

The 150 samples measured on the electrochemical experiment were analyzed, concluding that
the diferences between the ranges of the parameters (Cs, pH, T) might infuence the training
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algorithms. For this reason a min-max [0, 1] normalizaton process was applied. Table 6 shows
the values of the data before and afer standarizaton.

Parameters Original Data Normalized Data
Cs [0.2, 0.4, 0.6, 0.8, 1.0] [0.0, 0.25, 0.50, 0.75, 1.0]
pH [5, 6, 7, 8, 9] [0.0, 0.25, 0.50, 0.75, 1.0]
T [25, 30, 40, 50, 60, 70] [0.0, 0.1111, 0.3333, 0.5556, 0.778 ,1.0]

Table 6. Original and Normalized Data Ranges

Afer  normalizing  the  data,  we  proceed  to  divide  the  entre  set  into  subsets  for  training,
validaton  and  testng.  Because  the  entre  data  set  is  considered  small  (150  samples),  it  is
necessary to use a resampling technique, which will also permit to separate the main assembly
into three subsets of data instead of 2. The first is a subset assigned for training-validaton and
the second is used only for testng. The resampling technique chosen is a version of the K-Fold
CV, which is repeated k-tmes, in this way, a larger number of samples can be trained, and obtain
a better generalizaton error. Furthermore, this technique allows the model to be evaluated in a
better way because more elements are considered for validaton, and reinforces the model's
behavior against "new" samples.

3.4. The Regression Model

3.4.1. ANN: Training and Validation

In order to find the neural network parameters that render the Means Square Error --i.e. no. of
neurons per layer,  no.  of internal  layers,  learning rate  and learning algorithm,  a grid search
process  was  carried  out.  Considering  that  the search process  was  long,  the combinaton of
parameters  for  the algorithm calibraton has  been  reduced based on previous works  about
approximatons  to  functons  of  biological  characteristcs  or  obtained  through  the  use  of
biosensors (Hsu et al, 2003).

ANN Configuraton:

Layers 5
Neurons 30 per each layer
Training Levenberg-Marquadt Algorithm
Learning Gradient Descendent
Resampling technique k x k-Fold CV, k ϵ (5, 10)
Performance measure Mean Square Error (MSE)

The  presented  configuraton  ofered  the  best  results  in  terms  of  the  tme  consumpton,
resources  and  good  performance  measure  during  training.  Other  prominent  configuratons
improve the network performance on an insignificant manner; however because of their trend
to consume considerable amounts resources, they were discarded. The selected configuraton is
programmed with 30 neurons in each of the five layers. Levenberg-Marquadt Algorithm was
used to optmize the learning process. To improve the evaluaton of the model a K x K-Fold CV
resampling technique (Refaeilzadeh, Tang & Liu, 2009) with two diferent values of K (5, 10) was
used.
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3.4.2. SVM: Training and Validation

Afer the preprocessing and data division, a grid search process was applied using an exponental
increasing of the parameters, as it is suggested in (Hsu et al., 2003), aiming to find the best SVR
algorithm configuraton in the shorter tme. Since the performance of this algorithm depends on
the kernel functon employed, several searches were conducted, one for each type of kernel:
linear, polynomial, radial basis and sigmoid. The best results were showed with a radial basis
kernel functon. Table 7 shows the best results of each of the 4 kernels.

The search process  using the radial  basis  kernel  was performed on 3 parameters:  the error
penalty (C),  insensitve loss functon (ε)  and the radial kernel parameter (α).  The resampling
technique was used in this step.

Linear Polynomial Radial Base Function Sigmoid

Configuration
c = 29
ε = 22.21 

c = 29
ε = 22.21 
α = 0.075
d = 2

c = 512
ε = 4.6268
α = 0.075

c = 29
ε = 22.21 

MSE, 5-Fold CV 40.53 26.75 5.41 7.83
MSE, 10-Fold CV 84.72 53.78 10.84 15.67

Table 7. Best SVR kernel results

The  performance  comparison  between  the  algorithms  mentoned  above  ensures  that  the
configuraton presented is the best possible for the SVR algorithm.

SVM configuraton:

C 29 = 512
α 22.21 = 4.6268
ε 0.075
Kernel Radial Base Functon
Resampling technique k x k-Fold CV, k ϵ (5, 10)
Performance measure MSE

3.3. Neural Networks

The tests on the ANN-MLP model are realized to make a simulaton of CS parameters, pH and T
using the test data set and the ANN-MLP model selected during Grid Search. Figure 5 shows a
comparison of the original data and the data predicted by the model ANN-MLP. A simulaton of
the original  data and the data predicted by the ANN-MLP is exposed on Figures 6a and 6b,
respectvely.
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Figure 5. Graphs of the resultng current test data vs. the data predicted by the ANN-MLP model

(a) (b)

Figure 6. Comparatve graphs of the ANN-MLP simulated data and the experimental data:
(a) Experimental data, (b) ANN-MLP predicted data

3.4. SVM

Similarly to the ANN-MLP, the test on the SVR model consist of the predicton of the test data
set, using the best configuraton found by means of a grid search process; and then, compare
this predicted data set with the original test data. Table 8 shows a part of the comparison of test
data and simulaton using the SVR model.

No
Test Data
I, μA

Simulation
I, μA

Error

1 32.35 31.7865191 0.56348089
2 22.11 22.8484843 0.73848435
3 0.72 -3.47229928 4.19229928
4 13.13 14.0527819 0.9227819
5 21.9 24.0532271 2.1532271
6 39.85 40.5384729 0.68847285
7 1.32 1.76999286 0.44999286
8 0.74 3.11594287 2.37594287
9 1.16 1.50589061 0.34589061

Table 8. SVR Model best results
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The comparison of SVR against the test output parameters from the original data is shown on
Figure 7. A simulaton of the original data and the data predicted by the SVR is exposed on
Figures 8a and 8b, respectvely.

Figure 7. Current data resultng from the test set vs. the data predicted by the SVR

(a) (b)

Figure 8. Comparatve plots of the SVR simulated data and the experimental data: 
(a) Experimental data, (b) SVR predicted data.

A comparatve analysis was realized by observing the graphs of the test data modeled by the
algorithms, as well as comparing errors that have the simulatons of the test data and the MSE
that each model has in total. Figure 9 shows the experimental test data and the data simulated
by ANN-MLP and SVR models.

Figure 9. Comparison of experimental test data vs. data predicted by the ANN-MLP and SVR models
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Table 9 shows the quanttatve comparison between the test data simulated by the models and
experimental data, based on the MSE of each model, 3 samples were taken randomly from the
set  of  test  data.  Figure  9  and Table  9  show  that  both  models  provide  good  approximaton
functon, but the SVR is the best fitting model, so it is considered the best. 

No
Test Data Samples ANN MLP SVR

CS, mmol pH t, ˚C I, μA I, μA Error, I, μA Error, 
1 0.2 6 30 8.03 9.68 1.65 7.84 0.19
2 0.8 7 50 18.15 22.21 4.06 18.26 0.09
3 0.4 7 40 38.41 35.27 3.14 38.56 0.15

Error (MSE), % - 2.95 - 0.143

Table 9. Models quanttatve comparison

In order to develop a simulaton using more realistc features, a new set of samples has been
generated, applying the minimum measurable level of ACh, pH and t. (Table 10).

Feature Scale Increment
Substrate Concentraton 0.2 ≤ Cs ≥ 1.0 0.01

pH 5 ≤ pH ≥ 9 0.01
Temperature 25 ≤ t ≥ 70 0.1

Table 10. Scale simulaton features

The samples generaton process should consider the following:

• The data range of new samples should be the same as that of the original data.

• The generated samples should be normalized in the same way that the experimental
data, using the same set of equatons.

This  must  be  hold  as  a  way  to  maintain  a  defined  structure,  and  avoid  data  extrapolaton
problems,  causing  a  poor  spread  of  new  samples  and  therefore  a  higher  error  rate  in  the
simulaton.

Recalling  that  the number  of  samples  used to  develop the model  were 150,  with  the new
simulaton levels, 15 467 031 samples were generated. However, in previous sectons it  was
shown the dependency of the response variable with the Cs value; at higher concentratons, the
amperage was increased and vice versa. In this way, and in order that the simulaton can be
analyzed qualitatvely, the process was made from the perspectve of T and pH, leaving the Cs
value at  1.0  mM/L.  For this  reason,  the samples  were reduced to  225,  951,  decreasing the
samples generaton, normalizaton and predicton tme of the regression model.

To  evaluate  the  simulaton,  a  comparatve  analysis  between  simulated  samples  and
experimental  data  were  performed.  Figures  10 and  11 show  the  minimum  scale  feature
simulaton, with Cs = 1.0 mM/ L. The results show that the functon keeps the behavior of the
experimental data with minor irregularites which do not compromise their performance.
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Figure 10. Minimum scale feature simulaton

Figure 11. Comparison between original and simulated data: Temperature T perspectve

In order to find the sample that generates the highest response value, a search through the
whole simulaton samples was made. Using this simulaton, intervals for locatng the maximum
response value were generated; shown on Table 11.
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Interval (μA) Temperature [0.1] pH [0.01]
# of samples 

in the intervals
±0.001 56.9 6.03, 6.04 2
±0.01 56.8≤ t ≤ 57.1 6.00≤ pH ≤ 6.07 24
±0.02 56.7≤ t ≤ 57.2 5.99≤ pH ≤ 6.08 48
±0.05 56.5≤ t ≤ 57.3 5.96≤ pH ≤ 6.11 117
±0.1 56.3≤ t ≤ 57.5 5.93≤ pH ≤ 6.14 232
±0.2 56.0≤ t ≤ 57.8 5.88≤ pH ≤ 6.19 472
±0.5 55.5≤ t ≤ 58.3 5.79≤ pH ≤ 6.29 1,117
±1.0 54.8≤ t ≤ 58.8 5.69≤ pH ≤ 6.41 2353
±2.0 53.8≤ t ≤ 59.6 5.55≤ pH ≤ 6.58 4810
±5.0 51.40≤ t ≤ 61.1 5.28≤ pH ≤ 6.98 12,896

Table 11. Optmum interval locaton

The two samples presented in the range ± 0.001 locate the maximum value of the response
variable to a detectable level, and the maximum is achieved with the combinaton:

Cs = 1.0 mM/ L, T = 56.9oC, pH = 6.03,

generatng a steady-state current of 50.9502 μA, and the second sample that have the same
configuraton with the excepton of pH(6.04), generates approximately the same current, with a
diference of 0.000004 μA. Figure 12 highlights the area within the range ± 1.0 μA, and locates
the maximum current  value expressed through the simulaton of  samples  (Garcia,  Burtseva,
Stoytcheva & Gonzales, 2011).

4. Conclusions

This research resolves the doubts found in the literature about learning of biological functons
provided by the use of electrochemical sensors. Keeping the virtues of these, a detailed process
is  presented  in  the  development  of  diferent  learning  models,  and  the  procedure  for  the
evaluaton of results.

Experimental data are analyzed through diferent perspectves (Cs, pH, T), also their behavior
and locaton of the possible areas of the extreme values in the resultng current, with the aim of
finding the combinaton of parameters that maximize the sensitvity  of the determinaton of
ACh.

According to the analysis  of the state of the art,  the Artficial Neural Networks are the most
suitable regression models to the task at hand, i.e. to predict and analyze the parameters of a
biosensor.  In  the same way,  the  SVMs ofer  a  solid  and  compettve performance with  the
possible  advantage that  it  has  less  tuning parameters  than a  Neural  Network.  Although the
results obtained using Neural Networks were satsfactory, the SVMs show the best performance,
i.e. functon approximaton, both in testng and simulaton modeling process. 

It must be notced that educated practces in machine learning literature instruct to computer
scientsts  to  have  a  proper  independent  test  data  set  as  a  way  to  correctly  assess  the
generalizaton capacity of any model; therefore, new test data samples must be available.
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Figure 12. Locaton of the maximum current value
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