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Ab s t r a c t

Oral tolerance is defined as the lack of a systemic immune response
against antigens previously administered through the gastrointestinal
tract. Therefore, in an antigen rich environment such as the intestine,
the oral tolerance avoids the development of immune responses against
food  antigens  and  the  commensal  microbiota  maintaining  immune
homeostasis in health. Nevertheless, in some circumstances the immune
system fails to develop and/or maintain immune tolerance, triggering
an abnormal immune response against the commensals, which occurs
in inflammatory bowel diseases and/or against food antigens as evident
in celiac disease. In this chapter, we will discuss the unique properties
of  the  immune system in  the  gastrointestinal  tract  and  study  how
dendritic  cells,  the  most  potent  antigen  presenting  cells,  control
mechanisms of immune homeostasis in the intestine. 
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1. Characteristics of the Gastrointestinal Mucosa

The mucosa of the gastrointestinal tract (GIT) is the longest in the human
body comprising 100m2 (200 times bigger than the skin surface). It consists of
a  monolayer  of  epithelial  cells  specialized  in  the  absorption  of  water  and
nutrients and also provides a physical barrier with the external environment. 

The intestinal  epithelial  cells  (IEC) constitute the  frontier  between the
external antigen-rich environment [in its lower or distal  compartments the
GIT  carries  a  total  of  1012  bacteria  per  gram of  human  tissue1]  and  the
immune system in the lamina propria (LP) underneath, which comprises the
connective tissue between the apical epithelial layer and the inner muscularis
mucosae. Barrier function of the IEC is elicited by an array of tight-junctions
between  the  IEC blocking  the  passage  of  substances  from the  lumen.  In
addition  to  the  epithelial  barrier,  some  IEC like  the  Goblet  cells  secrete
mucins which constitute the mucus layer on the apical membrane of the IEC.
This  mucus  layer  carries  a  high  concentration  of  anti-microbial  defensins,
neutrophils and secreted IgA helping to maintain immune homeostasis in the
GIT2,3. 

Although IEC are not immune cells,  their role in GIT homeostasis and
disease  cannot  be  disregarded  since  some  pathologies  display  increased
epithelial gut permeability due to defective or “leaky” tight-junctions. The
leakage  of  food and microbiota  antigens  through the  IEC occurs  in  some
forms of inflammatory bowel disease (IBD) like in Crohn’s disease; mucosal
exposure to luminal antigens probably provides the basis for sensitivity to
food antigens in Crohn’s disease, responses to which can then be elicited only
through challenge via gut mucosa but not through skin challenge4. Patients
with  celiac  disease  (CD)  have  increased  epithelial  gut  permeability  too,
allowing passage of luminal content antigens including gluten to the LP. The
composition of the mucus layer is also altered in CD patients5,6 as well as the
microbiota  composition6-11.  Nevertheless,  it  remains  elusive  whether  such
altered properties of the IEC compartment and the microbiota are cause or
consequence of the disease.
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2. The Immune System in the Gastrointestinal Tract

Dendritic  cells  (DC)  and  macrophages  (M)  are  the  main  antigen
presenting cells (APC) in the GIT and changes in their numbers, phenotype
and  function  have  been  reported  in  GIT  diseases  including  CD12-15.
Nevertheless, DC and M have different functions. DC, the most potent APC,
are unique in their capacity to migrate to the lymph nodes to perform antigen
presentation  and indeed  are  the  only  cells  which  can  present  antigens  to
stimulate  naïve  T-cells16.  DC,  therefore, control the  mechanisms  of
immunity/tolerance  in  the  GIT,  maintaining  immune  tolerance  against
harmless antigens (mainly derived from the diet and the commensals) whilst
also  maintaining  the  capacity  to  trigger  active  immune  responses,  against
invading pathogens17. M, on the contrary, do not migrate to the lymph nodes
and  fail  to  perform  antigen  presentation  to  naïve  T-cells.  However,  M

provide a first line of phagocytic defence against invading antigens18 and also
modulate  effector  T-cell  responses  in  the  tissues19,20.  They  also help  to
maintain  intestinal  tolerance  by  reducing  local  inflammation21 and
contributing to epithelial cell renewal22. Differential functions at induction and
effector  sites  influence  the  outcome of  the  immune  responses  in  the  GIT
allowing the establishment of regulatory mechanisms required to maintain the
properties  of the mucosal immune system23.  Different compartments of the
immune system in the GIT can be classified, according to their function and
location, into i) sampling; ii) induction; and iii) effector areas.
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2.1. Sampling Areas

The sampling  areas  of  the  GIT immune  system are  those  areas  where
antigens are sampled by the DC24 (Figure 1).

Figure 1. Dendritic cell antigen sampling. DC can sample antigens via (1) M cells at Peyer’s
Patches,  (2)  intestinal  epithelial  cell  derived  tolerosomes,  (3)  following  direct  uptake  after
sending  their  veils  or  dendrites  between  the  epithelial  cells  or  (4)  after  breakdown  of  the
epithelial integrity. While the first two mechanisms promote immune tolerance, the last two are
related with development of active immune responses.

2.1.1. Antigen Transfer Via M Cells at the Peyer’s Patches

Peyer’s Patches (PP) are lympho-epithelial organs mainly located in the
small bowel submucosa. On their apical and external surface PP are covered
by a subset of specialized IEC called Microfold or M cells. Such M cells are
specialized for direct transfer of particulate antigens from the GIT lumen into
tissue beneath the dome of the PP, a compartment rich in DC which will
sample the antigens.
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2.1.2. Indirect Sampling Via Enterocytes

In  contrast  to  the  underdome  compartment  of  the  PP,  where  DC are
enriched,  DC and other APC such as M are also spread throughout the
whole  lamina propria of  the GIT where they constitute a cell  network in
intimate contact with the basal membrane of the IEC. In order to maintain
the GIT epithelial integrity, IEC can sample the luminal content and secrete
antigens onto the basolateral membrane through release of vesicles into the
LP where they will be taken up by DC. Such vesicles have been defined as
“tolerosomes”  as  they  promote  development  of  tolerogenic  responses  via
LP-DC25,26. Nevertheless, DC can also get indirect access to luminal antigens
following phagocytosis  of  apoptotic  IEC although in that case they would
promote active immune responses against the foreign antigens24.

2.1.3. Direct Uptake by DC

LP-DC expressing CX3CR1 can extend their veils, or dendrites, between
the IEC while establishing tight-junctions in order to maintain the integrity of
the epithelial barrier25 and hence gaining direct access to luminal antigens.
Nevertheless, recent evidence has redefined such CX3CR1+ cells as a subset of
tissue-resident tolerogenic M20,28.

2.1.4. Direct Access Following Epithelial Breakdown

When  the  epithelial  integrity  is  compromised,  due  to  an  increase  in
transepithelial permeability and/or IEC apoptosis (as induced in CD by IL-15
as  discussed in other  chapters),  then the luminal  content will  have direct
access to LP-DC which will trigger an active immune response against the
invading pathogens or, in disease, to food or microbiota antigens24. Increased
epithelial  permeability  has  been  associated  with  several  GIT  diseases
including CD.
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2.2. Induction Areas

Following  antigen  update  by  the  DC,  induction  areas  are  those
compartments  where  DC  present  antigen  to  naive  T-cells.  In  the  GIT,
induction areas are comprised of organized lymphoid tissues (including the PP
as  previously  described,  the  appendix  and  some  lymph  nodes)  and  the
mesenteric lymph nodes draining the gut. During antigen presentation DC
will  not  only  generate  antigen-specific  T-cells  but  will  also  control  their
differentiation into pro-inflammatory and/or tolerogenic T-cells

2.3. Effector Areas

Following T-cell priming, antigen-specific effector lymphocytes will migrate
back to the GIT to elicit their function at the effector areas in the epithelial
compartment and/or the LP. 

2.3.1. Intraepihelial Lymphocytes

Intraepitheilal  lymphocytes  (IEL)  constitute  a  heterogeneous  pool  of
T-cells on the basal membrane of the epithelial and intercalating with the
enterocytes. In contrast to immune cells in the LP and non-mucosal immune
tissues, IEL constitute a unique mix of lymphocytes. In resting conditions, in
healthy controls, human IEL constitute around 20-40 cells per 100 enterocytes
in the ileum where they are more frequent. They are characterized by the
expression of the CD103 integrin, and most of them (70-90%) have a cytotoxic
CD3+CD4-CD8+ profile with a classical TCR. Although non-classical TCR

lymphocytes are not very common in other compartments, they represent up
to 30% of the total IEL in the GIT being the tissue where they are mainly
found. Finally, the IEL compartment comprises a third CD45+CD3-CD7+ NK-
like cells with cytotoxic capacity29,30. 
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2.3.2. Lamina Propria

The LP contains an array of immune cells in addition to fibroblast, smooth
muscle cells, lymph and blood vessels. Indeed, although it is not an organized
lymphoid tissue, LP of the GIT contains the largest number of immune cells
(mainly effector B and T-cells but also DC and M) in the human body.

2.3.2.1. B-cells and IgA

Different B-cell subsets produce different types of immunoglobulins (Ig).
IgM/IgG  are  involved  in  systemic  antibody  responses  and  IgE  mediates
allergic reactions but the major component of antibody responses in the GIT
is  IgA.  Therefore,  IgA is  the  main  Ig  in  mucosal  compartments  and  the
human body secretes over 3g/day. Ig-A promotes a non-aggressive exclusion of
pathogens, limiting their access to the IEC, and accumulates in the mucus
layer  which  is  also  rich  in  other  immune  molecules  like  defensins  and
bacteriocines, enhancing all together its immune protective function forming
the first immune barrier of the GIT3,31. 

2.3.2.2. T-cells

Following  antigen  presentation,  DC  determine  the  outcome
(pro-inflammatory/tolerogenic) of the responding antigen-specific T-cells. In
both cases, T-cells will migrate from the lymph nodes to the LP where, as the
effector  site,  they  will  elicit  their  function  (either  pro-inflammatory  or
regulatory). 

The role of the pro-inflammatory lymphocytes in the GIT has been clearly
stated  in  several  intestinal  pathologies  including  CD.  Production  of  pro-
inflammatory  cytokines  by  the  T-cells  compromises  the  integrity  of  the
epithelial  barrier  and  is  also  related  to  structural  modifications  of  the
extracellular matrix32,33. Production of pro-inflammatory cytokines promote a
positive auto- and paracrine feedback for production of chemokines and other
pro-inflammatory cytokines which exacerbate the immune response and the
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tissue injury. Generation of gluten-specific pro-inflammatory T-cells following
antigen presentation by DC is the ultimate cause of CD pathogenesis.

Regulatory T-cells, are CD4+ lymphocytes characterized by the expression
of high levels of CD25 in which activity is controlled by the expression of the
FoxP3  transcription  factor.  In  contrast  to  pro-inflammatory  T-cells,
regulatory  T-cells  mediate  immune  homeostasis.  Some  regulatory  T  cells
produce  large  quantities  of  regulatory  cytokines  (mainly  IL-10).  As  a
consequence,  regulatory T-cells  block the proliferation of  pro-inflammatory
T-cells, inhibit the production of pro-inflammatory cytokines and cooperate
with  local  B-cells  to  enhance  their  production  of  IgA34.  However,  T-cell
properties are dynamic35-37 so their discrimination into pro-inflammatory and
regulatory T-cells may be an oversimplification caused by cell density and/or
cell contact inhibition38.

In summary, the immune system in the GIT promotes immune tolerance
against the encountered antigens, mainly derived from commensals and food,
via GIT-DC which promote the generation of antigen specific Ig-A secreting
B-cells and regulatory T-cells which together maintain immune homeostasis.
Nevertheless,  in some pathologies  like CD, DC “are confused” and fail  to
recognize  gluten  as  a  harmless  dietary  antigen.  When  that  happens,  DC
promote the development of  gluten-specific  pro-inflammatory T-cells  which
control progression of the disease. In the following sections, we will therefore
discuss the properties of GIT-DC and try to understand some of the causes
which may cause their malfunction in CD. 

3. Dendritic Cells Biology

DC are potent APC. In contrast to other APCs such as B-lymphocytes
(excluding already activated B cells) or M, DCs are unique in their capacity
to initiate a primary immune response by stimulating naïve T-cells; they also
control  the  outcome  (tolerogenic  or  proinflammatory)  of  the  immune
responses16,39-41.
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DC precursors migrate from the bone marrow to virtually all tissues in the
body,  including the  mucosa  in  the GIT.  Once in  the tissues,  DC become
sentinels and sensors of the immune system. DC are sentinels as they are
highly effective capturing and processing antigens42,43 and hence sampling the
surrounding  environment.  DC  are  also  sensors  given  their  capacity  to
discriminate the nature (harmful/harmless) of the sampled antigen via their
high expression of pattern recognition receptor (PRR) molecules [including
Toll-like  receptors  (TLRs)44-46]  but  also  given  their  capacity  to  become
activated in the presence of an innate immune stress (e.g. pro-inflammatory
cytokines or oxidative stress)47,48. Therefore, DC occupy the interface between
the  innate  and  the  highly  specialized  antigen-specific  adaptive  immune
system. 

When DC capture a “danger antigen”, as recognized via their PRR and/or
following maturation induced by an innate immune response, tissue DC lose
their  high  antigen-processing  capacity  and  migrate  to  secondary lymphoid
organs in a CCR7-dependent manner49,50 in a process of maturation which will
promote their capacity to present the antigens to T-cells. Within the lymph
nodes,  mature  DC will  deliver  three  different  signals  to  the  naïve  T-cells
which will control their differentiation into antigen-specific pro-inflammatory
T-cells.  Such  signals  include  i)  an  increased  expression  of  the  processed
antigens on the surface of the HLA-II molecules; ii) increased expression of
co-stimulatory  molecules  CD80(B7.1)/CD86(B7.2)  (T-cell  CD28/CTLA4
ligands) and/or CD40 (T-cell CD40L ligand); and iii) increased capacity to
produce  pro-inflammatory  cytokines,  like  IL-1251,52.  Therefore,  lymph  node
mature  DC  have  lost  their  antigen-capturing  ability  but  are  efficient  for
antigen  presentation  and  lymphocyte  stimulation  controlling  their
differentiation  into  antigen-specific  effector  (pro-inflammatory)  T-cells.
However, DC can also drive development of non-inflammatory (tolerogenic or
regulatory)  lymphocytes  if,  at  the  time  of  the  antigen  presentation,  they
display  a  decreased  expression  of  the  first  two  signals  coupled  with  an
increased capacity to produce regulatory cytokines, like IL-10. In this manner,
DC control  the development of  pro-inflammatory responses against foreign
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harmful  antigens  whilst  maintaining  immune  tolerance  against  harmless
antigens. 

3.1. Dendritic Cells and  Migration Markers: Connecting
Induction and Effector Areas 

Antigen  specific  B-  and  T-cells  express  tissue-specific  homing  markers
which control their migration back to the target tissues where the antigen is
found. Lymphocytes migrating back to the GIT express on their surface the
47 integrin53 and/or the chemokine receptor CCR954.  The ligand for the
47  heterodimer  is  the  MAdCAM-1  molecule  which  is  expressed  by
endothelial cells in the LP post-capillary venules of both the small and large
bowels55,56.  On  the  contrary,  the  ligand  for  CCR9  is  the  CCL25/TECK
chemoattractant  expressed  by  small-bowel  epithelial  cells57,58; there  is  a
gradient of expression which is maximal at the proximal end of the small
bowel and gradually decreases in the ileum to become undetectable in the
colon59.  Therefore,  while  47+ lymphocytes have general mucosal  tropism,
those  co-expressing  CCR9+ are  specifically  directed  towards  the  small
intestine, like pro-inflammatory gluten-specific T-cells in CD. 

T-cell expression of such homing markers is controlled by DC. Thus, DC
not  only  control  the  outcome  (proinflammatory/toregonic)  of  the  immune
responses but also the location of that response via homing marker imprinting
on antigen-specific lymphocytes60. Prior to stimulation, naïve T-cells express
migration markers that lead them to lymphoid tissues61. DC entering tissues
from the blood gain specificity induced by their tissue of residence. DC within
the  tissues,  particularly  after  exposure  to  antigens,  will  migrate  to  the
draining lymph nodes and deliver a fourth signal to the T-cells as they induce
the  expression  of  homing  or  migration  markers  on  the  responding
lymphocytes62-65. Therefore,  antigen  specific  responding  lymphocytes  are
directed back to the  target tissues where the antigens were found so that
immune  responses  are  performed  in  a  compartmentalized  tissue-specific
way. The  mechanisms  through  which  DC  induce  the  expression  of
tissue-specific homing markers on responding T-cells remain elusive but seem
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to involve –among other components– fat soluble vitamins like vitamin A and
D.  The  25-OHD molecule  (generated  in  the  skin  following  the  ultraviolet
light-dependent  activation  of  vitamin  D)  induces  the  expression  of  skin-
homing markers on DC and hence on the T cells they stimulate T-cells66.
Retinoic acid (RA), which is a metabolite of dietary vitamin A, induces the
expression  of  gut-homing  markers  47  and/or  CCR9 on  DC which  then
stimulate T-cells with similar properties62,65,67,68. DC from the GIT –but not
from other tissues-possess the enzymatic machinery necessary to synthesize
RA69-71 providing the mechanism by which GIT-DC gain gut specificity that
will then control the migration of the antigen specific lymphocytes back to the
GIT  effector  compartments62,65,68.  Moreover,  DC  themselves  also  express
tissue-specific  homing  markers  which  vary  according  to  their  location65.
Circulating myeloid DC from CD patients (both untreated at diagnosis and
after clinical remission following gluten-free diet) display an altered expression
of  migration  markers  with  very  high  expression  of  CCR972 suggesting  an
increased small bowel migratory capacity which may correlate with a higher
infiltration of DCs in target tissues12. Nevertheless, the mechanisms producing
changes  in  homing  capacity  of  circulating  DC  are  unknown  since  it  is
generally accepted that DC normally  die  within lymph nodes and do not
recirculate73. 

4. Dendritic Cells and Oral Tolerance

GIT-DC are exposed to a large amount of foreign, but harmless, antigens
mainly  derived  from the  commensal  bacteria  and  the  food.  Therefore,  in
contrast to DC from other tissues, GIT-DC promote the immune tolerance
against such antigens74-76.

The lower immunogenic capacity of intestinal DC results from a number of
factors. One of them is that GIT-DC have lower expression of PRRs -including
TLR molecules-77 which confers on them a lower capacity to recognize bacterial
antigens in such microbiota-rich environment. In addition to decreased TLR
expression, GIT-DC also display an immature phenotype as compared with DC
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from other tissues; they have lower expression of both HLA-II molecules and
surface  co-stimulatory  molecules,  increased  phagocytic  capacity  and  higher
capacity to produce regulatory cytokines such as IL-1077-79. Such a tolerogenic
profile confers GIT-DC with a reduced stimulatory capacity when compared
with DC from other tissues65 which is key in preventing inflammatory processes
in the absence of invading pathogens. In addition to their decreased stimulatory
capacity, GIT-DC also promote the differentiation of both T-cells with antigen-
specific regulatory properties and IgA-secreting B-cells which mediate immune
tolerance in the GIT80-84. Last, but not least, GIT-DC also imprint gut-homing
markers (47 and/or CCR9) on both Ig-A secreting B-cells and regulatory
T-cells81,85 so trafficking of such tolerogenic T-cells and IgA secreting B-cells is
restricted to the gastrointestinal compartment. GIT-DC tolerogenic properties
are dependent on RA which is essential for intestinal immune tolerance; it is
only intestinal DCs (but not DC from other tissues) that possess the enzymatic
machinery necessary to convert vitamin A into RA69-71 and therefore provide the
capacity  to  generate  gut-homing  regulatory  T-cells  and  IgA-secreting
B-cells81,85-89. Nevertheless, GIT-also maintains the capacity to trigger an active
immune response against invading pathogens. Given that plasticity to maintain
immune  tolerance  against  food/commensals  while  triggering  active  immune
responses against invading pathogens, it has been recently suggested that the
GIT contains different DC subsets, each of them being responsible for different
outcomes of the immune responses as discussed in the next section.

4.1. DC Subsets in the GIT

Intestinal DCs were originally classified into two mutually exclusive subsets:
tolerogenic (CD103+) and proinflammatory (CX3CR1+) DC which respectively
control  immune  tolerance  against  food  and  commensals  or  trigger  immune
responses against invading pathogens respectively90-92. Tolerogenic CD103+DC,
are derived from newly arrived DC, have the capacity to migrate to the lymph
nodes  in  a  CCR7  dependent  manner,  and  possess  the  machinery  (enzyme
RALDH2)  necessary  to  metabolize  vitamin  A and generate  RA generation
which mediates several GIT-DC properties. On the contrary, CX3CR1+DC are
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derived from newly arrived monocytes and lack both the enzymatic machinery
to synthesize RA and the capacity to migrate to the lymph nodes; they would
elicit a pro-inflammatory effect against invading pathogens. 

4.1.1. CX3CR1+ APC

CX3CR1+DC were originally identified as the GIT-DC subset with capacity
to  send  their  dendrites  through the  IEC,  establishing  tight-junctions  with
them, and accessing luminal antigens25.  Although originally defined as DC,
CX3CR1 is virtually absent on colonic DC and CX3CR1+ APC have been
recently  redefined  as  M20,28,93.  Their  pro-inflammatory  role  has  also  been
revisited given their capacity to expand T-cells with regulatory properties on
an IL-10 dependent  manner20,94.  Moreover,  CX3CR1+M also  contribute  to
immune homeostasis given their capacity to extend their projections between
the IEC and migrate towards the lumen in the presence of an infection while
becoming loaded with bacterial antigens, thus limiting their access the LP18,95. 

4.1.2. CD103+ DC

Intestinal  CD103+ DC  can  migrate  to  the  lymph  nodes,  in  a  CCR7
dependent manner.  Within them, the subset co-expressing CD11b+  (murine
analog of human CD1c, which identifies type 1 myeloid DC) is unique to the
gut controlling the immune tolerance mainly via retinaldehyde dehydrogenase
type 2 (RALDH-2) required to generate retinoic acid which mediates several
GIT-DC properties28,96,97. 

CD103+DC are decreased in the duodenum of CD patients14 suggesting that
they are related with the lack of oral tolerance against dietary gluten in such
patients. However, most our knowledge about the tolerogenic GIT CD103+DC
subset have been obtained from murine models which, although essential to
further our understanding on DC biology, may not always be translated into
the human context93,98. Thus, although a majority of human GIT-DC have a
regulatory profile65,77,78,99 that is not restricted to the CD103+ population which
are not the main DC subset in the human GIT14,93,100. RALDH2 expression is
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not restricted to human CD103+ subset as it is also found on CD103- DC and
even  M100.  Moreover,  recent  evidence  suggests  that  the  system  is  more
dynamic that originally described; “tolerogenic”  CD103+CD11b+DC can also
drive  pro-inflammatory Th17 responses28,  CD103-DC can also generate RA
and migrate to the lymph nodes101 and, finally, DC subsets and function also
depend on the mouse strain and GIT location102 proving GIT-DC plasticity.

Together, and although different DC subsets may exist in the GIT, it seems
that the distinction between different DC subsets with different functions may
be  an  oversimplification;  DC  properties  are  dynamic  and  depend  on  the
surrounding microenvironment in which they are found. 

4.2. Intestinal DC Plasticity

Tissue DC express different migration markers which are modulated by the
local microenvironment65,103 as DC acquire tissue-specific migration markers and
the capacity to imprint them on lymphocytes they stimulate62,65,68,104. However,
the  tissue  microenvironment  does  not  only  modulate  DC  homing  marker
expression but also their maturation status as innate immune factors induce
DC maturation. In the absence of inflammation, GIT-DC acquire a regulatory
profile following exposure to various “sedative” signals mainly secreted by the
IEC105-108 including thymic stromal lymphopoietin (TSLP), regulatory cytokines
like  TGF- and  IL-10  and  RA65,81,107,108 (Figure  2).  Under  such  a  sedative
environment, and in the absence of external immune insults, GIT-DC acquire
an immature phenotype characterized by decreased expression of PRR, but also
of  HLA-Class  II  molecules,  co-stimulatory  molecules  and  also  an  increased
capacity to secrete regulatory cytokines. Given their capacity to metabolize
vitamin A and generate  RA,  GIT-DC in  such  a  calming  environment  will
generate  antigen-specific  gut-homing  T-cells  with  regulatory  function  and
IgA-secreting B-cells which will in turn promote and maintain the mechanisms
of immune tolerance against dietary and commensal antigens.
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Figure 2. Epithelial cells and dendritic cell crosstalk. 
Left:  In  resting  conditions,  in  healthy  controls,  intestinal  epithelial  cells  (IEC)  recognize
microbiota antigens in their apical membrane via pattern recognition receptors (PRR). When
that  happens,  IEC secrete  TGF-b and retinoic  acid (RA) hence modulating lamina propria
dendritic cells towards a tolerogenic phenotype. 

Right:  In  the  presence  of  invading  bacteria,  tight-junction  integrity  is  compromised  and
pathogens get access through being recognized by PRR located on the basolateral membrane of the
IEC.  In  this  setting,  IEC block  the  secretion  of  inhibitory  signals  and,  conversely,  of  DC
modulation towards tolerance. 

The intestinal  immune system is,  however,  dynamic.  In the presence of
danger  signals  its  regulatory  profile  disappears  as  IEC  stop  secreting
“sedative” signals. This is partly due to the fact that IEC can recognize the
presence of invading bacteria. IEC are programmed to secrete TGF- and RA
when recognizing bacteria in their apical membrane by means of their PRRs;
however,  in  the  presence  of  invading  bacteria  tight  junction  integrity  is
affected so pathogens access through and are recognized by the PRRs located
on the basolateral membrane of the IEC109-112. In this setting, IEC block the
secretion  of  inhibitory  signals  and,  conversely,  of  DC modulation  towards
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tolerance. Furthermore, the presence of an innate immune response against
invading  bacteria  involves  the  secretion  of  different  pro-inflammatory
cytokines  and/or  oxygen  reactive  species  with  the  ability  to  induce  DC
maturation47,48.  Under  such  conditions,  DC recognize  captured  antigens  as
invading pathogens, blocking immune tolerance and triggering active immune
responses (Figure 2). This capacity of DCs to respond rapidly and efficiently
to  their  microenvironment  grants  them the  ability  to  control  the  immune
system and the balance between immunity and tolerance. Nevertheless, the
system  is  not  perfect  and  factors  altering  the  balance  can  lead  to
malfunctioning DC as in CD. 

5. Dendritic Cells in Celiac Disease

DC maintain immune homeostasis in the GIT while in CD, they trigger an
antigen-specific immune response against dietary gluten. DC themselves are
the cell type expressing the HLA-DQ2/8 molecules (the main susceptibility
genes  in  CD),  a  type  of  HLA-II  molecule  unique  in  their  capacity  to
accommodate gluten antigens and perform antigen presentation. Nevertheless,
the reason why gluten is  recognized as a harmful  antigen by DC remains
elusive.  Increased  expression  of  TLR  molecules  on  GIT-DC  and  MyD88
signalling has been reported in some pathologies like IBD77,113. Although GIT-
DC have not been extensively studied in CD, tissue PRR expression is altered
in the celiac mucosa10,114,115 and gluten antigens are also recognized in a MyD88
dependent manner116,117 so a potential role of PRR on gluten recognition in CD
cannot be discarded. 

Another possibility, however, suggests that DC do not recognize gluten as
harmful  antigen  directly  but  only  as  a  consequence  of  an  innate  immune
response triggered in the GIT.  As discussed in other chapters of this book,
gluten antigens have a dual effect on the GIT mucosa of the CD patients as it
triggers an innate immune response followed by a secondary antigen specific
adaptive immune response.  The second is  triggered by the DC, which,  as
previously discussed, fail to recognize gluten as a harmless dietary antigen.
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The reason for DC “confusion” could be a consequence of the first non-specific
innate  immune  response.  Such  innate  response118 is  characterized  by  the
production of IL-15 by IEC in a NF-kB dependent manner following gluten
recognition119,120. IL-15 has a direct effect disrupting the epithelial barrier as it
increases tight-junction permeability121,122 and induces apoptosis of IEC123-126.
Under such immunological stress,  IEC stop secreting their sedative signals
(Figure 2). IL-15 also has the capacity to activate DC directly and the DC
would then mature towards a pro-inflammatory phenotype (Figure 3). Gluten-
induced  IL-15  production  by  IEC  is  central  in  the  first  steps  of  CD
pathogenesis  and  it  also  elicits  co-adjuvant  effects  with  RA exacerbating
inflammatory  responses  to  dietary  antigens127.  Therefore,  gluten  antigens
sampled by DC are recognized as harmful and DC promote the differentiation
of  gluten-specific  gut-homing  pro-inflammatory  T-cells;  once  back  in  the
effector tissue (lamina propria) these T- cells will promote development and
progression of the disease. DC, are therefore responsible for the incapacity of
CD patients to establish immune tolerance against ingested gluten proteins;
instead, they cause development of antigen-specific immune response. 
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Figure 3. Dendritic cells and celiac disease. In resting condition, in healthy controls, intestinal
epithelial cells (IEC) secrete sedative signals, including TGF-b and retinoic acid (RA), which
modulate lamina propria dendritic cells (DC) towards a tolerogenic phenotype. In celiac disease,
dietary gluten antigens induce an innate immune response characterized by IL-15 production by
IEC. Pro-inflammatory IL-15 increases tight-junction permeability and induces IEC apoptosis.
In such stressful environment, IEC stop the secretion of the sedative signals and therefore of DC
modulation  towards  tolerance.  Pro-inflammatory  cytokines  like  IL-15  also  have  a  direct
maturation effect on DC. As a consequence, gluten antigens reaching to the lamina propria are
now  recognized  as  harmful  so  DC  trigger  the  development  of  an  antigen-specific  immune
response and hence the development of celiac disease pathogenesis.
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