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Preface

In this book the author presents an approach on numerical and analytical mathematical models
to control and formally represent robotic engineering systems. Most of the chapters contents
were simulated and experimentally tested in the laboratory of the author’s institution. Applied
computational mathematics has mainly been focused on describing sensing and control algo-
rithms, and the formal models of both aspects combined for robotic research. Robot design
and its applications presented scope the three control modalities: wheeled and walking, aerial,
and underwater robots. Throughout this book, the author presents academic material on
robotic applications divided into 17 chapters organised in five sections: Robot Sensing Models,
Robot Navigation, Trajectory Control, Modelling Walking Robots, and 3D Robot Modelling. Its
contents makes particular highlight on establishing deterministic mathematical formulations
and solutions. Although, a diversity of computational algorithms were developed to obtain the
experimental and simulation results that support the book, those algorithms are not explicitly
analysed because the approach of the book regards only the deterministic numerical models.

Each chapter material is the result of academic final projects and teachings discussed in the
classroom regarding computational mathematics applied to experimental mobile robotics. The
research material explained has been produced by deploying home-made robotic platforms
built in our Robotics Laboratory. The computer programs that support the theory behind the
chapters were developed under C++ language, Open Source libraries, and our set of coded
libraries KatanaLibs, which run in our Linux-based robotic OS (SAMURAI) developed during
several years by our research group. The purpose of applying deterministic mathematical
modelling is to find analytical and numerical solutions of diverse robotics engineering prob-
lems. The algebraic and integrate-differential equations are mathematical models that allow
the engineer to develop computer algorithms for controlling the robot’s sensors and actuators,
and execute sophisticated intelligent missions in real-time. The present topics include projective
geometry, linear algebra and matrices properties for establishing various sensing models to
measure world attributes meaningful to the robot itself. Including the mathematical description
of odometers, accelerometers, ultrasonic sonar, light detection and ranging sensors (LiDARs),
image processing techniques, and feature extraction. Methods to solve systems of linear and
non linear equations are used, such as systems of Jacobian matrices (squared and non squared)

analysed by means of matrix properties: determinants, pseudo-inverse and decomposition of



6

singular values. Furthermore, different types of integrate-differential, and partial differential
equations are proposed as basis for navigation and trajectory control. The fitting of curves
by polynomial interpolations to model schemes for planning, tracking, kinematics and dynam-
ics control of robotic platforms are discussed as well. The models for actuation are obtained
adaptively through Taylor series expansion, and polynomial regressions.

The book provides understanding on numerical modelling methods for different types of
mobile robots. Its contents is written for graduate, and undergraduate students of advanced
courses that are related to engineering sciences with a background on computational Maths
and Physics. Finally, I would like to thank all my undergraduate and graduate students that
have co-worked and collaborated with me as their academic advisor in the Robotics Laboratory.
Students such as Alejandra Marin, Juan Carlos Solis, Karen Cangas, Maribel Bailén, Ramén
Esparza, Eder Jimenez, Oscar Paydn, Ellian Herrera, Joab Retana, Diana Torres, Nestor Santos,
Lidice Castro, Dulce Torres, whom helpfully supported by setting up experiments, coded soft-
ware tools, collected dataset for the Lab’s users, tested algorithms, fixed robotic platforms or
helped configuring the technological infrastructure of the Robotics Laboratory. In addition, I
thankfully mention the staff of my institution UAC]J that provided me the administrative support
for the production of this book, Jestis Valencia, Lisbeyli Dominguez, and Luis Gutierrez from

the Research and Postgraduate Coordination Office.

Assoc. Prof. Edgar Alonso Martinez Garcia (PhD Eng.)
Head of the Robotic Laboratory

Institute of Engineering and Technology

Universidad Auténoma de Ciudad Judrez

Cd. Judrez, Chihuahua, Mexico
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Foreword

Right from its origin, robotics and automation has capitalized on advancements on computing
and data management to support the designing, building and testing of advanced robotic sys-
tems. The impressive development of technology and its contribution to the information-based
society, is undoubtedly reshaping every aspect of our human daily life. Just as processor power
is no longer a constraint factor for building computational expensive applications, robotics has
been a recipient of new modern ubiquitous systems that include a wide integration of several
data communication protocols, high definition graphic displays, and the availability of amazing
amounts of computing memory. The overall field has grown to become a mature and growing
subject. History began with industrial manipulators five decades ago but spans to our days
as robotic explorers that have been sent to Mars to explore the planet, perform experiments
and send their results back to Earth. Other advancements include lots of research about au-
tonomous operation in complex environments to develop a driver-less car while humanoid
robots have been sent into space and a number of advanced legged mobile robots have been
developed by several high Tech companies. Unmanned aerial vehicles have a wide variety of
military and commercial uses and new robotic applications now include robots that might hold
no bolts or metallic parts on their construction whatsoever; new materials are being used to
imitate several nature-inspired locomotion and sensing mechanisms. Despite their clear dif-
ferences, these robotic applications require the solution of common tasks like controlling the
robot’s physical behaviour, sensing the environment, building up world models and tools for
interacting with the environment. Such issues precisely uphold the foundations of this book.
The education of future engineers and scientist around robotics and automation subjects
must include a deep and solid understanding of mathematical modelling fundamentals and a
clear vision of control engineering, computational intelligence and advanced processing of sev-
eral signal types such as voice, images and real-time video. Modern robotics demands a deep
integration of such subjects, making space for a common ground between electronics, com-
puter science, mechanics, pervasive computing, among others. However, among all subjects,
the mathematical modelling of each component and its clear interpretation of the overall robot
mechanism’s behaviour must be appropriately addressed. For such a purpose, the author of
this book has embraced a carefully developed mathematical framework to support the learning

of fundamentals for modern robotics and automation. The book’s perspective relays over a
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step-by-step approach for introducing core concepts of advanced robot modelling. It supports
a second or third year undergraduate course in advanced robotics or can be a compulsory
text for a first year postgraduate course. It is suitable for a range of different areas including
mechanical and electrical engineering, applied mathematics and computer science.

The book has seventeen chapters devoted to the key mathematical topics for basic and
advanced robotics, all divided into five sections. The first chapter begins by reviewing basic
mathematical concepts of linear algebra and numerical methods, supporting the reader with
a smooth transition between introductory and deeper concepts, all required by subsequent
chapters. The section I presents a close review of relevant robotic sensing models that in-
clude visual methods, odometry-based procedures and multi-sensor registration. The section
IT focuses on the dynamical behaviour and navigation principles. Four chapters are devoted
to directional derivatives, vector fields and task planning respectively. Section III presents
three chapters that are completely devoted to the analysis of trajectory control of wheeled and
walking legged robots, the required dynamics analysis and the control for trajectory tracking.
This section included studies of the complexity of the kinematic analysis for a four-wheeled
active suspension. The book’s section IV is fully devoted to walking robotic structures, ranging
from Klann linkages, Jansen-based quadrupeds, the mixed Hoeken-Jansen bipedal robot and
the complex kinematics of self-configuration of heel-leg robots. The last section V is devoted
to discuss robots kinematic for robots that navigate in 3D spaces or fluid environments such as
underwater vehicles and hover craft mobile robots. This section is a remarkable contribution
of the textbook since only few manuscripts in the literature include a study on such an issue.

The organization of each chapter builds on basic concepts to demonstrate the use of classic
modelling methods for a wide variety of robotic plants. At the same time, several method-
ologies are used for the computer-based analysis of modern robot structures. It is expected
that students will appreciate the ability to run the simulation exemplars in order to reinforce
their understanding of the mathematical derivations. Adopting a simulation-based approach to
learning basic and advanced robotic concepts, just after a careful review of theoretical issues,
ensures that students approach all concepts in an enjoyable and interactive fashion.

Finally, it is important to share that the problem set included for each robotic architecture
has been carefully selected in order to assure a full inclusion of previously presented theoretical
concepts. It is expected that this manuscript will become a remarkable tool for undergraduate,

postgraduate and researchers alike. Such expectancy grows from its broad, careful and deep
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study of a considerable number of modern robotic plants, whose concepts are still handy to
analyse classic robotic devices. Such coverage assure its usefulness and appreciation among

the robotic related community.

Prof. Dr. Marco Antonio Perez-Cisneros, MIEEE MIET MSNI
Robotics, Computer Vision and Automatic Control Research Group
Dean of Science Division, CU TONALA

University of Guadalajara, MEXICO

March 16th, 2015
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Chapter 1

INTRODUCTION

Edgar A. Martinez Garcia

Laboratorio de Robdtica, Institute of Engineering and Technology
Universidad Auténoma de Ciudad Judrez, Mexico.

This chapter contains a toolbox for the mathematical methods that are used along the book.
This is intended to be a general guide to introduce the reader through some fundamental
deterministic mathematical concepts generally applied in robotics engineering such as control

and sensor models.

1.1 Fundamentals of vector algebra and geometry

A vector is a physical quantity having magnitude, and angular direction. Let v, and u be vectors

in R",

u Vx

Us Vy
u= ;o v=

Un Vn

For practical purpose, let us assume u,v € R?, the scalar product of two vectors, the inner or

dot product.
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u' -v= u1vy + ugve

or

u’ v = [ullv] cos(6)

u-v o\
9=arccos<“u“”vll>, 0<O6<T

Thus, the following dot product properties are valid. The commutation is denoted by

the associative property of vectors is given,

T

wv+u)' - w=u' -w+v' -w

and let ¢ be a scalar,

cv=cu' -v)=u -(cv)

likewise,

However, for the case where

The following definition considers the right-sided depiction of the figure 1.1.

Definition 1.1.1. The length (or norm) of b is non negative scalar |b| defined by

(1.3)

b =¥eT/2-h = /c22+h% |b|2=cT/2-h (1.4)

Which also implies
(W
le/2b]l = |5 | b
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In general, two vectors u and v € R® are orthogonal to each other, if u' - v = 0. Therefore,

Theorem 1.1.2 (The Pitagorean). Two vectors u and v are orthogonal if and only if

e+ 9] = Ju + 9] (1.5)
For angles in R? and R3,
u’ v = [ul||v] cos(6) (1.6)
Proof,
lw = 9)* = Ju|® + |v]|* - 2]u]|v] cos(6)
and
[u]lo]| cos(6) = % [l + [v]” = Ju - v|?]
and
= ST el o v i) (s - )]
finally,

=WV — UV =u' -V

Given the figure 1.1, we have two triangles’, For figure 1.1 next theorems apply,

Figure 1.1: For any triangle ZA + /B + ZC = 180°.
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Theorem 1.1.3 (Cosine law). The cosine law :

a® = b? + ¢ — 2bc cos(ZA) (1.7)
b% = a® + c? — 2ac cos(£B) (1.8)
c? = a® + b? = 2abcos(£ZC) (1.9)
In addition,
Theorem 1.1.4 (Sine law).
a _ b _ ¢ (1.10)

sin(ZA) sin(£ZB)  sin(ZC)

h = bsin(/A) = a sin(/B) (1.11)
Accordingly to 1.1 right-sided figure, b = ¥/(c/2)? + h?, and

sin(A) = Q?h; cos(A) = 2%; tan(A) = Q?h; sin(B) = <

1.1.1 Outer product

The cross or vectorial product

uxv=(w Uy ... up) xW vo ... vl (1.12)

~

for three dimensions, where each orthogonal axis is denoted by the unit vectors i,j, k € R3
uxvys= (uﬁ + uoj + uﬂi) x (Vﬁ + o) + V5f(> (1.13)

defined by
ux v = [lu] v sin(6)7 (1.14)
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where the unit vector states the vector directions w.r.t. the axes,

uxv
) = (1.15)
[[w > v
it is not commutative
UXVvFEYXW uxv=—(vxu)
but it is distributive
UX(VXW) =uXxv+uxw
it is not associative,
(uxu)xw#Fux(vxw)
and
cuxv=cuxv)
and if the vectors are paralle],
uxv=0 6=0.
The vectors are perpendicular ulv, when u' - v = 0. Two vectors are parallel u|v, when
uxv=_0.
1.1.2 Unit vectors
u u
U= -—=— (1.16)
[ul  VaTu

where the Cartesian components of a vector u ¢ R?
u = wi + uj
The scalar magnitudes of the Cartesian components u; and uy that are mutually orthogonal,
uy = |luf|cos(¢);  us = [[u] sin(¢)

where,

u = |uf = y/uf +uj
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¢ = arctan <uQ>
uy

for three dimensions the vector components are

the angle w.rt. the axis uy,

u= ll1’1'\ + UQj + U3R
where each unit vector representing an independent Cartesian axis are defined by,
i=01,00"; j=1(0,107; k=(0,01"

which is equally represented by,

2

u = |uf cos(¢1)i + [lul| cos(es)j + [u] cos(¢s)k

thus, by factorising the common term |u],

2

w = [ul] (cos(g1)i + cos(gn)j + cos(¢s)k)

hence, by defining the unit vector A as:

5

A = cos(¢)i + cos(d)j + cos(¢s)k

it is deduced that,
M = cos(d1); Ag = cos(dn); Az = cos(¢s)

The magnitude of the three angles are not independent from each other,
A2+ A2 + A2 = cos?(¢y) + cos(¢) + cos?(¢s) = 1

Thus, the direction cosines are defined as:

uy U

cos(¢y) = m; cos(dy) = m; cos(ds) = o
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The unit vectors properties are

1.2 Linear matrix algebra

A system of linear equations (or linear system) is a collection of one or more linear equations
involving the same variables. A solution of the system is a list (sy,S9,...,5,) of numbers
that makes each equation a true statement when the values sy, s9,...,s, are substituted for
x1,...,Xn, respectively. Let us consider the following linear model representing a generalized

linear system of algebraic equations~,

Ax=b (1.17)

If A is not an invertible n x n matrix, then for each b € R™ the equation (1.17) has the unique
solution x = A1 . b. Therefore, let us define a single linear model equation in the following
general form,

aixy +Aagxo + ¢+ + ApXpy = b1 (118)

for a system of linear equations of the form

aij1X1 + AjpXg + -+ + AjpXp = b1
ajxy + ajoXe + -+ + AjpXn = by (119)

Am1X1 + AmaXe + -+ + AmnXn = by

Thus, the matrix form of our system of linear equations for m = n, it is denoted by as previously
defined by eq.(1.17),
@it + Qig + +++ + Ain x1 by
ajp +aj + -+ +ajn Xg by
. =1 . (1.20)

Ami + Amo + -+ + Amn Xn bn
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For either cases when m = n, and m # n, we are usually interested in solving the vector x.

Let A, B and C be matrices of the same size m x n, and let r and s be scalars.
a) A+B=B+A,andA+0=A

b)A+B+C)=A+B)+C

c) A(BC) = (AB)C

d) AB+C)=AB+AC,or (B+C)A=BA +CA

e) r(AB) = (rA)B = A(rB)

f) IA = A = Al

The transpose of a product of matrices equals the product of their transposes in the reverse
order. Thus, let A and B denote matrices where sizes are appropriate for the following sums

and products.
a) (AT)T
b) (A+B)T =AT + BT
c) (rA)T =rAT
d) (AB)T =BTAT
The symmetric matrix is equal to its transpose,
AT =A
The antisymmetric matrix has opposite sign to its transpose,
AT=-A
In the orthogonal matrix, the inverse of a matrix is equally obtained by its transpose,

AT =71
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1.2.1 Determinants

A determinant is a single number that summarises a square numeric matrix (multivariate
phenomenon) in a certain way and represents special characteristics of that matrix”.

The determinant of a 1-by-1 matrix is

det[ayi] = any

for a 2 x 2 matrix,

apr agg
det = ay1d9 — A12024
a1 dg2
and for a 3 x 3 matrix,
ayr a2 ai3
det Aoy QAgo Aoz | = A11QA922033 + A12023031 + A13A921A3 — A11023A32 — A12091A33 — A13022031

asy dz  ass

Let us consider A = [a;;] with ayy # 0. If we multiply the second and third rows of A by ajy
and then subtract appropriate multiples of the first row from the other two rows, we find that

A is row equivalent to the following two matrices:

ayr a2 a3 ai aiz ais
ag1 Qg Qg3 | ~ 0 anag —apas apag —agzas (121)
asz az ass 0  anaz —appamn  apass —azas

Subsequently, multiply the row 3 by (ajjas — ajpas), and then to the new row 3 add

—(ay1azy — ajpaz) times row 2. Thus, this will yield

ai aie ais
A~1 0 anaw—al2ay anas —aias (1.22)
0 0 ap A

where,

A = a11a90033 + Q12023031 + A13021A3p — A11A93A39 — A12021033 — A13020031
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The terms in A can be grouped as

(an1agass — anagsass) — (@pazass — apagsas) + (@sazas; — aizagnas),
such algebraic expression is equivalent, if we factorize and regroup the terms,

Qoo A3 ag A3 as Az
A = ayy - det —ayq - det + ayz - det (1.23)

asy Aas3 asy  asz asy  asg

and for brevity, we write with sub matrix notation in the following manner
A =aqayq -detAyy —aqy-detAyp + az - det A13 (124)

where Ayy, Ay, and Ay3 are obtained from A by deleting the first row and one of the columns.
For any square matrix A, let a;; denote the sub matrix formed by deleting the ith row and jth

column of A. Therefore, the determinant may be defined inductively by the Laplace expansion:

n n
Y (—1)Ya; detAy = Y (~1)"a;; det Ay (1.25)
j=1 i=1

for all i < n,j < n, and this common value is det(A) or simply |A|. The left-hand side is the
Laplace expansion by minors along row i, and the right-hand side is the Laplace expansion

along column j.

1.2.2 Trace of a matrix

The trace of a matrix A Tr(A), A € R**". The properties of the trace of a matrix,
n
Tr(A) = Zaii = Tr(AT)
i=1

and

Tr(cA) =cTr(A), V keR

Tr(A + B) = Tr(A) + Tr(B)
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and
Tr(AB) = Tr(BA)

1.2.3 Matrix inversion

The matrix inversion based on the determinant calculus is a common approach deployed when
we have squared matrices A, .,. An n x n matrix A is said to be invertible in fact, if there is an
n x n inverse matrix denoted by A1, uniquely defined by A. The following are some inverse

matrix conditions:

a) If A is an invertible matrix, then A~! is invertible,

AhHt=A

b) If A and B are n x n invertible matrices, then the product of the inverses is
(AB)"! = BA
c) If A is an invertible matrix, then the inverse of its transpose AT
(AT)t = (A-Y)T
d) The identity matrix of a matrix A and its inverse,
A'tA=1 A.A'=1

A non invertible matrix is sometimes called singular matrix; an invertible matrix is called a

non singular matrix where |A| # 0 must exist.
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Thus, according to the next theorem,

Theorem 1.2.1 (An Inverse Formula). Let A be an invertible n x n matrix, such that

a as
A =
as a,

hence, if aja, — agaz # 0, then A is invertible and

adjA) =+ [ T (1.26)

A=
det(A) a1a; —aas \ _qs  q,

But if aya, — asaz = 0, A is not invertible.

This can be an efficient way to calculate the inverse of small matrices. For n > 2, the
determinant of an n x n matrix A = [a;;] is the sum of n terms of the form +a;;det(A4;), where

the entries aiq,aig,...,ai, are from the first row of A.

Definition 1.2.2. The determinant of an n x n matrix A being n > 2 is

|A| = ayy det(Ayy) — agp det(Ayp) + - -+ + (—1) " May, det(Ay,) (1.27)

or .
Al =) (—1)"" det(Ay) (1.28)

j=1

In addition, the transpose of the matrix of cofactors is known as the adjugate matrix,

adj(A) = C7
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Thus, let A be a square matrix,

aq aq ...aqn
agr Ao ...QA9n

A= (1.29)
dp1 QAp1  ...Anpn

And, the cofactors matrix C is stated as

C11 C11 ...Cin
Co1 Co1 ...Con

C= (1.30)
Cmi Cm1 ---Cmn

Where each cofactor matrix terms is formulated by

ciy = (-1)"ay, (1.31)

1.2.4 Cramer’s Rule

This is an explicit formula for the solution of a system of linear equations with as many equa-
tions as unknowns, valid whenever the system has a unique solution. It expresses the solution
in terms of the determinants of the (square) coefficient matrix and of matrices obtained from

it by replacing one column by the vector of right hand sides of the equations.

For a general systems of linear equations,

ayxXyq + ageXie + -+ - + A1pX1n = by,

Q91 Xo1 + AgeXg + +++ + AgpXon = by,

and

Am1Xm1 + Am2Xm2 + * -+ + AmnXmn = bm'
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Arranging in the matrix form,

Given the linear form of the vector x ¢ R", x = (xq, x9, ...

.
xn)

aq a9 e d1n
agy agy ... Q9n
Amt aAm2 ... Qmn

A- <I1 X9

X1

X9

Xn

Thus, let us define and apply the Cramer’s theorem,

CHAPTER 1.

INTRODUCTION

(1.32)

(1.33)

Theorem 1.2.3 (Cramer’s Rule). Let A be an invertible n x n matrix. For any b in R", the

unique solution x of Ax = b has the entries given by

_ detA(b)

xXi= ——, =1,2,.
! detA
thus,
b1 ap Q1n ayp by A1n
by ag Qon az by Qon
bn ano Ann ang bn Ann
Xy, = , Xo = ’
apr  age A1n air age Qin
agy QA9 Qon agy Qg QAon
dn1 QAdn2 Ann ap1 An2 Onn

Xn =

(1.34)
ayy  ag by
asy Qg b
An1 Apo bn
ayr a2 Qin
agy Qg Qon
ap1 An2 Ann

(1.35)
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1.2.5 Pseudoinverse

The following equations are used to define a generalised inverse, a reflexive generalized inverse,

and a pseudoinverse of A

Proposition 1.2.4. For J € R™™, and rank(J) = m, then (JJ)~! exists.

Consider the following Penrose conditions,

A-J-A=A (1.36)
J-A-J=] (1.37)
A-])'=A-J (1.38)
J-A)7T=J-A (1.39)

Definition 1.2.5. A generalised inverse of a matrix A € R™*" is a matrix ] = A~ € R™™

satisfying (1.36).

Definition 1.2.6. A reflexive generalised inverse of a matrix A € R™" is a matrix J =

A, € R™™ satisfying (1.36) and (1.37).

A pseudo-inverse is sometimes called the Moore-Penrose inverse !.

Definition 1.2.7. A pseudo-inverse of a matrix A € R™*™ is a matrix J] = A ¢ R™™

satisfying (1.36) through (1.39).

1 After the pioneering works by Mores (1920, 1935) and Penrose (1955).
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Lemma 1.2.8. For a linear equation (1.17), where A ¢ R™™®, x ¢ R®, and b € R™, a

necessary and sufficient condition for the existence of solution x is

rank([A b]) = rank(A)

If previous equation is satisfied then x = A~ - b, which is a solution of eq.(1.17).

Lemma 1.2.9. For an arbitrary A € R™*", there exist at least one generalised inverse
A~ and rankA~ > rankA. Thus, A~ coincides with a reflexive generalized inverse if and

only if rankA~ = rankA

Lemma 1.2.10. Generally A~ and A, are not unique. If A is square and non singular,
then the generalised inverse A~ and the reflexive generalized inverse A, are unique,

and A~ =A; =A1

Lemma 1.2.41. A- A~ and A~ - A are idempotent (if a square matrix A2 = A).

Using an arbitrary matrix U € R™™ and a generalised inverse A~, all the generalised

inverses of A can be represented by the following J:

J=A +U-A -A-U-A-A- (1.40)

This result can be readily shown by multiplying A at the two sides of each term of the equation

according to the Penrose condition (1.36),

A-J-A=AA +U-A-A-U-A-A)A (1.41)

and by multiplying A by all terms,

A-J-A=(A-A-A)+A-U-A—-(A-A-A)-U-(A-AA) (1.42)
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and then by applying the condition (1.36) the expression is reduced,

A=A+(A-U-A)—(A-U-A)

where A- A~ - A = A was used. Thus,
A=A

45

(1.43)

(1.44)

Thus, the pseudo-inverse A* € R™*™ is unique for a given A € R™*", whereas A~ and A,

are not necessarily unique. Let the sets of A7, A; and A" be S7, S;” and S*, respectively; then,

the following inclusion holds:

StcS, cSs”

Then,
(AT)"=A

Similarly for reverse order the transpose applies,
AN =(@AnT

and
At = (AT-A)+-AT =AT-(A-AT)+

and the identity matrix is a product of

AAY =1

or well

(AAT)AAT) 1 =1

regrouping terms according to the associative property of matrices,

AATAAT) Y =1

(1.45)
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Therefore, it follows the next theorems,

Theorem 1.2.12 (The Right-Pseudo-inverse). For A € R™*®, if m < n and rank(A) = m,

then AAT is non singular and

At =AT.(A.AT)! (1.46)

Here, A* = AT(AAT)! is called a right pseudo-inverse of A, since AA* = I. Thus, contrary,

Theorem 1.2.13 (The Left-Pseudo-inverse). For A € R™*™ If m > n and rank(A) = n, then
AT . A is non singuar and

At =(AT.A)t.AT (1.47)

Furthermore,

Theorem 1.2.14 (The Orthogonal Matrix). If m = n and rank(A) = m, then

AT = At (1.48)

Thus, for the general linear model (1.17), if m < n and applying theorem 1.2.12,
x=ATA-AT)t.p (1.49)

Finally, note that A" - A € R™*", and that in general, A*A # I because matrix multiplication

is not commutative.

1.2.6 Singular value decomposition

In order to deal with the case for non-squared matrices A,,», where m # n, for multiple

independent variables; the determinant value is not possible. Thus, not all matrices can be
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factored as A = PDP~! with D diagonal, then a factorization A = QDP~! is possible for any
Axn. A special factorization of this type, called the singular value decomposition (SVD) is a

linear algebra matrix factorization.

The SVD is based on the fact that the ordinary diagonalizability can be imitated for rectan-
gular matrices. The magnitudes of the eigenvalues A; of a symmetric matrix A measure the
amounts that A stretches or shrinks its eigenvectors. That is, if A; is the greatest eigenvalue’s
magnitude, then a corresponding unit vector v, identifies a direction in which the stretching

effect of A is greatest.

The norm of ||Ax|| = |Ax], [|x] = 1 is maximised when x = v,
[Ax] = [Ax] = [A[lx] = |A]
The following equivalence holds having a non trivial solution.
(A-ADx =0 (1.50)

Thus, the next theorem is stated,

Theorem 1.2.15 (Singular Value Decomposition). Let Rank(A),,xn = r, then there exist
Y mxn With diagonal entries in D are the first r singular values of A, 01 > 0y > -+ > 0p > 0,

and there exist an orthogonal matrix U,,«,, and an orthogonal matrix V, ., such that

A =UxV’

Thus, ATA is symmetric and can be orthogonally diagonalized. And
U-=[uy,...,uy] € R™M

and let V = [vy,...,v,] € R™" be an orthonormal basis consisting of eigenvectors of ATA,

where A is represented as in theorem 1.2.15.
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Likewise, let Ay, ..., A, be the associated eigenvalues of ATA. Then, for 1 <i < n,
[Av;|? = (Av;)T(Av;) = v AT Av; = v (Aiv;) = A (1.51)

Arranging the corresponding all non negative eigenvalues and renumbering to satisfy the
values Ay > Ap > -+ > Ay > O, then {Avy,...Av,} is an orthonormal basis for ColA and
Rank(A) = r, and by expression (1.51), their lengths are the singular values, then (Ay;) + 0 &

1 <i < r. The singular values of ATA are oy, ...0,, arranged in decreasing order. That is,
61':\2/)%: 1<i<n

For any y in Col(A), y = Ax,

X=CV{ +...ChVn (1.52)

and
v =AX = C1Avy + -+ + CLAV, + Cp 1 AVpyq + - -+ + CrAVY, (1.53)
v=Ax=C{Avy +---+C,Av, + 0 +---+0 (1.54)

Following that dim[Col A] = Rank(A) = r.

Thus, the diagonal matrix D = diag(og, 01, ..., 0,) € R"*" is squared and symmetric.

01
02
D, = ' (1.55)

Or

In addition the condition number k denotes the ratio of the longest and smallest values namely
k=—; (k=1 (1.56)

For a small k the matrix is well conditioned; for a large k the matrix is ill conditioned. Thus,
numerical computation of an ill-conditioned coefficient matrix may involve large computational

errors.



1.3. EXPANSION BY TAYLOR SERIES 49

Furthermore, the matrix X,

D O
Y -
0 0
For example, the singular values o; of J can be used to find the eigenvectors u, ..., uy, that
satisfy the equality JIT = w; = o;u;. Such eigenvectors comprise the matrix U = [uy,up, -+, up]-
Thus, the system is then rewritten as,
JJTu = Ux? (1.57)

Hence, it is defined Vy, = JTUX!, and let V be any orthogonal matrix that satisfies the expres-
sion V = [Vy,|Vnh_m]- Notice that V is an n x n matrix. Then, constructing the right pseudo-
inverse of J using singular value decomposition, the pseudo-inverse J* = VE~1UT. Therefore,

the SVD are given by (12.36), in which X, is the inverse (square) matrix of X,.
Xh = . (1.58)

For instance the solution for x in example y = A -x, A € R™*", such that x = A~! . yis given by,

x = (A-U-Z;})-Z;}-((AT-A)_lU-Zﬁ,)T-y (1.59)

1.3 Expansion by Taylor series

Taylor’s theorem provides a way of expressing a function as a power series in the independent
variable x, known as a Taylor series, but only applied to those functions that are continuous
and differentiable within the x-range of interest®. Difference formulas can be developed using
Taylor series. This approach is especially useful for deriving finite difference approximations

of exact derivatives (both total derivatives and partial derivatives) that appear in differential
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equations’. The theorem establishes that any smooth function can be approximated by means

of a polynomial®.

Theorem 1.3.1 (Taylor’s theorem). Let f(x) € D, and x = x¢ is any point in D. Thus, a power

series exist with centre in x( that represents an f(x) in the following form,

flx) =Y ailx - xo) (1.60)
i=0
where,
ai = Sfg,

il

Such coefficients satisfy the inequality,
lai] < max |f(x?|
(x — x0)!

where max |f(x)| is the maximal value over the residual circumference |x — xo|.

Difference formulas for functions of a single variable, for example, f(x), can be developed

from the Taylor series for a function of a single variable”,

) (4) (n)
fl) = ) + fU () Ax + L 2('x)Ax2 i 3('x)Ax3 P n('x)Ax” +R, (1.61)
where Ax = (x — h), and the residual term R, is
f(‘f) Axn+1 (1.62)

"+ 1)!

If the residual R, is omitted, the equation becomes the approximation of the Taylor polynomial

for f(x). Thus, the general algorithmic formula,

I

f(x)

f: UGN (1.63)

il
i=0
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1.3.1 Multivariate expansion by Taylor series
For multivariate functions the Taylor series formulation is stated in the following manner,
00 n k
f(x0, X1, .., Xn) ~ ;1: <§( xi — h")aaxi> f(x0, X1, ..., %n) (1.64)

for n variables given in a vector x € R", such that x = {x1,x9,...,xn}. And the k degree Taylor

expansion is developed,

k
fix) £+ (1 = R+ = B 4k (o =Bl ) S (165

For instance, by developing the expansion of Taylor series for two variables x4 and x,, and for

h = 0, with k = 2 degrees (second order derivative), the following expression is provided:

d 8 \°
flxr, x9) = f(xq, x0) + <x1 o 25, > flx1, x9) (1.66)
by algebraically expanding the two degree binomial,

x§62> f(xy,x9) (1.67)

o
f(xier) = f(r1,x2) + <xf + 2x1X9 5
0xy

0 +
6x1 0x10x9
thus, the second order derivative approximation is

& (xxq, x9) of (x4, x9) &f (xcq, x9)
~ 9 1,9 1,9 9 1,9
fley, x0) = flaxq, x9) + x5 Tf + 2x1x9 o100, + x5 Bxg

(1.68)

1.4 Solution of non linear equations

The term root of an equation refers to the values of the independent variable x calculated that
make f(x) = 0. There exist numerous complex equations where it is not possible to find a
direct analytical solution of the variables of interest. There are numerical methods to solve
equations where analytical solutions are not possible. This section presents open methods that
deploy only an initial value xg to find the solution. Sometimes, such methods diverge from
finding the real root value as the process of calculation progresses. Nevertheless, when they

converge, unlike close methods they are faster and iteratively find the solution.
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1.4.1 The Newton-Raphson method

In order to calculate the root of a non linear function, from the known initial value x;, a tangent
line is yielded from the point (x;, f(x;)) to the X axis, which represent a better approximation
of the real root. Form this geometric meaning, it is deduced that the first order derivative w.r.t.
x is equivalent to the tangent line slope. The following deduction is made by the expansion of
Taylor series,

1"(€)

flxiet) = floxg) + f'(x) (X1 — i) + T(xnl - x;) (1.69)

where £ exists in the interval ([x;,...,x;y1), just after the term of the first order derivative.

Thus, an approximation is provided by

flxict) = flai) + f' (i) (ocipr — x3) (1.70)

the intersection of f(x;,1) with the axis x must be f(x;,1) = 0, therefore

flci) + f'(xci)(ocipr — i) =0 (1.711)
such that,
’ _ f(xi) - 0
f'lxi) = P (1.72)

and dropping-off x;.1, the Newton-Raphson equation is

f(xi)
el = Xi — 1.73
Tivt = Xi = Go (1.73)
Thus, by estimating the error formula,
) "(€) 2 _

floci) + f (i) (ocien — xi) + T(xHi -xi)"=0 (1.74)

evaluating x, in f(x,) and by substituting in
et —x) + e,z =0 (1.75)

where

Etiv1 = Xp — X1 (1.76)
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The series of Taylor of the error is ideally zero,

f'(xi)Etiv1 + f2(,€) Ef; =0 (1.77)
hence,
'_f”(xr-) o
it1 = 57 Lty 1.7
Et, +1 2f’(xr) Et,l ( 8)
Thus, the relative error,
g = |FLT Xt (1.79)
Xi

1.4.2 The secant method

Sometimes exist cases of functions where their derivatives might be difficult to calculate, where
the method of Newton-Rapshon may loose efficiency due to divergence, specially when slopes
values are nearly 0, making difficult to find roots. Hence, in such cases a potential problem on
calculating the derivative, may be overcome by approximating it by backward finite differences.
This type of approximation basically substitute the derivative by the use of a secant, which is

an extrapolation of the tangent line crossing the x axis.

flocg) (i1 — xy)

flocioq) = flxi)

Nevertheless, the secant method may diverge for some types of functions f(x). Instead of using

Xit1 = X — (1.80)

two arbitrary numeric values to approximate the derivative, an alternative modified method

considers a fractional change of the independent variable to estimate f'(x),

, flxi + 6xi) — flxi)
f'lxi) = o, (1.81)

where 6 represents a small fractional change, and substituting it in the derivative function of
the Newton-Raphson formula previously stated, the following modified secant method formula

is obtained,
6xif (xi)

flxi + 6xi) — flx)

(1.82)

Xitg = Xj —
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1.4.3 Solution for polynomials

The Miller method is a manner to solve polynomial functions, similarly to the secant method
that directs a line until the x axis using two values of the function. The Miiller method is very
similar, but considering three consecutive points along the polynomial curve. Such segment

of three points is assumed to model a parabolic function”.
folx) = alx — x9)% + b(x —x9) + ¢ (1.83)

It is desired the parabola curve passes along (xo, f(xo)), (x1, f(x1)), and (xo, f(xs)). Those three

points are substituted in eq.(1.83) to evaluate its coefficients a, b, c. Therefore, the first point

flxo) = alxo — x2)* + blxo — x2) + ¢ (1.84)
for the second point,

flact) = aler —x9)* + blxy —x9) + ¢ (1.85)
and for the third point,

flxa) = alxs — x2)* + blxy — x3) + ¢ (1.86)

From third equation, c is easy found

flxo) = ¢

and substituting ¢ next, two equations with two variables come up,
flxo) — flxxa) = alxo — x2)* + blxg — x2) + € (1.87)

and

flacr) — flxe) = alxs —x9)* + blxy —x0) + € (1.88)

being hy = x1 — x9 and hy = xy — x4 and by algebraic arrangements, a and b are solved, the

divided differences are defined
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55
and substituting 64 in f(xo), and f(x;); and dropping off a and b,
_ 61 =&
Q=g (1.89)
b = ah; + 6 (1.90)
and
¢ = f(xo)

(1.91)

Therefore, to find either the real or complex roots, the quadratic expression is solved by the
general formula,

-2c
X3 =Xg + ———— (1.92)
b + Vb2 - 4ac
This solution is a direct manner to find the approximation error. In addition, the discriminant

value is defined by d = Vb2 — 4ac, and it is evaluated by |b —d| > |b + d|. In the same way, the
absolute error is calculated by

X3 — X2
&, =

X3
Finally, the sign is chosen by matching the sign of factor b. This choice provides a larger

numeric denominator, and therefore the root will be very approximated to x,. Once, x3 is
determined, the process is repeated.

1.5 System of non linear equations

The problem of this section consist of obtaining the roots of a set of simultaneous non linear

equations. Where the solution is determined by a set of x; that simultaneously make that all
equations are zero.

filxy,x9,...,x0) =0

folxy, xg,...,xn) =0

fulx1, 22, ..., x0) =0
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There exist a number of methods to solve systems of non linear equations, and most of them
are extensions of open methods. In next section the Newthon-Raphson method for systems of

non linear equations is presented.

1.5.1 The Newton-Raphson method

The Newton-Raphson method utilises the first order derivative to evaluate the tangent line
slope of a function. Such calculation has its foundations on the series of Taylor first order

derivative,

flxier) = floxi) + (Xipn — x0)f (x7) (1.93)
Given that we look for solving the systems of equations when the root is approximately found
f(xi4+1) = 0, when the function is evaluated for x;.;. Thus, by dropping-off the independent

variable,
f(xi)
f' (i)

which is the method for a single equation. For multiple equations the method to calculate

Xipg = Xj —

a root is very similar. However, the series of Taylor for multiple variables must be used, in
order to know that more than a single independent variable contributes to determine the root.

Considering the case for two variables,

aui 6ui
Uit = U; + (X1 — xi)g + (Vis1 — M)g (1.94)
and
Bvi Gvi
Viet = Vi + (Xip1 — xi)g + (Yis1 — yi)@ (1.95)

Considering the same principle for the roots that u;,1 = 0, y v;;4 = 0. The iterative solution

method” starts by stating the initial values,

6uix + 6ui - 4 x 6ui + 6ui

ax i+1 ay Vi1 = i i ax Yi ay
and

avi a"l)i avi Bvi

Ao Xitt T Vvt = Vit Xi— Y

ox oy Ox “oy
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Now previous equations are stated as linear, where x;,y; are known, and x;.1,¥;.1 are the
unknown variables to solve. Therefore, by realising algebraic manipulations to equations, and

using an algebraic method to solve the system (i.e. Cramer theorem, section 1.2.4).

u.@ — ").%
o ‘oy oy
Xit1 = Xj — an % ~ aui @ (196)
ox Oy oy Ox
and
’v.@ p— u.%

Yirt =5~ aui avi Gui Bvi

ox Oy Oy Ox

In addition, the denominator term in both equationsis known as the determinant of the Jacobian

matrix of the system of equations, which may be described separately. The Jacobian matrix is

defined as
aui 6ui
Ji = ox oy
o\ v
ox oy

Hence, its determinant is formulated by

8ui 6Vi aVi 8ui

ox Oy ox Oy

Jil =

Another way to express the solution for the multivariate system of equations is

u Gvi . 6ui
iamT- —Viao
0 0,
Xiy1 = Xj — %
1
and
L L]
1 L
Yiv1 = Vi — %
1

Furthermore, the sufficient conditions for convergence are the following criteria,

o)
ox

o,
ox
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and
ou

oy

ov
Oy

1.6 Numerical fitting models

Either the realistic calculation of a point between discrete values, or the simplified version of a
complex mathematical function, is known as Curves Fitting. A fitting model is obtained from

the process of constructing a curve having its best fit to a series of data points.

1.6.1 Newton polynomial interpolation

If it is known that the points of a dataset or table are very precise, then the basic procedure
is to fix a curve or series of curves crossing through each point directly. The estimation of
values between discrete points are known as interpolation.

Let be the polynomial of the general form”,
falx) = bo + by(x — x0) + ba(x — x0)(xx —x1) + -+ + bplx —x0) ... (x = 2x0-1) (1.98)

where the coefficients are obtained from the next expression,

bo = f(xo) (1.99a)

by = f(x1, x0) (1.99b)

by = f(xg, x1, x0) (1.99¢)

bn = f(xnrxn~1l---:x0) (199d)

The divided differences are described by,

flact) — f(x;) (1.100)

Xi, Xj) =
flawg) = ==

likewise, the second divided difference is deduced in the next expression,

floci, x5) — flxj — x) (1.101)

f(xi,x,-,xk) =
Xi — Xp
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In such a way, the n! finite divided difference is

f(xnrxn~1r O] xi) - f(xn~1,xn,2,...xo)
Xn — X

(1.102)

flxn, Xn_1,...,X1,X0) =

Such differences are useful to evaluate the coefficients of equations (1.99), which are substituted

in equation (1.98) to obtain the interpolative polynomial, which is defined next,

fnlx) = f(xc0) + (o —2x0)f (x1, 20) + (2 —2x0) (x —201)f (22, X1, X0) + - - + (2 —2x0) - + - (X =Xn-1)f (X, - - ., 0)
(1.103)
which is know as the Newton’s interpolation polynomial of divided differences. Points equally

spaced, or values along abscissa ascendantly ordered are not required.

1.6.2 Lagrange polynomial interpolation

In order to avoid the calculus of the divided differences, the Newton polynomial interpolation is
algebraically reformulated to state the Lagrange interpolation, which is concisely represented

by the next equation,

flx) =Y [Lilx)si] (1.104)
i=0
where .
X — Xj
Li(x) = 1.105
=T (1.105)
j=0
59
or well, directly used as
n n
X — Xj
= - v 1.1
=T s== ] ¥ (1.106)
i=0 j=0

For instance, the linear version n =1 is

X — X1

filx) = floco) + ——2

= o T JCO]’(JQ) (1.107)

The general model will produce a polynomial equation that fit a table of data of degree n — 1.

Vi(xi) = Qo + a1x; + apx? + -+ + apxl (1.108)
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1.6.3 Polynomial regression

When data exhibit a significant degree of error, unlike intersecting all points, but a single curve
that represent the data trend as a group is known as Regression. The procedure of square
least is enhanced to adjust data that fit non linear functions, such as polynomials.

Given the empirical model y = y,, + €, in order to approximate it to a suitable theoretical

model y,,, and fitting the numeric data to a second degree polynomial with the general form,
Ym = Qo + Q1X + aox? (1.109)

Thus, the sum of the squared differences yields the residual theorem,

Theorem 1.6.1 (Least square polynomial regression). The residual of the squared sum

of the empirical and theoretical fitting model is s, = (y — ym)*

Sy = Z (91 — (@0 + a1x; + agxc? + -+ + akacik))2 (1.110)
i=1

By partial derivatives the rate of change of the function w.r.t. each coefficient is determined

by the next three equations. Let us assume a quadratic problem for simplicity purposes.

Os -
6a:) = -2 ;(yi —ap — a1x; — asx?) (1.111a)
0s n
6ar = —Qin(yi —ap — a1x; — asx?) (1.111b)
0 i=1
0s -
aa; = —QZx?(yi —ag — aix; — asx?) (1.111¢)
i—1

Equating to zero each function and algebraically factorizing them, a set of linear equations in

terms of their coefficients a; are stated for subsequent solution,

(n)ao + <in> ai + <Zx12> az = Zyi (1.112a)
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<in> ao + <Zx?> ar + <Z x?> as =Y xiy; (1.112b)
<Zx?> ao + <Zx?> ai + <Z xf’) as = > xty; (1.112¢)

Algebraically ordering in the matrix form as a linear system v = A - a; see please section 1.2,

iy no Yixo Nix?) [ao
Yuxyi | = i Y x? Yoxi| o |as (1.113)
Y X7y Yixp Y Yixf as

by solving the system of equations by the algebraic inverse matrix obtaining its determinant,
a=Atly (1.114)
for the actual quadratic problem, the coefficients are ay, a;, and as. In addition, with standard-

ised error sy, and coefficient of determination r? = (s; — s,)/s,

Sy = ) —
YT\ = (k+1)

1.7 Numerical differentiation and integration

1.7.1 Numerical derivation

The derivative of a function is the means of differentiation that represents the rate of change
of the dependent variable (function) w.r.t. an independent variable. Its mathematical definition
starts by an approximation by differences,

Ay _ flxi + Ax) — f(xi)

=~ ~ (1.115)

where y or f(x) are alternative representations of the dependent variable; while x is the in-
dependent variable. By approximating Ax to zero, the quotient of the differences becomes a

derivation.
dy . flxi+ Ax) - flxi)
de AIEEO Ax (1.116)
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For high accuracy derivation formulae, the divided differences can be generated by taking

additional terms from the expansion of Taylor series.

@ (x,
Flein) = fl) + Vb + L 2<Il)h2 + (1.117)
from where, drop-off the first order derivative function,
; — . @ (x,
f(i)(xi) — f(xl+1)h f(xl) _ f Q(xl)h + O(h2) (1.118)

as we are interested in the first derivative term, we truncate the second derivative term,

fUx) = M + O(h) (1.119)

However, we now keep the second derivative term substituting its next approximation,

O (x;) = f(Xiva) — 2f}i§i+1) + f(xi) + O(h) (1.120)

thus,
0 (xy) = f(xi+1)h—f(xi)  flxive) - 2£;z62i+1) + f(xi) + Olh) (1.121)

by algebraically ordering,

—f(xivo) + 4f (xi1) — 3f (x3)
2h

fU0x) = + O(h?) (1.122)

1.7.2 High precision numerical derivation

Furthermore, the forward finite divided differences is presented in two version for each deriva-
tive. The last version uses more terms of the expansion of Taylor series, and as a consequence

is becomes more exact.

The first derivative

(1.123)

and
flxive) + 4f (xip1) — 3f(xy)
2h

) = — (1.124)
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Second derivative,
floxive) — 2f (i) + flxi)

f(2) (xl) = h2
and
FO(x) = —f(xiv3) + 4f(xi+2})12~ 5f (xit2) + 2f (x;)
Third derivative
£5)(x,) = f(xivs) = 3f (xivo) + 3f (xis1) + flxi)

h3

and

—5f (xirs) + 14f (xi45) — 24f (xiro) + 18f (xir1) — 5f (i)

f(Q)(xi) = 2h3

Fourth derivative

F¥(x;) =

flxxiss) — 4f (xi3) + 6f(xi0) — 4f (xi41) + 5f ()

h*%

and

—2f (xi45) + 11f(xi44) — 24f (xi43) + 26f (xi40) — 14f (xi11) + 3f (23)

f(4)(xi) = h4

63

(1.125)

(1.126)

(1.127)

(1.128)

(1.129)

(1.130)

In addition, the backward divided differences is presented in two versions for each order

derivative. The second one poses more terms than the Series of Taylor, hence consequently is

more exact. Thus, the first derivative

) = flxi) —hf(xi~1)
and
£ (x,) = 3f (xi) — 4f(;?;1—1) + f(xi-2)
Second derivative,
2(x,) = f(xi-o) — 2f(aci—1) + f (1)

h2

and

Wwﬂ=4my+wm@—wmn+%m)

h2

(1.131)

(1.132)

(1.133)

(1.134)
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Third derivative
flaci—s) + 3f (xi—o) — 3f (xi—1) + f(x;)

fOxi) = — 3 (1.135)
and
£2(x;) = 3f (xxi—s) — 14f (xi3) + 2421;533&—2) —18f(xx; 1) + 5f(xy) (1.136)
Fourth derivative
() = floxiza) — 4f (xi_3) + 6f}£fi~2) — 4f (xi—1) + floq) (1.137)
and
() = —2f (xi-s) + 11f (xi-4) — 24f (xi-3) + 26f (xi—2) — 14f (xi—1) + 3f (1) (1.138)

h4

The central divided differences are also presented in two versions for each derivative. The
second derivative formula uses more terms than the series of Taylor, hence it is more exact.

The first derivative

flxiv1) — flaia)

W) =
fH(xi) = oh (1.139)
and
Wrey _ S (xive) + 8f (xive) — 8f (xi1) + flxi—)
fH(xi) = 15h (1.140)
The second derivative
£2(x;) = f(xis1) _fg;) + f(xi-1) (1.141)
and
o ~fXii) + 16f(xi,1) — 30f(xe) + 16f(x; 1) — f(xi o)
£ i) = 1oh (1.142)
The third derivative
f(xive) = 2f (xxig1) + 2f (xi 1) — f(xi o)
FO ;) = 2 12h3 ! 2 (1.143)
and
FO(x;) = —f(xivs) + 8f (xive) — 13f (xiv1) + 13f(xi-1) — 8f (xi—g) + f(xi—3) (1.144)

8h3
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The fourth derivative

9 (x;) = floxive) — 4f (xiva) + 6];(13461’) — 4f (xi—1) + f(xi-2) (1.145)

and

foxivs) + 12f (xiv0) — 39f (xi1) + 56f (x;) — 39f (xci—1) + 12f (xi—2) + f(xi-3)
6h*

) = — (1.146)

1.7.3 Numerical integration

The Newton-Cotes formulae are common types of numeric integration methods. They replace

a complex function or a table of data by an approximated polynomial that is easier to integrate.
b b
- [ paxs [ o (1.447)
a a
where f,(x) is polynomial of the form,
falx) = ap + a1x + - + dp1a™ ! + apx™ (1.148)

Before the trapezoidal rule is applied, the previous polynomial may be expressed as

f(b) - f(a) f(b) —af(a)

a
algebraically grouping the last terms,
iy f0)=fla)  brla) - affa) ~af(b) + affa) 1.450)
b-a b-a
and simplifying,
fiz) = LISl b@) et 1.154)
which can be integrated between the limits x = a and x = b to obtain,
p_fl=fla) ,  bfla) —af(b) , 1152

2(b —a) b-a
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Such result is evaluated,

fb) ~1@) o _ o, bfla) ~af(b)

I = 2 —a) — (b —a) (1.153)
In addition, since
b?> —a® = (b -a)b +a),
thus,
[=[f(b) - fla))* 5% + bfla) - aflb) (.54

By multiplying and algebraically grouping, the Trapezoidal rule is obtained,

fla) +£(b)

I=(b-a) 5

(1.155)

In order to improve the trapezoidal rule’s precision, the interval a to b is divided in n + 1 seg-

ments. The integration method is applied to each equally spaced n + 1 segments. Consequently,

(1.156)

If a and b are designated as xp and x,, respectively, the complete integration is represented by

X1 X9 Xn
I = / flx)dx + / fle)dx +--- + / (1.157)
X0 X1 Xn-1
Therefore, by substituting the trapezoidal rule in each integral,

flxo) + flx1) flx1) + f(xo) flon-1) + flxn)

I=h 5 +h 5 +---+h 5 (1.158)
by algebraically factorizing,
h n-1
1= |flxo) + 2§f(xi> + f(xn) (1.159)
or if substituting h, then
230 f (o

2n
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The mathematical formulations to describe how sensors commonly used in mobile robotics
obtain data is a matter of discussion provided in this chapter. Sensor measurements that are
relative to the robot’s fixed inertial frame are transformed into global or Cartesian spaces to
allow robots to map, navigate, and autonomously perceive attributes of the world. Any type of
sensor data is useful to feedback the robot about the changes of the world, and to take smart
decisions autonomously. Furthermore, a sensor " is a device that detects attributes of the envi-
ronment provided in forms that usually are readable or understandable by the human users,
such as odometers, a colour camera, gyroscope, etc. There exist sensors® that provide propri-
oceptive data, which arise from robot’s inner stimulus. Likewise, exteroceptive data provides
robot’s attributes, which are stimuli measured w.r.t. to external objects surrounding the robot.
A sensor model >’ is a mathematical description on how a sensor obtains data from the phys-
ical measurements of the environment. Sensing models could be either, to describe passive
sensors, which detect energy naturally from the environmental conditions (i.e. vision cameras,
gyroscopes, accelerometers, stereo pairs)~; or active sensors, which pose a traducer to detect
the reflection of energy that was previously emitted by the sensor’s transmitter (i.e. ultrasonic
sonars, light detection and ranging, light strips). A transducer is a device that detects a type

of energy and transforms it into another type, commonly electric energy. Some examples of



72 CHAPTER 2. SENSING MODELS IN ROBOTICS
transducers are thermocouples, pulse encoders, optical arrays, quartz crystals, and so forth.
One of the main interest of this chapter is to obtain sensing models to infer the instantaneous
robot’s posture (x¢,y¢, 6¢)", from different sensing means. The robot posture is a fundamental
information to register massive data into different spaces, building environmental maps, and

trajectory control algorithms.

2.1 Odometer sensing model

An odometer sensing model allows to infer the robot’s posture by means of quantization of the
instantaneous displacements. An odometric model infers displacement, velocity, and accelera-
tion of a wheeled mobile robot from direct sensing of encoder pulses. An encoder device or
transducer poses a rotatory mechanisms fixed to the wheels shaft to count rotational motion.
For instance, analysing the robot’s posture with a dual asynchronous speeds robot, also known
as differential speed control, in which the independent variables are the right and left wheels
velocities v,, and v;. Figure 2.1 shows the odometer displacement AS, which is an average
of the right and left wheels displacement AS, and AS; respectively. The odometers kinematic

considers the distance between the wheels’ encoder b, and their radius r.

| ? L

=~
r g

b

Figure 2.1: Dual wheels speed robot’s kinematics inferring odometer’s displacement.

The total robot’s displacement is an averaged value expressed by S,

s — w (2.1)
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Likewise, the robot’s orientation is defined by 6 as a function of the wheels displacements,

As, — Asy

0= b

(2.2)

Where each wheel’s displacement is formulated independently, and the right-sided linear dis-
placement is,

AS, = n, - fs (2.3)

while the left-sided distance,

Asp =ng - fs (2.4)

where n,, and n, are the measured number of pulses counted by the shafts encoder. The
factor fs represents the encoders resolution defined by the equation (2.5). Where r is the

wheel’s radius, and k is the total number of pulses within a rotation.

fs = 7 (25)

The asynchronous wheels displacement is deduced by substituting the factor of expression

(2.5), in equations (2.3) and (2.4).

As, = QE -n,, (2.6)
k
and
27mtr
ASsp = - - ny. (2.7)

Thus, the instantaneous robot’s position and orientation are provided by substituting the equa-

tions (2.6) and (2.7), in expressions (2.1) and (2.2), and algebraically simplifying.

s=". (n, + ny) (2.8)
k
and
0= 2 n, —ny (2.9)
= kb r l .

Therefore, the robot’s instantaneous posture (position and orientation) is modelled by the fol-
lowing recursive expressions,

Xt = Xt_4 + ASy, (2.10)
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Vi = Y1 + Asy, (2.11)

and

O = 0i_1 + AD. (212)

Where As, and As, are the Cartesian components of distance, and they are defined in terms
of the displacement s, by

Asy = 5-cos(0) (2.13)

and

Asy = s -sin(0) (2.14)

Thus by substituting the expressions (2.8) and (2.9) in equations (2.13) and (2.14), the complete

robot’s displacements are formulated,

" 27tr
ASy = ?(n,« + nyg) - cos <kb(n" - ng)> (2.15)
and
r . 27r
Asy = ?(nr + ng) - sin <kb(nr - Ilg)> (2.16)

Thus, the actual robot’s posture computed recursively within a common inertial system” with

origin at robot’s initial posture, the following model is provided:

X¢ Xt_q Z(ny + ny) - cos <2§f(nr - ne))
ye| = | ¥t | T %(nr + ny) - sin <2’g(nr - n¢)> (2.47)
% Or-1 2mr

&b (n, —ny)

Depending on the robot’s hardware configuration, we may frequently obtain sequences of sen-
sor data from encoder readings: angular positions, or angular velocities @, ..., t_1, P¢, ..., Pri1-
For high precision estimation, at least three sensor readings to determine the real actuator’s ro-
tational velocity are needed. The next function calculates the angular speed through backward

finite divided differences. See section 1.7 for further details.

3@; —4pi_1 + @i
2At

@i = (2.18)
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Similarly, online angular accelerations are possible to measure by a second order numerical

differentiation w.r.t. angular positions based on the backward finite divided differences,

_ —Pis+ 4o — 5@ + 20

N (2.19)

of

Likewise, obtaining displacement and speed from angular acceleration sensor data §, the in-
verse calculus is obtained throughout numerical integration. Thus, the trapezoid theorem is

one of the close form integration equations of Newton-Cotes (chapter 1.7), where

ty
i = ] Bt (2.90)
ty

ty ty
@t = / Pedt = // prdt? (2.21)
t ty

By obtaining angular speed from acceleration,

and

$o + 2307 (Pt + Pn)

N (2.22)

@i = (to — )

A second integration w.r.t. time using the same model (2.22) is applied to obtain the angular

position when required.

2.2 Ultrasonic range finding

The ultrasonic sonar is an exteroceptive active type of sensor, which produce an acoustic
vibration. The sensor contains a receiver that detects the ultrasonic return, or echo of the
objects surrounding the robot that reflected the emitting sound pulses. A sonar is capable
to detect a diversity of materials, which do not reflect electromagnetic waves, such as glass.

A robot is frequently instrumented with a ring of i sonar arranged in cylindrical positions
z; = (§;,¢;)"T wrt. to the fixed robot’s inertial system (centroid), see figure 2.7-right. Thus,
each sonar range finder is located at

Zyi ) cos(¢;) (2.23)

Zy, Sin(¢i)
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where ¢; is the angle orientation, and ¢; is the length on the chassis of the sonar device ith w.r.t.
to the robot’s centroid. The distance of the nearest object w.r.t. perpendicular sonic emission

is the time of a round flight, being the speed of sound ¢ = 341m/s at 25°C.
c=— (2.24)

The total time of flight t in sg includes the emission and returning of echo. Thus, the sensed

distance d(t) as a function of time is,

d=7% (2.25)

Let s; be the Cartesian coordinates vector of a sensed object at distance d; by the sonar device
i. From the robots body until the sensed object, each sonar device located at position (2.23)
poses a bearing direction ;. Hence, the expression (2.26) completes the real distance from the
robot.

N R I (226)

sin(¢; + Bi) Zyi
Therefore, the object position w.r.t. to a global system that is different from the coordinate

frame where the robot started motion is given by a homogeneous transformation,
I _ R
si =R(7)-s; + & (2.27)

For this specific example the coordinates of the robot’s position are taken from the posture
vector &, namely px and py as depicted in figure 2.7-centre. By substituting (2.26) in (2.27),
the complete expression maps the sensed objects within a common coordinate frame rotated
v degrees by (2.28).

- cos(y) —sin(y) i cos(¢; + 0) + Zxi 4 px (2.28)

sin(y) cos(y) sin(¢; + 0) Zyi py

S

Figure 2.2 depicts some experimental data produced during an experiment deploying a ring of
ultrasonic sonar. The figure shows the real scene, the sensors ultrasonic cones by a GUI, the

polar form plot, and the Cartesian plot of the objects.
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Figure 2.2: (a) Photo of the experimental scene; (b) GUI with sensors conic scope; (c) polar plot of ring of
sonars: d;(t) vs ¢; + Bi; (d) Cartesian plot of sensed objects.

2.3 Stereo vision sensing model

Stereo vision !

refers to a visual method to fuse two or more planar intensity images I,
taken from different perspective locations to infer 3D information about the present environ-
mental scene. The importance of deploying stereo vision to mobile robotics regards the metric
measure of near obstacles. Stereo vision provides massive 3D data of the environment in the
sensors angle of view.  This section analyses a stereo sensor comprised of two cameras
(binocular), where such visual sensors are physically aligned along a baseline distance b over
a vertical epipolar plane (figure 2.3). In this figure p, and p, are the pixels in right and left
cameras respectively, representing the projection of the same object in the scene. By taking a

same measuring reference (i.e. images right-side), the variables x,, and x, are the number of

columns of the pixels p,, with respect to the same images’ side.
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Right Left

B U O R I

Figure 2.3: Epipolar alignment with baseline b of a binocular system.

The multi view camera system is assumed to have same focal distance f for each camera, and
it is depicted in figure 2.4 (top view). From the stereo pair (the two images aligned) we look for
correlating the pixels in both images that represent same objects in the scene. As a matter of
fact, the magnitude of the arithmetic subtraction of |x, — x| is known as the value of disparity

d, and is given by equation (2.29).
d = Ix€ _xr[ (2.29)

The disparity value is proportional to the distance of the object from the stereo pair centre.

The disparity map is a grey-level intensity valued matrix with all pixels disparity values that

were calculated from correlated pixels.

|
I %
","V I L:":'.
.-"‘;: I LI."—,
Pii 1 kY22
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( l o |
. | |f
0¥ i ol ]v
R S

Figure 2.4: Stereo pair top view.
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Hence, the further the object, the smaller the numeric value of d; and when the object locates
very near from the sensor, the disparity value d approaches the rank(I) that is the image wide.
lim |x, — x¢| = 0; lim z=0;
z—00 d—rank(I)
The disparity values are critical because 3D information is calculated in terms of disparities.

From figure 2.4, by trigonometric relationships PO,0O,, and the triangle PP,P,, the object’s

depth z is involved by the following expression,

b (b+x)—x¢
- 2.30
o " (2.30)
crossing terms,
b(z — f) = z[(b + x;) — x¢] (2.31)
algebraically expanding in equation both sides,
zb —bf = z(b + x;) — zxy (2.32)
and
zb —bf = zb + zx, — zxy (2.33)
subsequently reducing terms,
zXy — zZX, = bf (2.34)
the formal expression to calculate the object depth z is
z = bf (2.35)
Xy — Xp

The aligned cameras are separated by a baseline b, and the focal distance (separation
between focal plane and the light convergence point). Thus, whith such parameters, the object’s
3D postured is geometrically triangulated as decribed by equations (2.36), (2.37), and (2.38).
Thus, the depth z(d) is calculated in terms of the object disparity d,

z(d) = & (2.36)
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then, the x component is calculated in terms of d and x,,

x(d, xg) = Z(C;m (2.37)
and, the component y is obtained by
z(d
yid.ye) = 2 f)” (2.38)

It follows from previous expressions:

e /x2 + y? + z? is inversely proportional to d, and the coordinates (x,y,z)" are measured
more accurately for nearer objects than for the farther ones. Making this approach

tractable to be used for obstacle avoidance in navigation.

e As b increases, occlusions might occur and such objects would neither have correlation

nor disparity values.

e A real 3D point yields a pair of points in focal planes, known as conjugated. For a member

of the conjugate pair, the other one exists somewhere along the horizontal epipolar line.

Figure 2.5 depicts an RGB image, and its associated disparity map experimentally taken within

the Robotics laboratory.

Figure 2.5: RGB image and its disparity map.

Furthermore, figure 2.6 depicts three different 3D views, or clouds of points generated from

input image 2.5.
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Figure 2.6: Cloud of 3D points of the Robotics Lab.

2.4 Light detection and ranging model

Unlike ultrasonic range finders, the use of light detection and ranging radar (LIDAR), which
is a common electro-optic sensor used in robotics. It is used to sense objects by emission of
electromagnetic radiation. LIDARs provide more accuracy in measuring distance and much
higher resolution than the ultrasonic sonar. LIDARS" also use measuring techniques of time of
flight of a beam, which reaches (in vacuum) around v = 299, 792, 458m/s. Besides, phase-shift
measurement techniques are also used, where phase of reflected beam is compared with the

phase of original signal emitted.
d- Apr  Agv

i anf (2.39)

where A is the wave length of the modulated signal. f is the electromagnetic beam frequency.
Thus, for sonars and LIDAR the sensing models and data registration formulation are basically

the same. Figure 2.7-centre depicts a diagram of the measuring model . For the x component,

L. = dj-cos(0 + ¢;) (2.40)

and y component,

ly = dj . sin(G + (b,) (241)

where d; is the measured distance between an object and the LIDAR ad bearing ¢;. Likewise,
the angle 6 is the actual robot's orientation. And, (p,, py)' is the actual robot position within a
common coordinate system. Thus, the measurement w.r.t. the robot’s local frame,

of =g, [CSO+ (2.42)

sin(6 + ¢;)
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Nevertheless, for the global mapping (s})T, we have the following expression:

si =R(7) s+ & (2.43)

where R(y) is the Euler rotation matrix of equation (2.44), and £ is the posture vector in the

global plane.

1 X

y

Plano local |

(a) Plano global

Figure 2.7: (a) Inertial frames; (b) range measuring w.r.t. the robot's frame; (c) ring of measuring devices
w.r.t. the robot's centroid.

Thus, the Euler matrix rotation is defined by

cosy —siny 0
R,(y)=|siny cosy 0 (2.44)
0 0 1

The angle y represents the difference between the local and global frames. It is assumed
a height h that represent the vertical position where the sensor is located € = (x,y,0)T.
By substituting expressions (2.42), (2.44) in (2.43), the final vector expression describes the

coordinates” of sensed obstacles as formally described by the following expression

cosy —siny 0 cos(0 + ¢;) Px
S,I = |siny cosy 0] |dj- | sin(6+ ¢ + | py (2.45)
0 0o 1 h/d; 0

where the positions of the sensed data points are mapped onto a global inertial system s/,

which origin is as located as far as (py, py)’ from the robot, and rotated by a constant angle
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with respect to the robot’s actual orientation. Figure 2.8-(a) depicts a photo of a wheeled mobile
robot (PeopleBot) sensing an environment with two short carton-made walls in the Robotics
Laboratory. (b) shows the control GUI. (¢) is a polar plot of LIDAR’s measurements. And (d)
shows an environment local Cartesian map.

=) PlayerViewer 192.0.0.21:6665 00|
Flle View Devices
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(C) (rad) (d) )

Figure 2.8: (a) Real experiment in laboratory; (b) the GUI software for robot control; (c) polar form of the
LIDAR measurements; (d) local Cartesian map of the environment.

2.5 Robot’'s orientation model in eigenspace

In scan matching techniques, scans of point s,.; and s, are aligned as to maximize the overlap,
so that rotation and translation can be estimated. The angle ¢, is useful to incrementally
estimate the robot’s heading and to know how much it deviates from the previous robot’s

angle @r_;. A range point in polar form is defined by s; .. y = (p, 8), with distance p and angle
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0. The reference and current scans are S,ef, Sk Or X,ef, Xp. In polar or coordinate form X
is the set of sample points. A vector point in Cartesian space x = (x,y), where the sample
points xi,--- , Xy, for R? of d-dimensional space. As showed in figure 2.9 which depicts four
consecutive scans distributions (separated components). The points hold similar distribution
trends (specially for the x € x;.. y component) along the axis despite their roto-translational

increments yielded by the robot’s motion. The covariance matrix Cj for the kth range scan
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Figure 2.9: The x and y components of 4 consecutive range scan distributions.

is a measure of the degree of statistical dependence between x,y € x;. Thus, such statistical
information stored in C geometrically represents the variability of the environment in terms
of the sensor data X € RY, resulting that with principal component analysis (PCA) it is possible
to compute the environment directions respect to the robot’s perspective ¢, projected into a
relative eigenspace. In particular, PCA provides linearity and dimensionality reduction, which
means that it spans a linear subspace within a minimum number of dimensions. The set of
eigenvectors W computed from the matrix C characterizes the range data scatter by their
local orthonormal orientations, while their magnitudes (eigenvalues) say which direction is
stronger. All the column-vectors of W are orthonormal, no matter how large the R? space
is. This is important because it means that the sensor information S, can be expressed in
terms of these orthogonal eigenvectors {wy,--- ,wy}, instead of expressing them in terms of
N Cartesian points x € X. The principal components W of the sensor data C (observation
matrix) create an orthogonal basis set {wy,---,wg}, which are the eigen-components (eigen-
scans) of the Cartesian space. The first principal component is selected by the eigenvector

w; corresponding to the largest eigenvalue A4. The second principal component w; is the
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eigenvector corresponding to the second largest eigenvalue Ay, and so forth. The data variability
(variance) is the spread of deviated N total points in a set of data scans S; = {sy,--- ,sy}. Where
x € X} respect to X, a measure of the spread of the data namely % is a crucial parameter that
says the average distance of the scan profile to the robot, and how much the points {xy,--- ,xy}

might vary respect to . The sample mean vector x; in R?> Cartesian space is computed with

the Cartesian range scan set X; of vector points x € Xg, (k =1,---, K) of (2.46) as
Xp = 1 E X (2.46)
RSN .
xeX;

Thus, the mean values x, = (T, y) are adjusted by the expression of equation (2.47) which is
also known as the mean-deviation form. It is a subtraction of x from the data, and represented

by the N-elements in X, with components %; = (£, $), compounded by {Zy,-+- &N}

A

X = (x — X)xex (2.47)

This expression basically accounts for the variability of the objects observed from the robot’s
location. The sample covariance matrix C, of the sensor data provides a measure of the
correlation between the two (or more) sets of variables. Such that, Cs.... k. The resulting Cj
from the deviated form X in equation (2.47) is compounded by two N-elements vectors called
X* and X that are the matrix entry elements to compute C by
e &Y
i i M
It follows that the PCA are obtained by diagonalizing the nonsingular matrix C by (C-AI)W = 0
in order to calculate the set of eigenvalues {Aq,---,Aq} and its respective set of eigenvectors
{wy,--- ,wq} of the kth observation matrix Cp, and are called the principal components of the
data. It has been important to analyse the PCA formulation and how it works in the context
of vector points of 2D laser range scans. A set of different synthetic environments were
created that would let us to better understand the laser scan PCA behaviour, and to detect
what environment conditions would affect the results. At left-up side of figure 2.10 it shows a
single point in an empty environment. A set of 100 points is plotted in local robot’s coordinates,

forming a unique spatial point. Below are both components xy plotted separately, and up-right
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side the resulting eigen-space for such data set. The eigenvectors did not yield any dominant
direction, as their corresponding set {41, A2 } had same magnitudes, and then, such values solely
express no dominant direction. In the same manner, w; » determine always same directions
even if the robot moves around such coordinate point (holding Ay = Ay), the angles of wj o

would simply keep same angle. Similarly, in figure 2.10-right a set of Cartesian points with
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Figure 2.10: A single point in Cartesian space and eigen-space (left). A vertical line in 2D space and its
eigenspace directions (right).

no noise added depict a vertical line which is about 10 metric units from the sensor location
at (0,0) with 360° of field of view. It would typically represent a wall in a corridor, in such
location the set of points of the component x € x; basically does not variate at all, while the
set y € x; has a diagonal trend. For the x-component the mean value is equal to its expected
value zero. In this geometric x-component there is no variability and because of that, it is the
only information provided that the robot knows about its position respect to the environment.
However, the points of the y-component are linearly separated and its mean value is calculated
in 50. As the covariance matrix also yields a geometric representation of the variance between
variables that geometrically can be depicted as an ellipse, the variability for the x-component
would be the minor axis with zero value, but extending its major axis (y-component) as long
as the value of its variance. As for the eigenvalues, they only indicate which direction has a
stronger influence in the variability of the data. In the legend of the figure 2.10-right up-left
hand, the term PC1 is the first principal component (the largest one). Thus, PC1 has the same

direction as the set of points yields the most pronounced variations (vertical component).
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Another kind of synthetic environment is a perfect square, generated with 361 vector points
and a bearing resolution of 0.5°, assuming a 360° of field of view. The robot’s position is at
coordinate (0,0) which is the center of the square. For this, case there is no noise added to

the data but for this and previous cases different noise rates were also assumed. In figure
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Figure 2.11: A squared area and its eigen-space directions for a robot rotation of 115° (left). A circular area
and its eigenspace directions (right).

2.11-left the rotation of 115° is depicted by both eige-spaces and in the Cartesian space. The
xy-components practically hold the same magnitudes respect to the mean value, but only
rotated in their radial order. Perhaps the most challenging case that could affect the reliability
of the PCA approach is for the case of circular rooms, which are symmetric and from any
perspective the robot always would see the same geometric shape. However, the method is
capable to estimate rotation if the robot turns with no translation because there exist small
variability in the data sets. Such a small variability is basically detected at regions were there
exist almost no linearity along the circular shape, as shown in the xy-component plots. At a
range direction of 0° £ 5° the ranged points denote almost no variation for Ax and increments
are smooth, while opposite to this, in Ay their increments have almost no linearity and these
regions are located as the peaks or valleys of the xy distribution plots. For this case the robot
rotated 120°, such angle rotation has resulted reliably even for a circular area. Although, no
noisy data set are being depicted, same analysis was carried out for different rates of noise

cases. In values for Ay and A, there exist a very slight difference in magnitude, only for the case
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when the robot solely rotates. However, when the robot performs any coordinate translation,
the eigenvalues magnitudes start to differ form each other as the robot approaches any side

of the circular wall.

2.6 Segmentation model for 2D range scans

This section introduces a method for segmentation of 2D pairwise laser scans, which the is the
preamble for scan matching in robot localization. Matching 2D range scans has been a basic
component of a diversity of localization and environment mapping techniques'“, which has
been proposed specially during the last years. Let us define partitions S, into groups D; of 2D
points. Only few clusters belonging to E,.s are associated with the clusters found in E,. Most
known procedures either explicitly or implicitly attempt to optimize a global criterion function
with a known or assumed number of clusters. Probably the most obvious measure of the
similarity (or dissimilarity) between two samples is the distance between them. Many different

measures of similarity (and dissimilarity as well) have been proposed . Thus, we have made
use of the similarity function'’ ¢(x;, x;,1) between two contiguous vector points namely x; and

X; 1 to label such points if they may naturally belong to the same groups.

EALEN } > (2.49)

(:(Xi,xwi) = Vf <lOg Hxi - Xi+1”

The logarithmic function that affects the result of the central member in equation (2.49) only
reduces the scale of the magnitudes but still preserves the rate of differences between large
and small magnitudes. The objects represented by groups of points sharing similar properties
(angles and distances) but affected by noise are attenuated. In fact, only the gaps between the
objects become the most salient metric values respect to the values representing objects. In
addition, a gradient function is applied in order to exaggerate such gaps between objects and
attenuate near zero the points representing an object. When c¢ is unknown we can proceed
by solving the problem stating a threshold for the criterion of a new cluster. If there is a
large gap in the criterion values, it suggests a natural number of clusters. The equation (2.50)
is the similarity criterion that automatically calculates a threshold value d.. This allows the
partition function equation (2.51) to split the data set in adequate groups essentially separated

by a gap. Equation (2.50) relates the statistical mean value of the histogram of ¢(-) which always
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Figure 2.12: Histogram of &(:) (left), and the polar and the similarity linkage (right).

is warranted to be unimodal due to the convergent effect produced by the gradient function
V¢(-). As a matter of fact, the array values computed by () resulted unimodal for all the
range scan observations in the experiments, with mean value close to zero. Let ¢(x,x) be the

similarity function of x, x .

P o PYS N . (2.50
N -1 — 2

Given this fact, we established the d. value equivalent to less than half a standard deviation
(0¢/2) in equation (2.50) as part of the partition criterion function. From this follows that the

threshold to cluster points is determined by equation 2.50

In this context, a raw laser scan S; is initially considered a single cluster D._1 € D com-
pounded of N-elements, subsequently the scan is split into ¢ > 1 different classes (clusters). As
can be seen in figure 2.12-right, only the most salient values represent the gaps as depicted
by the similarity function plot. The similarity function curve can be compared with its polar
form plot, where each object is divided by pairs of sudden large magnitude impulses (negative-
positive signs) which highlights the gaps. The criterion for partitioning X}, into ¢ groups called
Dj (j =1,---,c) with n; as number of points which are labelled by [ for each jth group. The

groups of points Dj ---, D, are within cp clusters of the kth scan. Thus, it is given by the
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following expression,

I, i Xiz1) < d
Dy(i) = Cloxa, i) < de (2.51)

l+1, otherwise.

After applying the partition criterion to successive range scans, the resulting number of clusters

in each scan are depicted in figure 2.13. There is a reduction of the number of clusters based

Similarity—based clustering

e

Y (m)

Figure 2.13: Labelled groups of points in three consecutive range scans.

on a simple statistical summary. Groups containing a covariance value less than 1. Usually
such a value numerically represents noisy measurement with too few points (less than 5) or

isolated small objects within areas smaller than 0.04m?, as depicted in figure 2.14.

2.7 Separability model for 2D range clusters

Linear discriminant analysis (LDA) yields separability and eigen-projection respect to the orig-
inal data by using their eigenvector directions, and consequently clusters correspondence is
improved. The main idea behind using linear discriminant analysis is to find the clusters that
have correspondence with their representative ones allocated in a reference scan. With LDA
we can project the set of thin ¢ clusters allocated in D, by maximizing separability from other
clusters through the Sg matrix and minimizes the distances of all points in a same group by

its Sw matrix. In figure 2.15-(a) two groups of points labelled in the reference scan namely



2.7. SEPARABILITY MODEL FOR 2D RANGE CLUSTERS 9

Clusters scan 17 Clusters scan 18

¥im)
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D;(ref) and Dj(ref) are originally projected in X-space. Similarly, both clusters representing
same objects were labelled again in the next scan of points, but now called D;(k) and d;(k), also
projected onto the same X-space but rotated and translated as the robot moved and sensed the
environment from different location. Such rigid roto-translation projection makes difficult for
the algorithm to correctly associate the correspondent group. Nevertheless, in figure 2.15-(b)
same objects are now projected into Y using their eigen-directions, although still misaligned
but maximal separability is warranted between clusters, and contrary to it their within-cluster
separation is minimized. It makes easier to find correspondences only in some clusters instead
of the whole set of vector points. In other words, spurious correspondences are reduced in
number and this mechanism assures finding more correspondences, which are essential to ul-
timately find the best robot’s translation that correctly aligns both scans. The figure 2.15-right
depicts clusters which belong to objects segmented in three consecutive range scans. Thus, in
the correspondence problem of figure 2.15-right the cluster A is approximately close to clus-
ters A’ and A”, and their size (number and density of points) are more or less same as cluster
A. The problem is to determine which association to A is the correct one. Although PCA
finds components that are useful for representing data, there is no reason to assume that these
components must be useful for discriminating between data in different classes. However, a
close mechanism to PCA could be used. Let W be the set of eigenvectors of C.

Thus, geometrically, if [W| = 1, each y; is the projection of the corresponding x; onto a line

in the direction of W by the general equation (2.52). If we form a linear combination of the
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Figure 2.15: Orthogonal projection of Xy, into X, +— ¥ (left). Spurious association among clusters (right).

components of x;, we obtain a corresponding set of N samples {y;,---,yy} divided into the
subsets vq,--- , ¥, given a set of N d-dimensional samples {xi,---,x,} and n; in the subsets
Dy,---,D¢. Hence, let ¥ be the transformation space of vectors, with points y4,--- ,y,. If the
samples labelled [; fall more or less into one cluster while those labeled [, fall in another, we

want the projections falling onto the eigen-direction to be well separated.

Ve = WTX, (2.52)

Thus we now turn to the matter of finding the best such direction W, one that should enable
accurate clusters association. A measure of the separation between the projected points is the

difference of the sample means m; of equation (2.53).

Scatter criteria

Before going farther with this explanation let us firstly define some variables that formulates
the scatter criteria. The scatter matrix does not depend on how the set of samples is partitioned

into clusters; it depends only on the total set of samples X,. The within-cluster and between-
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cluster scatter matrices taken separately do depend on the partitioning. The between-cluster

goes up as the within-cluster scatter goes down. Thus, the mean vector for the ith cluster

1
m; = o Z X (2.53)

xeDi

The total mean vector of all groups, is seen as the general mean value of X;, and is given by

m = %Zx = %inimi (2.54)
Di i=1

The scatter matrix for the ith cluster

Si = Z(X —my)(x - m;)” (2.55)
xeDi
The within-cluster scatter matrix .
Sw=)Y_S; (2.56)
i=1

The between-cluster scatter matrix
c
Sp = Zni (m; — m)(m; —m)" (2.57)
i=1
The total scatter matrix is given by the expression

Sr=) (x-m)x-m) (2.58)

xeDi

Thus, it follows that the total scatter matrix is the sum of the within-cluster scatter matrix and

the between-cluster scatter matrix St = Sw + Sg.

Scatter separability

Perhaps the simplest scalar measure of a scatter matrix is its trace. The trace measures the
square of the scattering radius, because it is proportional to the sum of the variances in the

coordinate directions. Thus, an obvious criterion function to minimize is the trace of Sy. In
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fact, this criterion is nothing more or less than the sum-of-squared-error criterion.

c

tr[Swl=> tr[Si] =Y > |x—mi|” =] (2.59)
i=1

i=1 xeD;

Because tr[Sr] = tr[Sw] + tr[Sg] and tr[Sr] is independent of how the samples are partitioned,
and it is important to know that in seeking to minimize the within-cluster criterion J, = tr[Sy]

we are also maximizing the between-cluster criterion

C
tr[Sp] = ) " nillm; — m|” (2.60)
i=1
The eigenvalues A4, --- ,Ag of SQ\}SB are invariant under nonsingular linear transformation of

the data. Indeed, these eigenvalues are the basic linear invariants of the scatter matrices. Their
numerical values measure the ratio of between-cluster to within-cluster scatter in the direction

of the eigenvectors, and partitions that yield large values are usually desirable.

Ortho-projection in Y-space

In order to project the set of vector points onto the Y-space by a slightly adapted version of

the general equation (2.52), then we define the sample mean for the y; projected points by
ﬁp:iZy:iZwa:me- (2.61)
14 n: A .

It is a simple transformation of m;, and it follows that the distance between the projected means

of two clusters ( figure 2.16) is

My — my| = |w" (m; —my)| (2.62)

To obtain good separation of the projected data the difference between the mean values
must be large relative to some measure of the standard deviations for each class. Rather than
forming sample variances, we define the projected scatter matrix §i2 for the projected samples

labelled I; by
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=) ly-m) (2.63)

yey;

Thus, (52 + 33) is called the total within-class scatter of the projected samples. The Fisher

linear discriminant employs that linear function w’x for which the criterion function J(-).
JWw) = ———— (2.64)

While the w maximizing J(-) leads to the best separation between the two projected sets, a
threshold criterion would give a good separation between groups. Before we have a classifier.
To obtain J(-) as an explicit function of w, we defined the scatter matrices S; and S;. Then we
can write

52 =w'S;w (2.65)
therefore the sum of these scatters is written
52 +35 = wiSyw (2.66)
Similarly, the separations of the projected means obeys
(my — my)? = w'Spw (2.67)

In particular, for any w, Sgw is in the direction of m; — my. The columns of the optimal W

are generalized eigenvectors that correspond to the largest eigenvalues in

SBWi = )\'iSWWi (268)

The equation (2.69) is the Fisher’s discriminant rule on a projection of the the set of observa-
tions X onto a Y-space such that a good separation between clusters is achieved. The algorithm
studied in ' to solve the problem of mapping a two-class problem was adapted to solve for ey
clusters contained in the kth scan. Discrimination in the present scan matching algorithm is
being used to discriminate false correspondences with the groups labelled in the reference

cluster-scan with eres groups. Firstly, let us project X with respect to the eigen-directions of
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Figure 2.16: Sy minimization and Sg maximization.

Sw, which is equivalent to whiten the data (normalization) by
VY = A12eX (2.69)

Where A and ® are the eigenvalue and the eigenvector matrices of Sy. Although, the vectors
spanned by ® are orthonormal, it is merely a scale and they provide the directions, while A
gives the scale for such a projection. And in the Y-space compute the between-clusters S;, by

n;

c
Sp = ;;;wi(yf- —m;)(y} —m;)" (2.70)

The weighting function w; of the ith cluster has the property that vector points near the clas-
sification boundary such as v1,v2,v3 showed in figure 2.16, it takes on values close to 0.5 and
drops off to zero as we move away from the classification boundary.

min {8(ye, ¥iyn)s 6k ¥iyn)}

w; = - - (271)
Sk, ¥iyn) + o+ + Sk, ¥jn)

The jNN distance function &§(-) is a procedure for voting the j-nearest neighbour and jNN is

defined as

YiNN = nizy

Y yey
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According to this definition, a sample vector is assigned to the cluster represented by a majority
of its j-nearest neighbours in the set (see figure 2.16). In the voting jNN criterion it implicitly
assumes the j nearest neighbours of a data point y; to be contained in a region of relatively
small volume, so that sufficiently good resolution in the estimates of the different conditional
densities can be obtained. Furthermore, the criterion used to compute the distance between

vector points is defined by the expression
Slyi,y) = (vi —9;)" 5 wi — w)) (2.72)

It is the Mahalanobis distance 6(-) which was used in this weighting criterion because it differ
from Euclidean distance in that it takes into account the correlations of the data set (¥;) and
is scale-invariant (does not dependent on the scale of measurements). Nevertheless, another
criterion can be used accordingly. Moreover, projecting the clusters onto a different space the
principal components of only the m-eigenvectors of interest of Sy namely ¥, - - - , ¥, are then

selected, which correspond to the m largest eigenvalues. Thus, the optimum linear labelling

(mapping) called Z that involves only the most representative eigenvectors Wy, = [¥1, -+, Y]
Z=Vvl'y (2.73)

In figure 2.17, shows separated and scaled segmented clusters which are mapped in Z-space,
while projected along eigen-directions (below) by the relation y = ®x;. This expression was

only deployed to project the groupings along the eigenvectors.
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Figure 2.17: Clusters projected onto Y-space.
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2.8 Eigen-space data association model

In order to establish correspondence between two closest groups namely Ejr * and Elk, there is
a pair relation R{ E; of Elk } that associates them by solely considering their minimal distance

(S(E]-Fef , EF) between both centroids.

RE, EF) = mlin{é(E;ef JEF), -+ S(E[ EE)} (2.74)

Thus, in X-space the Cartesian distance between two closest clusters is denoted by the norm of
their central values that are vector points denoted by |e; — E;yn| (nearest neighbour centroid),
and we can calculate the displacement in x by Ax;;yy which is the horizontal displacement
ref

obtained by the magnitude (x,y) € (e;

i ek,y), and the total displacement based on the

associated clusters %(E;e" , Ef*) is average of the displacements in Axjy,... ., and Ayj.... ¢, by,

AX 1. (A i,jNN)

-a¥

g (2.75)
AV er Ayl(i,jNN) :

In the world coordinate system the kth robot state is defined by R, = [x,y,¢]T, and R, =
Ry_1 + ARy is the general equation that localizes the robot in world coordinates, being AR, =
[AX,AY, ¢]T the relative displacement estimated between two consecutive observations, then

equation (26) and equation (27) are involved in the general equation for R, which is also ex-

pressed as
L mer o UiANN)
Xk Xe-t YA
Re= | | = | vere oo g™ 2176
k
x Or-1 + Pr

The angle ¢, which is the relative rotation of the robot respect to its previous state, and it
is calculated directly from the set of eigenvectors Wy_; and W;. In fact only the rotative
difference found in either of the principal components is enough because all the components

are orthogonal in the eigen-space, so this simple relation is given by

= M 277
P a”°c°s<nwi_1nnw,£||> 2.17)
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Although, these two eigen-spaces are given in separated observations, the eigenvectors are
projected in local spaces solely expressing how much the environment is statistically rotated
respect to the robot’s sensor field of view. Thus, ¢, is the angle either of first or second
principal components, we chose the first principal components wi,_, and wi. Thus, mapping the

environment on to a global coordinate frame we define the new sensor data world coordinates

as sx; and sy; (i =1,---,N) computed for the kth observation by the expression
SXi| Xkt cos(6; + ¢r) — y; sin(6; + ¢r) 2.78)
sYi Y + yisin(6; + ¢x) + cos(6; + Pr)

Where x;,y; are the components (x,y) € x; of the local sensor observations with their re-
spective bearing angle 6;, and xg, y, are the world coordinates robot location with angle ¢
of equation (2.76) The scan matching method finds the directions of the environment respect
to the robot by means of vectorial directions which are a compressed version of the Carte-
sian sensor data and its covariance matrix. As opposite from geometric models where we are
limited to extract only the set of most descriptive feature models (e.g. points, lines, curves,
etc.) Instead, the present algorithm finds natural clusters that represent objects of the environ-
ment which are used to estimate the robot’s translation. Association between clusters of two
successive scans can be found by using LDA whereby projects the objects orthogonally along
the natural most important directions of the environment and spurious correspondences are

reduced as it assures maximal scatter separability.

2.9 LIDAR-based localization

This section describes a scan matching approach based on the ICP (iterative closest point)
algorithm as a fundamental to perform SLAM (simultaneous localization and mapping). SLAM
consist of building a map of the environment, and deploy it to simultaneously to estimate
its posture”. The localization process is a procedure to estimate the robot’s Cartesian position
(x,y), and its instantaneous orientation 6. Map building is the process of sensor data registration
of the objects on a same Cartesian space, which exist in the environment’. A main advantage
on using SLAM is that it estimates robots position from sensor readings. For instance, for

LIDAR based data points, robot’s posture incrementally become uncertain as the robot navigates
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for long terms cumulating pose errors. An illustrative experimental approach is by using
the C/C++ libraries with the driver MRICP (Map Reference ICP) of player/stage, to build
environmental maps and localize a robot online. These libraries used the ICP° with LIDAR

data and odometry correction “’. For the LIDAR based scan matching process, two consecutive

sensor measurements with k observed points in cylinder form are taken, z; = (S,¢), and
Zty = (6r¢)T-
cos
s(6,4) = (9)
sin(¢)

The measurement s;_; is always represented onto the global plane,
5{_1 = R(7) '55_1 +t

and it is used as reference to match the last data scan measured by obtaining a correlation

factor by equation (2.79)

k

k

fo=3"3 TIsli)et — (R(W) - s(i)e + 1)) (2.79)
i=1 j=1

If the matrix R(y), and the vector t, satisfy for s; = s;_1, then the correlation factor is zero.

Hence, all points converge. The ICP algorithm iteratively compute all measured points cor-

respondence. Each iteration computes R(y) and t that minimises the equation (2.79). It is

assumed that in the last iteration the correspondence between points is correct, as shown in

figure 2.18.

In practice this localization and mapping algorithm is very sensitive to problems of inter-
obstacles occlusion, and hence is prone to fail after short navigation in too cluttered environ-
ments. When this occurs the scanmatching algorithm no longer compute accurately the robot’s
posture. Nevertheless, this problem is solved by an algorithmic proposal. The ICP-SLAM al-
gorithm is restarted in-situ just in the very last posture & before the fail occurred. Thus, the
new initial posture is reset by & = &;. The subsequent new LIDAR scanlines &5 are processed

with ICP-SLAM as usually, w.r.t. the new global coordinates origin by the following expression,

ég = K(ws) : Es + tg (280)
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Figure 2.18: Alignment of two scanlines in a common coordinates frame.

101

Where £; is the robot’s posture in global the frame. The new angle ¥; = o + 65 is reset

using the previous inertial frame angular reference and the last robot’s orientation last correct

orientation of the robot before the fail. And & is once again the new robot’s initial posture in

global coordinate frame.

tg=€0+€r

(2.81)

Meanwhile the scanmatching does not fail, the current robot’s posture &; is preserved. Other-

wise, &; is obtained as given by the equation (2.82).
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&
&s

4113 <: <’;31nin

otro

(2.82)

Figure 2.19 illustrates how previous correction works formulated by expressions (2.80)-(2.82).

&, and &, are failing points, which if not corrected, the robot’s posture accuracy diverges.
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Figure 2.19:

mixing ultrasonic sonar and LIDAR data (right).
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T
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Trayectory  +

Robot’s posture with reset in-situ to fix divergences (left). Robot's localization and mapping

By using data from LIDAR and a ring of ultrasonic sonar, multi-sensor registration of the

Robotics Lab was carried out. The experiments built environmental maps by deploying the ICP-

SLAM algorithm, as shown in figure 2.20. It was found out that the map built with ICP-SLAM

was quite accurate, being very near to the real environment metrics. Finally, an illustration of

sensor data registration is depicted in figure 2.19-right that shows a map of the Robotics Lab

mixing ultrasonic sonar and LIDAR data.
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Figure 2.20: Online robot’s localization and mapping. A) probabilistic grid-based map. B) robot's trajectories
with odometry and ICP-SLAM. C) odometry only mapping. D) mapping with ICP-SLAM.
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Chapter 3

Multisensor registration

Joaquin Rivero and Edgar A. Martinez-Garcia

Laboratorio de Robdtica, Institute of Engineering and Technology
Universidad Auténoma de Ciudad Judrez, Mexico.

This chapter presents a model to register heterogeneous 3D data obtained from three types
of sensors: a ring of eight ultrasonic sonar; a high density data LiDAR (light detection and rang-
ing); and from three visual sensors radially placed. One of the contributions is the fusion model
to provide a radial multi-stereo geometric system to yield 3D data. All deployed sensors are ge-
ometrically placed on-board a wheeled mobile robot platform, and data registration is carried
out navigating indoors. The sensor devices in discussion are coordinated and synchronized
by a homen-made distributed sensor suite system. Mathematical deterministic formulation for
data registration is used to obtain experimental and numerical results on global. Data regis-
tration relies on a geometric model to compute depth information from a divergent trinocular
stereo sensor w.r.t. a common origin point. Sensor fusion is an engineering research field
of study about the process to combine measurements from different sensors, or single sensor
with spatio-temporal frames to provide a robust and a complete description about environmen-
tal objects. Sensor fusion is used to yield sensor redundancy in order to reduce uncertainty of
measurements, to improve the perception of the world in order to take smart decisions. Data
registration is a field that search for models to accurately store data obtained from sensors at
different spatio-temporal sensor measurements. In the present context, 3D heterogeneous data

refers to depth information from different types of sensors' with different sensing modalities.
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3.1 Sensors suite

A sensors suite (SS) is a device comprised of multiple interconnected sensors that are controlled,
coordinated, and synchronized to accomplish detection of relevant environmental percepts
through information synthesis“*. Since it manages sensors with different kinds of transducers,
the types of energies are also diverse. Therefore, a SS provides distinct sensing modalities,
and it is purposed to obtain reliable information through physical and logical redundancy. In
the present research we are deploying a home-made apparatus with a distributed computer
system for data registration (see figure 3.14 left and center). The sensor devices instrumenting
the SS are concretely summarised in table 1 classified by their data types. Each sensor device

was labelled for identification with their symbolic variables that represent the types of data.

Table 3.1: Sensor suite devices and their types of data.

Sensor ID Modality Type variable
Stereo Vision S1 Vision/range Pasive P = [(x,y,2)7,
Inxmx?)
Spherical Vision S2 Vision/multiple Pasive | I | =y
Knxmx3
IMU S3 Linear acceler- Pasive X9 w
ation & angular
velocity
GPS S4 Position Pasive x,y,z
LIDAR S5 Range Active 6, O
Encoder S6 Position Pasive v, s
Compass S7 Angle Pasive 0
Ultrasonic Sonar S8 Range Active o)
Binocular  Multi- S9 Vision/Range Pasive P = (xy27,
function Invmxss Jnomss

The sensor S1 represents a binocular stereo sensor with maximal resolution of 1600 x
1200pixels, at 15fps (frames per second), with a baseline configuration of 63mm. The sensor
device S2 represents a ring of visual sensor, which are geometrically arranged as a cylindrical
array set up as a multi-stereo system. It is compounded of three colour cameras connected
through an IEEE-1394 port centralised to the SS computer host”,”. Device S3 is a 2-DOF

gyroscope, with a 2-axis accelerometer integrated. The S4 is a GPS receiver with USB interface,
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with an accuracy of 5m 2D RMS, when WAAS is enabled. It uses a GPS protocol NMEA 0183
and SiRF binary as secondary protocol. The S5 is a LiDAR sensor device with a scanning area
of 240°, angular resolution of 0.36°, and an accuracy range from 60 - 4,095mm. Multiple S6
can be present in the SS, which are quadrature encoders with 90 pulses per revolution. Sensor
S7 is a magnetic compass with accuracy of 0.5° and works with an I>C interface. The S8 are
ultrasonic sonar sensors ranging 100 - 5000 mm. S9 are two visual sensor calibrated as a
stereo pair, but configured with an embedded vision processor. Both are set up to either work
individually, or in combination as a binocular stereo sensor. Both visual sensors process colour
images with resolution of 352x288 pixels. This chapter focuses on providing a mathematical
formulation for data registration by deploying several sensors: three S2, one Sb and eight
S8. Although, S2 are in principle 2D images, a radial multi-stereo model is formulated in the

present context. Thus, 3D information inferred from S2 is then homogenised with S5 and S8.

3.2 Active sensing models

3.2.1 Sonar model

A sonar sensor is an electro-acoustic device that measures range of the nearest orthogonal
point by using a time of-flight ranging technique. Sensitivity range of traditional used ultrasonic
sonar ranges from 0.10 < s < 5m, is typically deployed in mobile robotics to measure obstacles
range. In this work, a ring of eight sonar sensors radially arranged were deployed in our
robotic platform’. Depth information w.r.t. environmental objects is measured through sound

(see 2.2), fundamentally the speed of sound in general is modelled by,
s = — (3.1)

where c is the sound speed; s is the distance an acoustic vibration travelled over an elapsed
period of time f. Measurement data are treated by homogeneous transformations to represent

the environment from the robot’s fixed coordinate system, according to fig 3.1-a,

cos (¢;) cos (6;)
s?onarj = lf sin <¢]) + d]“) ¢ sin (0]) (32)
0 0
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where d;(f) is the measurement value, and [; is the Cartesian distance between the robot’s
geometric centre to the j sonar. ¢; is the angle yielded by the robot’s X-axes and line ;

where the sonar is located. Angle 6; is the orientation of the sonar (see figure 3.1.a).
ljcos (¢;) + d;(t) cos (6)
SR par, = | Lsin (¢) + djt) sin (6) (3.3)

0

Furthermore, by transforming onto a global Cartesian coordinate system for & = (x,y, G)T,

the following postulate is stated,

Postulate 3.2.1 (Global sonar-based data representation).

p{sonar,- =R(7)- sgonar]- + & (3.4)

and by substituting each expression terms the equation is stated in global inertial frame by

cosy —siny 0 ljcos (¢;) + d;(t) cos () x
péonar']- =| siny cosy O [-]| Usin(¢;)+di(t)sin(6;) [+ ]| » (3.5)
0 0 1 0 0

3.2.2 Light detection and range model

A Light detection and ranging (LIDAR) sensor is an electro-optic device deployed to measure
range of points by electromagnetic signal time-of-flight technique (see 2.4). For a LiDAR sensor,
range data are collected with cylindrical order, where points are referenced by distance and
known bearing. We deployed a Hokuyo UBG-04LX-FO1, with a scanning area of 240°, and
was configured with beam angular resolution of 0.36°, which includes a range accuracy of
60 — 4,095mm. See figure 3.1-b), where &;(t) is the i'" measurement range value. In addition,
[ is the Cartesian distance w.r.t. robot’s geometric centre to any LiDAR radial measurement

(see figure 3.1.b).
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Figure 3.1: a) Ultrasonic sonar configuration; b) LIDAR location and orientation; c) Radial trinocular stereo
vision system.

Likewise, A¢ is the angular resolution, and ¢y is the minimum angle in the scan®.

Si(t)cos (A (i —1) + ¢f) + 1 )

SLIDAR = 8i(t)sin (A (i — 1) + ¢f) (36)
0

i=1

Thus, by transforming into a global inertial coordinate system, the homogeneous rigid roto-

translation model is postulated by

Postulate 3.2.2 (Global LIDAR-based data representation).

Plipar = R(7) - sLart; + & (3.7)

and by substituting rotation and translation terms accordingly the next expression is produced:

k
cosy -—siny 0 8i(t)cos (AP (i — 1) + @) +1 x
PLipar(t) = | siny cosy O |- Si(t)sin (A (i — 1) + ¢f) +| v (3.8)
0 0 1 0 0

i=1
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Figure 3.2: Data registration on a global map, using a ring of eight sonar, and a LiDAR.

Indoor experimental results were carried out in the Robotics Lab that consisted of tele-
operated explorations within dynamic situations. A wheeled mobile robotic platform was de-
ployed and its speed model was used to estimate and predict positions, in order to match the
real observations. Besides, the robot was instrumented with the sensor suite, using only a
ring of ultrasonic sonar, and the LiDAR sensor (240° of sensing angle). Along the navigation
path, data registration on-line was carried out over a global map”'’, experimental results are
depicted in figure 3.2. Thus, data registration formulation is provided egs. (3.5)-(3.8). The
general 3D data registration model consists of union of datasets into a global Cartesian space
from heterogeneous sensory sources: sonars S = {p?} where p; = (x,y, hs)”, laser £ = {pt}

)%, and trinocular radial stereo Gap = {p?"} and Ggc = {pPC} where

)T

where pX = (x,y,h;,

pE = (x,y,2)" and pPC = (x,y,z)" respectively. Likewise, hs and h;, are sonar and LiDAR

metric heights, respectively. At this stage, we only considered a deterministic model to unify
eight sonar sensors, one laser range finder scan of 681 measurements, and depth information
of a trinocular stereo sensor.

M =8ULUBaRUBRc (39)
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3.3 Stereo vision

3.3.1 Image transformations for correction

Affine transformations preserve collinearity, relative distance, parallelism, and proportion rate.
Scale (3.10), rotation (3.11), translation (3.12) and skew (3.13) of an image are considered affine
transformations'"'“. s, and s, of the diagonal matrix E are scaling parameters (see 1.2). If s,

and s, are same rate, then scale is uniform.

sy 0 O
E=| 0 s, 0 (3.10)
0 0 1

The next orthogonal matrix R is the rotation homogeneous transformation matrix, where
the angle 6 is the rotation angle between two inertial systems. For orthogonal matrices, its

transpose is equivalent to its inverse, and conversely.

cosO sinf O
R = —sinf cosf O (3.11)
0 0 1

An image may be translated on the plane with matrix T where f, and f, is the displacement

over x and y respectively.

10 t,

T=|0 1 t (3.12)
00 1
1 A O

S=| A 1 0 (3.13)
0 0 1

The set of above operations (3.14) is considered an affine transformation.

Totine = T-R-E (3.14)



114 CHAPTER 3. MULTISENSOR REGISTRATION
thus,

1 0 ft. cosf sinf O sy 0 O
Tatine = | 0 1 ¢ —sinf cosf 0 0 s, O (3.15)
0 0 1 0 0o 1 0 0 1
and
sycos sysinf .
Taffine = | —sysinf sycosO ft, (3.16)

0 0 1

Figure 3.3 centre is the raw image acquired, the affine transformation is depicted in the middle,

and at right-sided the perspective transformation is shown. The perspective transformation is

Figure 3.3: Raw image (left), affine transformation (centre), and perspective transformation (right).

compounded of a 4 x 4 matrix, a rotation matrix, a translation vector, and a projection vector,
thus its collinearity properties are preserved. Using four points from the plane of original image

and four points from the plane of resulting image, a matrix of perspective is calculated''~'".

hiyy hiy hys x
X =H,-x=| hy hyp hy || ¥ (3.47)
hzsy hzy  hss 1

Four pairs of points generates eight linear equations. Solving this linear equations system, the

elements of matrix of perspective transformation are obtained.

x" (hs1x + hspy + hss) hit1x + hygy + hysz

I

¥’ (hs1x + hsoy + hszs) hotx + hopy + hos
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3.3.2 Geometric stereo model

A stereo sensor is a set of two cameras aligned along the x-axis collinear, and paraller w.r.t.
vz axis (see 2.3). The baseline (b) is the distance between the origin of right camera and left
camera'”'“. A point P is projected on the plane of left image P), and over the plane of right
image P,. Geometrically, the point P is located at the intersection of the ray LP; and the ray

RP,. From similar triangles the following is obtained,

Z/f = x/xl
zIf = (x-Db)lx, (3.18)
zIf = ylyi=y/yr

The coordinates y; and y, are assumed with identical distance from the centre. A solution for

unknown x and y coordinates of point P is obtained by algebraic substitution. Thus,

z = fb/(x—x,)=fbld
xiz/f = b + x,z/f (3.19)

s
Il

y = wzlf = yezlf

Disparity is the difference between x; and x, coordinates from left and right images. It is used

to calculate depth along Z.

3.3.3 Calibration and rectification

Stereo calibration is a process to calculate the geometrical relationship between two cameras.
After calibration, the intrinsic and extrinsic parameters are obtained. The intrinsic parameters
are focal length, principal point, and distortion coefficients. The extrinsic parameters involve
rotation and translation within a matrix that relates the camera’s coordinates system, and the

global coordinates system

frr Qe Cxir
MRectJ,r = 0 fy_l,r Cy Ir (320)
0 0 1
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Figure 3.4: Depth geometric model of a binocular stereo sensor.

and

Distorsion = | by ky p1 ps ks ! (3.21)
The rotation matrix R, the translation vector T, the essential matrix E, and the fundamental
matrix F are required to be obtained. R and T denote rotation and translation of both: the
left camera’s coordinates system, and the right camera’s coordinates system. The essential
matrix E relates the location of a point, which is located between the left camera, and right
camera w.r.t. the global coordinates. the fundamental matrix F is similar to the essential matrix
E, however the former is provided in pixel coordinates. At this process, various images of a

chessboard with different perspectives are obtained (figure 3.5).

Figure 3.5: Cameras calibration using a chessboard.
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The distortion vector consists of three radial distortion coefficients (ky, ko, k3), as well as
two tangential distortion coefficients (p1, p2). The radial distortion is produced by the form of

the lens.

Xcorrected = X (1 + kirQ + IQQF/t + k3r6) (3.22)

Ycorrected = ¥ (1 + k11"2 + k2P4 + kgl"e)

In addition, tangential distortion is an effect produced by lenses manufactured with defects, and

such defects affect the projection of light not being parallel with the plane of image.

Xcorrected = X + [2P13C;V + P2 (T’Q + QIQ)] (323)

Ycorrected = ¥ + [pi (PQ + 2512) + 2P2Iy]

After distortion parameters are obtained, the next step is the rectification process, which cor-
rect each individual image by reducing the effects of radial and tangential lens distortions. It
produces misalignment of rows in stereo pairs. The matrix R;, R,, P;, P,, and Q are obtained
from the rectification process. R; and R, are the rotation matrices for each camera. P; and

P, are the projection matrices of the rectified system of the left and right cameras.

fea a ¢y 1.0 00

Pi=| 0 f,1 cyg 0 0 0 (3.24)
0o 0 1 0010
frr o Cxr 100 T,

P, = 0 fyr Cy, 010 0 (3.25)
o 0 1 0 0 1

A pair of images after rectification process is showed at figure 3.6.

3.3.4 Disparity calculation

Stereo matching establishes coincidences between left and right rectified images in order to
produce a disparity map (see 2.3). To find the correspondence of a section between left and

right images, similarity or dissimilarity measures are used °~'°. An experiment for measuring a
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. . .(\U

Figure 3.6: A rectified stereo pair.

numerical degree of correlation was developed with an image window of 5x5 pixels in size. And
it was slide along the horizontal axis, from the left-sided image until the right-sided image edge.
Further, it was compared with a second window simultaneously sliding horizontally too, but in

the right-sided image (figure 3.7). With such process, the three different similarity/dissimilarity

measures were applied.

Figure 3.7: Epipolar alignment of a stereo pair.

Similarity measurements are generally used to measure the similarity between two datasets.
A high value indicates high correspondence '°. In this application, compared datasets are gray
scale intensities in both: left and right images. One of the applied similarity measures is the
Pearson correlation coefficient value, it numerically varies between -1 and +1. When X and ¥
are equal, it means that the Pearson correlation coefficient resulted r = +1. This is known as

a perfect positive correlation.
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Contrary if X is equal to negative value of V, the Pearson correlation coefficient results

r = —1. This is known as a perfect negative correlation.

r =

(SN
(SIS

iy (xi — %) (31 - 9) (3.26)
|Zi =27 [T - 9]

Figure 3.8 shows the experimental results when using the Pearson correlation coefficient.
Numerous dissimilarity measurements indicate numerical differences between two datasets.
For this case, a dissimilarity with a high numeric value basically indicates a low matching

between two image regions.

T
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Figure 3.8: Experimental results of dissimilarity for the Pearson correlation coefficient.

Some dissimilarity measures are Li-Norm, which some well known approaches are the Man-
hattan norm, or the sum of absolute differences applied to image intensities. Those, are typical
dissimilarity measures that are used to traditionally compare similarity between images. When
the images are obtained from the same sensor device, and under the same environmental
conditions, and if the sensor has a high signal-noise relationship, then this measurement may

produce matching results more precisely than other methods further complex usually provide.
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The Next equation is the functional form of the sum of the absolute differences:
n
Ly = Z lxi — vl (3.27)
i=1

Some matching results using Li-Norm are shown in figure 3.9. The Lg—Norm, or Euclidean
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Figure 3.9: Experimental dissimilarity results of the Li-Norm measure.

distance or sum of squared difference of intensities is a measurement that is more sensible
than the Pearson correlation coefficient. However, the results are poorer than the Pearson

correlation coefficient when the images are obtained under different lighting conditions.

n

Li =Y (xi —3) (3.28)

i=1
The matching results by using the Lg—Norm is shown at figure 3.10. A disparity map is a 2D
image which use values of gray scale to indicate disparity or difference between the features
at left and right images. An example of a disparity map is shown in figure 3.11. The light gray

areas indicate that the objects in the scene are closer than the dark gray regions.
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Figure 3.10: Experimental dissimilarity results of L3-Norm measure.

3.3.5 Depth calculation

The projection matrix basically transforms a 3D point of homogeneous coordinates into a 2D
point of homogeneous coordinates. In general terms, the coordinates of the image could be

calculated as (x/w, y/w) through the dot product of next expression:

X

1%
(3.20)

z

1

conversely, the re-projection matrix Q is the mapping representation from the disparity map
onto the depth information dataset. Therefore, by knowing a 2D homogeneous point and the

disparity value that is associated to such point, then another 2D point is re-projected into the

3D space.
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Figure 3.11: A stereo pair (left and centre), with its disparity values image.

X x
1'%
_ql? (3.30)
Z d
w 1
where the squared transformation matrix Q is defined by
1 0 0 —Cy
0 1 0 —Cy
Q-= (3.31)
00 1 f
0 0 —1/Tx (cyx—cl)/Ty

Therefore, the 3D coordinates of the global system are expressed dividing the three coordinates

values by the factor W (X/W, V/W, Z/W).

3.3.6 Stereo data map building

A laboratory experiment to build a map using stereo data was developed. The experiment con-
sisted of tele-operation of a mobile platform with a stereo sensor on-board. The robot basically
was controlled to travel a distance significant enough to build a dense map (see 2.9), about 9m
in length. Along such a distance 116 stereo pairs were acquired. The system specifications
are: an image sensor: CCD 1/4 in progressive scan, Sony ICX-098BQ with effective pixels
659(H) x 494(V). Image size: 640 x 480, 320 x 240, 160 x 120. Data pPath: YUV (4:1:1,4:2:2,
4 : 4 : 4), RGB 24 bits, mono 8 bits. Cell size: 5.6um x 5.6pm. Frame rate: 30,15,7.5,3.75. Focal

length of lens 4.3mm.
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Furthermore, the data registration process needs a deterministic model of the robot’s pos-

ture, which is defined by the posture vector & = (x,y, G)T calculated recursively.

=2,
A=, <N’“ > Nl)
hence,
x(t) = xo + Ag - coOs <90 + <2 (N Nl)>> (3.32)
y(t) = yo + As - sin <90 + <2 (Ny Nl)>> (3.33)
o(t) = 6o + <2 (N’”b_ Nl)) (3.34)

Data registration consists of the union of numerous clouds of points that must be correctly
aligned at each robot’s pose overtime. The information provided by the cloud of points is
homogenised with respect to an inertial system that is consistent with the robot's motion,

throughout linear roto-translation operations.

pr =R(a,B,7)pv (3.35)

and

pr=RO)pr+& (3.36)

A 3D map of the Robotics Lab was built online by combining sensor data arising from dif-
feretn types of sensors'™''. The experimental results are depicted in figure 3.12, top view and

isometric view.

3.4 Divergent trinocular stereo

The term "radial" describes an arrangement of cameras placed circularly w.rt. a common
convergence origin point. The proposed radial multi-stereo system consists of three cameras
radially distributed where the image planes are slightly overlapped. The geometric scheme of

a radial multi-stereo system (see figure 3.13), the relationship among the common convergence
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44 v (m)

x{m)

Figure 3.12: Top view of a real environment Cartesian global map built (left). An isometric view of a real
environment global map built (right).

centre, camera B, and camera C, an isosceles triangle is formed (see 1.1). Let us call B the
angle between cameras B, and C. Therefore, the angle ¢ is determined by summing the inner
triangle’s angles, by B+ ¢ = 7t and ¢ = ;1 — B. Thus, % =7 - g By applying the sine’s law,
BC is calculated, which is the linear distance from camera B to camera C. Likewise, 1 is the

distance from O to any camera. According to figure 3.13, the next relationship is stated,

BC !

SnE @ (3.37)

by substituting the angle in the right-side term, and by dropping-off the distance of interest,

=~ _ Isinf
G -1)

The angle from the optical axis and the ray of projection of P at focal point of the camera B

(3.38)

and camera C is calculated. xp is the x-coordinate of the feature at the plane of camera B. x¢
is the x-coordinate of the feature at the plane of camera C. And f is the focal length of the

camera.

05 = tan~! (%) ;¢ =tan™! (xTC) (3.39)

Besides, the complementary angles models are stated by

BT o+ B

5 5 ZC =

—ec+g; /P =05 +0c - B (3.40)

nof S
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Figure 3.13: Proposed geometric model of a divergent trinocular stereo vision system.

To estimate the range from cameras B and C w.r.t. point P, the linear distance from each

camera in the radial system (B and C), to the point P is calculated by sine’s law by,

. __ __ BCsin/B
and dropping-off /CP P = ~en’D (3.41)

BC B CP
sin/P ~ sin/B’

Hence, the model to express depth information is given by zg = BP cos 6. Thus, by substituting

BP and 6p, the model is more specified,

Proposition 3.4.1 (The divergent stereo depth model.). The depth component of an arbitrary

point projected on camera B is

cos (tan~1 <x—fB>> (3.42)

the range of P w.r.t. camera C is zc = CP cos 6,

<.lsin~[3 > in(z _0s+ 8
zZc = S‘“(?Siéz (9:12 gz ~Bf 2> cos (tam“1 (%)) (3.43)
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In addition, with the depth models zg and z¢, then the real X-coordinates from the cameras B

(dg) and C (d¢) w.r.t. point P, can be estimated. Therefore, dg = zgtan 6, and

dg = zgtan <tan_1 (JCTB» ; dp = ZfoB (3.44)
dc = zctan (tarf1 (%)) ; dc = chxc (3.45)

Similarly, algebraic deduction is given for Y-Component and real Y-coordinates w.r.t point P

using cameras B (hg) and C (h¢) are given by,

hg _ zp, thzs;VB_ he _ zc, hczzcyc

yB f’ f yc f’ f

(3.46)

Therefore, the next corollary is stated:

Corollary 3.4.2 (Divergent geometric model). Divergent model, camera C w.r.t. camera A

(ﬁﬁ—)) Sin(g*SB-Fg)

e | cosltan™ (F ) Jxe
Coclt) = ' 347
el (st ntz-o) o (3.47)
sin(0s+6c —B) cos <tan (TC)>
0
likewise, for camera A, depth models are defined by
(st Jot et r
sin(01+05—F) cos(tan™! (%2 ))xs
f
M= ' 3.48
A’B( ) <smé5%m,ﬁg) Sin(§—93+§) s ( )
sin(0+05—p) cos <tan (TA)>

Pa
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3.5 Estimation of robot’s trajectory

3.5.1 Robot pose model

8,19 FOI’

Our study involves the deployment of different non-holonomic robotic platforms'
instance, the robot namely "Popeye” depicted at figure 3.14 is an example of a real robotic
platform modelled for state estimation. At figure right-sided, the robot’s kinematic parameters
are shown. The robot’s speed Cartesian components X and Y are defined as two asynchronous
speeds (differential drive model). The position and motions of a robotic platform are modelled
relaying on its kinematic restrictions, because they mathematically describe the geometry of

movement of the robot in its surroundings.

Stereo sensor

Ultrasonic
sonar

m p— | —
Binocular W Vv
sensor 9 0

e
g

Figure 3.14:  Left and center: Wheeled mobile robot “Popeye” with a sensor suite on-board; right: platform
kinematic model configured as dual differential drive.

For a robot of dual asynchronous velocities deploying 4-wheel the first derivative posture model
is given by,

xp(t) = vcosO(t) (3.49)
Yr(t) = vsin O(t) (3.50)

and robot’s orientation,

0 = arctan <iRE2> (3.51)
R
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The control vector of the system by u is defined with instantaneous tangential velocity, and

angular speed,

u= " (3.52)
Wt

The instantaneous velocity v model is approximated by an averaged velocity of the lateral

asynchronous active wheels speeds,

vit) = 5 @ + ) (559

The wheels’ radius magnitude r is ideally the same for all wheels. The wheel instantaneous
angular velocities are defined by ¢, (right-sided wheels), and ¢, (left-sided wheels). In addition,
the robot’s angular velocity is a direct function of the wheels rotational speeds difference. Its
angular speed behaviour is consequently described by the differential magnitude of wheels

speed . Thus, the robot’s global behaviour is given by its differential velocity is defined by,
f)(t) =V — U

The transversal differential speed component of the robot w.r.t. its geometric centre (ideally

located at the centre of mass) is inferred by,
(3.54)

According to figure 3.14-right, ¢ is the distance between the robot’s ideal centre of mass, and
any wheel’s contact point, with constant angle a. Algebraically substituting factors in order to

state a new expression in terms of transversal and longitudinal metrics,

0= Va? +b?
a 2

Then, the new equation to describe the robot’s angular velocity in terms of contact point metrics,

a and b, is given by,
_ 2br ((Pr - (Pl)
Wil == (555)
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Hence, the robot’s pose to register non-stationary multi-sensor data is given by the expres-

sion stated in the next mathematical proposition '°,

Proposition 3.5.1 (Recursive robot’s posture).

= Xo [, (vo + f, 0dt) cos (6o + [, (wo + [, wedt) dt) dt
=| w0 |+ | f(vo+ f0dt)sin (6 + [, (wo+ [, @dt)dt)dt (3.56)
6 6o [, (wo + [, @dt) dt

3.5.2 State estimation

The Kalman filter is a probabilistic method based on the Bayes’ rule to improve the estimate
of a state based on the measurements by considering uncertainty models of both, the robot
and sensors. It is a recursive linear estimator based on Bayes’ rule. This filter calculates
successively a state based on measurements over the time, it generates a predicted state and
correct that state based on the measurements”’. The Kalman filter is typically used in tracking,
location and navigation. The Kalman filter requires a kinematic model in order to predict the

robot’s posture. The instantaneous tangential and angular speed are given by (3.57) and (3.58).

The instantaneous velocity model is approximated by a mean of asynchronous active wheels

(3.57), see please section 2.1.

ar
Vt = m (Nr + N[) (357)

and angular speed is modelled by,
wy = 4otbr (Ny — Nj) (3.58)

AR (a2 + b2)
where a, b are the transversal and longitudinal distances between the wheels’ contact point. r

is the wheel radius. N, and N; are the erncoder pulses from the right and the left wheels. R

is the encoder’s resolution factor. Therefore, the robot pose model is defined by,
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Xt Xt + VeA¢ - cos (Os_1 + WiAf) + Wy
fxe-vuuwe) = |y | =] w1+ v sin (0o + wAg) + wy (3.59)
0 Ot—1 + (Wt - A¢) + wy

Similarly, where x¢_1, y;_1, and 8;_1 are the previous posture coordinates. v; and w; are the
tangential and the angular speeds respectively. wy, wy, and wy are the process noise, being con-
sidered statistically independent with normal distributions of mean zero, and known variance.

Therefore, the process and observation models are stated by (3.60),
Xp = Axk_1 + Buk_l + Wp_1 (360)

Zp = ka + Vi (3.61)

where x}, is the state vector, u;, is the control vector, and z; is the observation vector. w,_; and
v, are process noise and measurement noise respectively. A, B and H are transition matrices.
The Kalman filter has two steps. The first step is the prediction equation (3.62) used to predict
the state based on the values of previous state, and the present control input. Likewise, the
covariance matrix is calculated.

X, = Axp_1 + Bu, (3.62)
P, = AP, A" + Qq (3.63)

The second step is the correction equation (3.64), where the Kalman gain is calculated in

order to correct the predicted state. Likewise, the covariance matrix is calculated for the next

iteration.
K, = PyH' (HP;H' +R,) ™ (3.64)
Xp =X, + K (zp — Hﬁ;) (3.65)
P, = (I - KxHy) Py (3.66)

If the process and/or observation model are non-linear (3.67), then the extended Kalman filter
(EKF) is applied,
X = f (Xp—1, Ug, Wg) (3.67)
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Zp = h (Xk,Vk) (368)

where x;, is the state vector, u,, is the control vector, and z,, is the observation vector. Likewise,
w; and v, are process noise and observation noise, respectively. The Taylor’ expansion series
make a linear approximation of the function f from the valued function and the slope of f,

which is obtained from the partial derivative (3.69).

af (ut, x1,1)

f'(ug, x4-q) = o (3.69)
Linearised models of the process and observation are shown by (3.70) and (3.71),
fx) =f (&) +f (%) (x - %) (3.70)
N
=A
and
h(x)=h(%) + h' () (x — %) (3.71)
N——"
-H

The steps for prediction (3.72) and correction (3.74) for EKF are adapted to the linearised

models of the process and observation.

X, = f (Xp—1,ug_1,0) (3.72)
P, = ApPrsAp + WQp Wy (3.73)
and
Ky = PyH] (H,P H + VR, V] )™ (3.74)
%, = &5 + Kg (2 — h (X5, 0)) (3.75)
P, = (I - K H) Py (3.76)

The matrices and vectors used in the EKF are described next. The state vector x consists
of the robot’s posture components x,y, 8. Likewise, the control vector consists of the linear
and angular velocities. The observation vector z consists of the values x and y obtained from

odometry sensors. And, process noise vector, and measurement noise vectors are defined.
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Xt Wy
v X Vo
X=15t ) U = ; Zp = ; Wi = [ wy|; Vg = (3.77)
w y Vy
91 Wo

Matrix A is the Jacobian matrix of state function with respect to state vector.

6xk Bxk 6xk
5 3%%4 agk—1 agkA
A f Vi Y Y (3.78)

OXp_1 Oxp_1  Oygp—1 00p_q
o0y, 00y 00y,

Oxp—1  OYp—1 00k

Modelling a linearised approach of the robot’s displacement, the Jacobian is written by

1 0 —v¢A¢ sin (Gf_i + w,Af)
A=10 1 vArcos(0i4 + wiAy) (3.79)
00 A¢

Observation function represents how state vector and control vector modify the measurement.

Xp_t + VpA¢ - COS (Op_1 + Wp\¢) + V
h (X1, 0, vs) = k-1 + VpA¢ (Or-1 + WeA¢) + vy (3.80)
YVe-1 + UkAt - sin (Qk_1 + kat) + Vy

Matrix H is the Jacobian matrix of observation function w.r.t. the state vector.

6xk axk 6xk
_Oh [ 5xp 4 Byrs 0Bk
H = ox | Ok Ok Oy (5:81)

6xk_1 ayk_1 69k_1

Modelling a linearised approach of the observation matrix, it is written by

H = (3.82)

1 0 —VpA¢ sin (Qk_1 + kat)
0 1 vrA¢cos(Op_1 + wpAy)
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The covariance matrix P consists on initial values of variance for each state variable. The

elements of this matrix are non-stationary.

o2 0 0
Po=|0 63 0 (3.83)
0 0 of
The process noise covariance matrix,
o2 0 0
Qe=|0 o2 0 (3.84)
0 0 of
The observation noise covariance matrix,
oz 0
Ry = (3.85)
0 o’

Although, both matrices are time-varying, however they are consider constant. Likewise, Wy

is the Jacobian matrix of process model w.r.t. the process noise vector.

Oxg Oxp oxy,

5 f oWy owy 0wy

W, = — = Ve oYk o 4%
k oWy, ow, 0wy, Owg <386)

90k 90k 96
OWy owy owy

V}, is the Jacobian matrix of observation model w.r.t. the measurement noise vector.

oh % oy
Vp= — = [ W 3.87
kT o oy O (5:87)
ovy  Ovy

Uncertainty of x and y were obtained experimentally, consisting of moving the robot linearly.
The error was calculated from the difference of ideal and the real ending positions. From
the experiment, p, = 0.457 and p, = 0.569 were measured. The Extended Kalman filter was
implemented in the mobile robot to track its location indoor with experimental results shown

in figure 3.15. Values of the covariance matrix P overtime are depicted.
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Figure 3.15: Sensor observation and Kalman estimation of the robot’s position (above). Numeric calculated
values of the covariance matrix P during experiment (below).
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Chapter 4

VISUAL INVARIANT DESCRIPTORS

Edgar A. Martinez-Garcia

Laboratorio de Robdtica, Institute of Engineering and Technology
Universidad Auténoma de Ciudad Judrez, Mexico.

Visual landmark tracking represents a major problem due to occlusion, illumination varia-
tions and affine transformations between subsequent images. A desired goal for mobile robot
applications is to increase stability during invariants detection in order to minimize tracking
errors. Instead of using expensive and sophisticated sensor devices, a trend in mobile robotics
is using cheaper, passive, and widely available sensors operated by complex algorithms. Vi-
sual sensors, for instance, involve several perception problems such as infeasible lighting and
uncontrolled illumination conditions, which prevail in mobile robot scenarios. Invariant de-
scriptors provide relative steady geometric parameters of regions for recognition problems.
Regional descriptors must be highly accurate in terms of their locations to associate correctly
sets of landmarks coming from different regions, and accomplish precise geometric triangula-
tion between two successive image frames'. Two issues must highly be reliable, the matching
algorithm and landmarks position accuracy. If invariant descriptors locations are stable, then
projective geometry algorithms will provide highly accurate robot displacement calculations.
Reason of failure of the matching algorithm may be caused by missing landmarks due to
lighting noise and/or occlusion; even if landmarks are matched correctly, there exists the pos-
sibility of variations of descriptors’ position, yet if sensed from the same observing location. The

approach is based on a feature-space analysis, although different approaches are reported~.
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Unlike other approaches ™, this chapter focuses on solving the problem of feature descriptors
instability while tracking landmarks unlike other approaches”. In order to understand how
the instability descriptors problem evolves in different moments and invariant moments, we
carried out a comparative study on different algorithms to learn how to increase a steady state.
Given the value of stability in the MSER algorithm, we can minimize errors specially where

landmarks observation yields false positives and negatives.

4.1 Feature points detection

A quantitative analysis of stability tracking of invariant descriptors is presented. Two feature
extraction algorithms are compared: the Harris Corner Detection and the Fast Corner De-
tection. Corner detectors are the introductory algorithmic processes of almost any regional
invariant descriptor algorithm. Two of the most popular corner detectors to compare are the
Harris Corner Detection (HCD)’, and the Fast Corner Detection (FCD) algorithm®. The HCD
has been a popular interest point detector due to its strong invariance to rotation, scale, illu-
mination variation, and image noise. A predecessor of the HCD was presented by Moravec'.
The HCD is based on the local auto-correlation function of a signal; where the local auto-
correlation function measures the local changes of the signal with patches shifted by a small
amount in different directions’. The discreteness refers to the shifting of the patches. Given

a shift (Ax, Ay) and a point p(x, y), the auto-correlation function is defined by

clx,y) = Z[I(xi'yi) —I(x; + Ax, 3; + Ay, (41)
w

where I denotes the image function and (x;, y;) are the points in the window W centred on
(x,y). For the case of the FCD, it classifies a pixel p as a corner, if there exists a set of n
neighbouring pixels which intensities are all brighter than the intensity of the candidate pixel
I, plus a threshold t;, otherwise, all pixels are darker than I,t.
With similar setting parameter for the FCD and the HCD, the FCD usually detects a greater
number of feature points than the HCD. Actually, the number of features are nearly duplicated
as detector’s threshold decreases at constant rate. FCD yields more density of points dispersion
than the HCD; while the HCD detects points basically without redundancy (non cumulative cor-

ners around the same region) due to its statistical mechanism based on associating a regional
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Figure 4.1: Left: FCD features detection. Right: HCD features detection.

covariance and its central value (a corner). HCD has a more enhanced level of suppression
detection than FCD. However, the FCD detects clouds of feature points specially within a mor-
phologically homogeneous regions. HCD is more sensitive to regional changes than FCD,
being less immune than FCD and with an increased number of false positives/negatives. The
HCD resulted faster than FCD in our on-board computers configuration regardless similar
thresholds configuration in both algorithms (figure 4.2), but HCD yields to a more globally
scattered dispersion of feature points, although less redundant than FCD (see figure 4.1). Fig-
ure 4.2 depicts a comparative plot of speed computation between FCD and HCD, using the

same thresholds.

—%— FCD )
—9— HCD 0ol —S— HGD d
10000
08} 4
07 4
¥ 80
N
3 06 1
=
k]
6000 Bos 1
2 =
£
2 04 4
4000
03 1
2000 02 1
0.1 4
—6—6 —6—6 —o6— O —eo—O—H
0 10 20 3 4 S5 6 70 2 9% 10 0 10 20 30 40 50 60 70 8 90 100

Threshold (Th) Th

Figure 4.2: Left: FCD/HCD number of keypoints; right: computing time vs. selected Th.
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It was established an average number of features, in our examples n = 20. A qualitative
analysis is presented in table 4.1; the HCD/FCD reliabilities when facing faults are presented.

In general, both corner detection algorithms (CDAs) have similar reliability, specially without

Table 4.1: Corners detection reliability, 20 features.

Time F. Positives | F. Negatives
Frame HCD \ FCD | HCD \ FCD \
to 5 3 3 2
4 4 2 3 3
to 2 1 2 3
ts 3 2 4 3
t, 3 2 3 2
ts 4 2 4 2
ts 3 3 2 3
t7 4 2 4 3
ts 5 2 3 4
to 5 3 4 3
to 4 4 4 2

[ Reliability | 81% | 88% | 84% | 86% |

previous image enhancement.The resulting feature points from the CDAs are then analysed by
a local invariant detector'’. The CDA's parameters are adjusted accordingly before applying

the invariant detection algorithm.

4.2 Stability analysis of invariant descriptors

A comparative study of three known invariants algorithms (SIFT, MSER, Quick SHIFT) is
carried out to track multiple regional descriptors correlated among consecutive video frames.
These algorithms were compared on faults tolerance and computational complexity. Feature-
points usually lie on high-contrast regions of the image, such as edges. An important charac-
teristic of these feature-points is that the relative positions between them in the original scene
should not change from one image to another. Affine invariant feature descriptors are nor-
mally computed by sampling the original (grey-scale) image in an invariant frame defined from
each detected feature. Experiments were carried out with three popular invariants detection
algorithms: the SIFT'', the Quick SHIFT'*, and the MSER'°. The SIFT algorithm extracts
distinctive features from images in gray scale. It recognizes the same trait among different

views of objects'’, extracted features are invariant to image scale and rotation (figure 4.3).
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Figure 4.3: Visual local invariants: QShift, SIFT, and MSER (left to right).

The Quick SHIFT algorithm implements a mode seeking algorithm to form a tree of links
to divide an image into a set of super-pixels around the nearest neighbour. This algorithm
may not be seen as a invariant detection algorithm, but we found that centroids associated
to each superpixel region may represent the invariants at different frames as it increases an
estimate of the density. It increases an estimate of the density. With respect to the MSER
method, the regions are defined solely by an extreme property of the intensity function in the
region, and on its outer boundary (see bottom image in figure 4.3). We may refer to the pixels
below a threshold, as black; and to those above or equal, as white. Throughout a sequence of
threshold images I(t) and I(t — 1), with corresponding threshold t,, we would see first a white
image. Subsequently, black spots corresponding with local intensity minima will appear and
grow. At some point, regions corresponding with two local minima will end merging. Thus,
the last image will be black. The set of all connected components of all frames are the set
of all maximal regions; minimal regions could be obtained by inverting the intensity of I and

running the same process.

In addition, computational complexity for all invariant algorithms is depicted in figure 4.4,
whereas in Table 4.2, a faults tolerance study is summarized. The proposed EMSER algorithm
has a computational complexity close to MSER (figure 4.4) but a superior performance with
respect to the other algorithms in terms of reliability. Stability of invariant descriptors in this

context pursuits to reduce false positives/negatives during detection.

By applying invariants, given the degree of stability in the MSER algorithm, we can minimize
errors based on analysis in feature-space instead of the orthogonal sensor image, although dif-
ferent approaches are reported”. Errors can be minimized especially where a landmark might

significantly be similar to others, causing confusion in the robot. Based on those findings, in-
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Figure 4.4: Invariant algorithms arithmetic-logic complexity (I« ).

creasing stability of invariant descriptors is desirable, which in turn means to reduce false
positive/negatives during detection. By a preprocessing algorithm, selecting natural environ-
mental features can be accomplished automatically. These landmarks are then transformed

into invariant regional descriptors.

4.5 Image preprocessing

Image preprocessing is a set of algorithms to improve the quality, and the number of salient

features-points detected. The proposed methods is described as the following order.
1. Automatic image contrast enhancement.
2. Image sharpening.

(a) Adaptive edge detection.
(b) Correlation-based isotropic filtering kernel.

(c) Sharpening.
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Table 4.2: Faults tolerance, 20 descriptors, 11 frames.

Frame False Positives False Negatives

time sift | mser| emser sift | mser| emsex
to 12 4 3 8 5 3
4 11 6 2 6 4 2
ty 10 7 2 7 5 1
t3 12 7 3 8 5 3
1, 12 8 1 7 4 2
ts 11 6 1 6 5 )
ts 10 7 3 6 6 4
t7 12 8 2 8 5 3
ts 9 9 4 6 4 2
to 8 8 2 6 4 3
tio 10 7 3 7 4 1

[ [47% [ 65% | 88% [ 66% [ 77 % | 88 % |

4.3.1 Automatic contrast enhancement

Because of outdoors environmental scene structure has much greater dynamic range, lighting
conditions vary enormously for a given visual sensor on-board the robot. In addition, low-
contrast images may result from poor illumination, lack of dynamic range in the imaging
sensor, or wrong setting of a lens aperture during image acquisition. Contrast enhancement
increases the total contrast of an image by making light color lighter, and dark colours darker
simultaneously in image Ic = histeq(Ig), where 1 is the input image and I¢ is the enhanced
contrast image. By improving the image contrast, saliency and definition of regions corner-like
are enhanced. We apply histogram equalization to the acquired images in order to recover
the lost contrast by remapping the brightness values or more evenly distribute its brightness

values. An example of contrast enhancement is shown in figure 4.5-A).

The histogram h(ry) = ng, rp: the level of grey, and n, the num. of pixels. Thus, the

normalization for k = 0,1,...,L -1

p(re) = ITt (4.2)

then, the transformation s = T(r) for 0 <r <1,

ps<s) = pr(r)ldr/ds| (43)
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and
s="T(r) = / P.(w)rmdw (4.4)
0

4.3.2 Image sharpening

Adaptive edge detection The sharpening process is to detect the edges of the scene in the
enhanced contrast image. The edges are line regions used to increase the numeric value of
corners points located at lines-crossing. For practicability we deployed the Canny algorithm
because we can adjust the maximal suppression factor (edge thickness). Only most salient
feature-points are extracted by automatically selecting corners that mutually lie collinear over
crossing edges (vertical-horizontal cross points). The resulting edge image Ig is deployed

subsequently (see figure 4.5-B)).

Figure 4.5: a) raw and contrast enhancement images; b) Edge detection.

Correlation-based isotropic filtering kernel Under natural light conditions, having a good
definition of corners is a critical issue for the sake of key-features stability detection. We
establish an non-sharp kernel through the negative of a Laplace filter. The Laplacian is a 2D

isotropic measure of the 2"? spatial derivative, which in an image processing context is equally
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applied in all directions. The purpose of this is to highlight regions of rapid intensity change

particularly for edge detection. The Laplacian V2 or H of an image is given by:

I I
V2=&+agc

—_—, 4.
Oox? oy? (4.5)

where I¢ is the enhanced contrast image. This is calculated by using a convolution filter which
approximates a second derivative kernel in the definition of Laplace. Thus, it can be calculated
by using standard convolution methods. Nevertheless, by approximating a second derivative
measurement on the image, it results very sensitive to noise. The Laplacian is often applied to
an image that has first been smoothed approaching a Gauss behaviour filter to reduce noise
sensitivity.

As the convolution operation is associative, we convolve the Gaussian smoothing filter with
the Laplace filter first, and then convolve this hybrid filter with the image to achieve the
required result, and only one convolution needs to be performed at run-time on the image.

LoG(x,y) = —% <1 - 022;;2> e_%. (4.6)
The 2D Laplacian of Gaussian function centered on zero has discrete form in an image pro-

cessing context of the form:

—Q a—a —Q
1
H-= a—-a a-b a-al, (4.7)
a+1
—a a-a -a

where factor 0 < a < 1, for the results shown in this manuscript, was set to a = {0,0.1} as the

maximal sharpening factor, under natural lighting conditions.

Sharpening The sharpening process is enhanced by introducing an adaptive function B(Ig)
that highlights only the most prominent edges (referring to Ir where edges had been detected).
All edges greater than 50% of their intensity values in Ir are filtered. Likely, most prominent
edges associate crossing of vertical and horizontal edges (best corners featuring the scene).
In the vicinity of a change in intensity, the LoG response will be positive on the darker side,

and negative on the lighter side. A reasonably sharp edge between two regions of uniform but
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different intensities, the LoG response will be zero at a long distance from the edge; positive
just to one side of the edge; negative just to the other side of the edge; zero at some point in

between, on the edge itself. The enhancement function B(Ig) defined by,
BUs(i, ) = (G-1)" Y S Teli,f) < Tgli,j). (4.8)
i

In addition,

Jy = L, B(g)-Ic(i,j) %9

0, otherwise

where L is the maximum grey level.

Corollary 4.3.1. The sharpen image Is is given by the following kernel,

Is(t) = Is(t — 1) + - B(Ig) - (Ig(t —1) - H® JE). (4.10)

The unsharp image Is enhances edges via a procedure which subtracts an unsharp version

of an image from the contrast-enhanced image.

4.4 Feature-points (corners) detection

The sharpened image Is is now the input image to any corner-detection algorithm. Although,
we analysed both the Fast Corner Detector (FCD), and the Harris Corner Detector (HCD),
depicted results shown in figure 4.6 correspond to FCD, applied to a raw image (above), as
well as to its contrast-sharpening enhanced version (below). The preprocessed version shows
prominent results with respect the original raw image. In addition, figure 4.7-B) shows the

resulting salient feature points on the sharpened image by corner_detector(Is).

4.5 Adaptive dilation factor

The dilatation factor dy is a concept introduced in this chapter. The factor dy is used to easy

the ability of the MSER algorithm to create connected components. The dilatation factor allow
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1 I I I
00 150 200 250 300

Figure 4.6: Feature-points detection. a) raw image; b) enhanced image (contrast and sharpening).

us to adaptively (based on the dispersion of key-features) dilate at a rate of the factor dy,

100 ]
s - \/ S o -p)es, (1)
In X Jm ;

where s is the vector of statistical variances of the key-feature points; p is the vector location
of a key-feature point; and f1 is the mean-vector of key-feature points. As a result, figure 4.7
depicts a unique map of regions formed by the set of key-points dilated at a factor ds. The
original information data of the scene is no longer required, and MSER is applied in a very

reduced computational search space, called stable binary regions.

4.6 Descriptors in Binary Stable Regions

The Binary Stable Region is a binary image compounded only of multiple dilated circular
descriptors that by overlapped areas will form new regions featuring the scene. Thus, the real
image scene is no longer required because binary regions are the scene descriptor themselves,
with a reduced search space. Only binary regions are now uniquely predominant as candidates
for analysis by the MSER algorithm to extract a small number of covariant regions (stable
components) highlighted by circles to describe local invariants.

Figure 4.7 depicts some experimental results in the binary stable regions, as well as de-
scriptors projected over the raw image. Further study can be found in '°, which is a precedent

theoretical work that explain how we arrive with our algorithm to improve the invariant’s
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Figure 4.7: a) key-points at cross-edges, and adaptively dilated feature-points; b) Maximally stable regions
detection (bounded by circles).

Cartesian stability for robots localization. Our endeavour to alleviate the instability behaviour
is not by applying MSER directly to the sensor observation (image), but only to their binary sta-
ble regions (figure 4.7 binary stable regions). We call this strategy enhanced MSER (EMSER).

In addition, it is worth mentioning that these results improved reliability in data association.

4.7 Optical flow data association

The implemented optical flow algorithm is based on a gradient method'“. It correlates visual
environmental landmarks, which as the robot moves, such natural landmarks or key-features
are displaced overtime, as depicted in figure 4.8-A), and those key-points are used as visual
feedback. Optical flow provides the apparent motion in a visual scene I caused by the relative
15

motion between the inertial frame of the robot and the scene’s landmarks'’ as depicted in

figure 4.8-B.

I(x,y,0) = I{x + Ax,y + Ay, t + At). (4.12)
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Figure 4.8: a) keypoints overlapped in time; b) optical flow from invariant keypoints.

By assuming relatively small robot’s displacements (sensor suite on-board), the image con-
straints at I{x, y, t), and changes overtime Ax and Ay in coordinates XV in time At as defined

by,
ol Ax 8l Ay  OIAt

Al Fayar T aiar (+13)

The partial derivatives of the pixels of interest will result as the optical flow of pixels (x/, y/) by

L VRN

— 5 T =0 (4.14)

where 1/ and §/ are the velocity component of each invariant descriptors detected in images
I(t) and I(t —1). Both speed components allow to know the angle and magnitude of the velocity
vector (figure 4.8-b)). For every key-point detected within the vision sensor field of view, its
apparent motion is analysed by their optical flow feature vector. The optical flow feature vector

is the input vector argument for the data association process, defined next.
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x! (61/0x)x!
b2 (o1/0y)s”
o arctan(y/ /x/)

f _ , 415
vf @)+ 1) o
c c
r r

where 6/ is the direction of optic flow vector, v/ is the velocity vector magnitude; ¢ and r are
the column and row respectively of the invariant feature within the focal plane. With a group
of optical flow feature vectors f, the data association function &;(t) in eq.(4.16) correlates all

invariants velocity.

Proposition 4.7.1. The argument that minimizes the function &;(t) is the most similar

feature vector within a multidimensional space,

ar%gun SL(t) = |Ifi(t) — ()4 ] (4.16)

Data association of the kth landmark is illustrated in figure 4£.9. Dots and empty-circles that
overlap together indicate successful landmarks data association of their inertial frames w.r.t.
to the robot’s displacement. The detected invariant descriptors are extracted from the scene
image and placed onto an empty image frame (white background) at same spatial coordinates.
Thus, the optical flow process is assured to be performed only to detected invariants.

Table 4.3) show results on data association between two successive images at robot speeds of
about 0.3m/s. The original data association index as well as the closer descriptor are recorded,
and a specific threshold is used to determine the number of matching features. This can be

seen in the sequences of images in figure 4.9.

4.8 Local invariants consideration for robot motion

For the sake of visual odometry, the locations of these descriptors are geometrically triangu-

lated to infer the robot’s displacement, as illustrated by figure 4.10. Detecting each descriptor’s
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[ Frame | Correlated|]

to 10
7] 10
ty 10
tz 9
t, 10
t5 10
ts 10
ty 10
ts 8
to 9
tio 9
| Reliability | 95% |

Table 4.3: Data Association, 10 landmarks, 11 frames.

key-point with no perturbation in the same scene’s configuration regional location is desired;
otherwise robot’s positioning is not accurate. Descriptors stability is important for numerous
mobile robot applications with visual feedback (i.e. positioning control, trajectory tracking,
visual odometry, robot pose estimation). Descriptors are advantageously used as natural envi-
ronmental landmarks by geometrically triangulating their locations.

Detection of key-points with no perturbations (same regional location of the scene overtime)

is a desired condition

Proposition 4.8.1. The key-point coordinates x = f(x), x = (r,c)T for f : D — R" is stable,

if the equilibrium point x = X, (X, ideal location), and
flxe) =0; [Ixo —Xe[| < 8

and

lim x(t) = x,

t—o0

such that,
S = (Ac2 + AI"Q)UQ

in which 6 is a marginal error due to instability of the visual perception process.
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Figure 4.9: Data association results with the proposed method.

The key-points location is ideally inferred, if the robot's motion is robustly controlled
through the control vector u = (v,w)’, where v; and w; are the robot’s instantaneous lin-
ear and yaw velocities. There for, estimation of robot’s displacement w.r.t. the visual landmark

is modelled by the linearised state equation,
%X = Ax + Bu (4.17)

Thus, x = x. for x = f(x) = Ax, which is asymptotically stable, it is both stable and convergent.
The model for the descriptor location x = xo + g(x, ¥, t) arises from a kinematic robot’'s motion

model g(-), which is not treated in this chapter because of its extensive nature and lack of space.

Focal

Key-point
planes . -

Visual

a I
7 mage I(c,r}
ge I(c,r) sensor

t,.7

Key-points

t1 @mﬁ
Ari % [ Reallobservation

! [ Ideal observation

Figure 4.10: Stability invariants for robot motion.
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However, expected key-point in focal plane is inferred by

Ac tan(arccos(3t)) — tan(arccos(32))
f 1 ’ (4.18)
Ar tan(arccos(g!)) — tan(arccos(32))

where f is the focal length of the visual sensor; (Ac,Ar) are the expected location of the
descriptor in focal plane according to the actual robot’s motion; (x;, y;) is the Euclidian position
of the descriptor; I; and k; are the line distances between robot and descriptor in Cartesian
space (see figure 4.10). Perturbations will affect the stable equilibrium point if overpassing the
magnitude of 6.

In addition, x; and y; (robot position w.r.t. key-feature) arise from the deterministic robot’s
motion model that defines its small displacement A&(t)

AL(t) =

- _/tZV(t) cos( [, w(t)dt) dt (4.19)
t

Yo sin( [, w(t)dt)

The input control vector u(t) = (v, w)” defines the robot’s linear and angular velocities for any

k number of wheels with actual speed ¢;(t) of constant radius r,
r .
v(t) = E\;q;i(t); w(t) = v(t)/h (4.20)

where h is the robot’s body radius (width from geometric centre to any wheel's contact
point). For an ideal model, we might say that Ac, Ar are deterministic variables in terms

of A&(v(t), w(t), glx, ), ).
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Chapter 5

MULTI-LEGGED OBSTACLE AVOIDANCE

Cesar Garcia Sarinnaga and Edgar A. Martinez Garcia

Laboratorio de Robdtica, Institute of Engineering and Technology
Universidad Auténoma de Ciudad Judrez, Mexico.

In this chapter the kinematics, and the navigation model for obstacle avoidance of a six-
leg (hexapod) robot are discussed. A navigation model controls the course of a mobile robot
from a starting position towards a goal destination. The kinematics describes the geometry
of motion of a body (i.e. limbs, links, a joint, a walker) regardless the causes that produced
such motion. Therefore, a robotic navigation model entirely depends on the kinematic models
in order to describe the set of local Cartesian goals that the mobile robot must reach. The
present approach is on combining the optic flow information observed from the obstacles, with
a decision engine comprised of the image motion analysis, and a kinematic control law. The
optical flow describes the apparent motion of a body w.r.t. the observer location (i.e. the robot’s
visual sensor on board), and such description consists of the velocity components within a local
inertial frame. In the present scheme, a decision engine is a robot’s algorithm that considers
information descriptors that are used to take decisions on how to avoid collisions online against
static and dynamic obstacles. The decision engine considers motion information from the
actual image frames to feedback a linear state equation control law about the environment’s
near obstacles. The inverse and direct kinematic analysis of a leg is presented separately to
approach an algebraic solution that obtains the Jacobian matrix of the limbs. The limb’s inverse

kinematic solves the independent variables that control the system, the rotational joints; given
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that the workspace variables are known. Inversely, the forward kinematics obtains the solution
of the unknown workspace Cartesian variables, given that the independent control variables are
known. The Jacobians are deployed to build the input vector model u = (v, w)" of a linearised
displacement state feedback equation control X = A - x + B - u. The function of the state control
is to provide a fast response navigation reaction for avoiding obstacles. The Jacobian matrices
are the functions in terms of the workspace state variables derived w.r.t. the all independent
control variables. Thus, the solution of the Jacobians are directly involved with the input vector.
Finally, the hexapod robot is a statically stable multi-legged robot comprised of six limbs able

to walk over rough terrains, developing a variety of gait configurations.

5.1 Limb forward kinematics

Figure 5.1 depicts the robotic platform body, and the limb’s kinematic. The platform is an AH3-
R hexapod model, which is a radially symmetric multi-legged walker with 3 DOF for each leg.
A general view of the mechanical structure is shown in figure 5.1. The limb inertial space E
is defined with Cartesian origin at the base of the first joint ¢g, following the next two joints
¢1 and ¢, and links called [y, l;, and l,. The leg’s contact point is modelled by the position

vector °, which defines the instantaneous position usually stepping the ground surface.

"\ (o Ve 20)

Figure 5.1: The AH3-R hexapod: body and leg kinematics.

The extremity position vector p = (Xce, Yoo, Zee) | is locally described w.r.t. limb’s base Carte-
sian coordinate system; analysing independently each workspace variable, the x component is
defined by

Xce = c0s(do)(lo + Iy cos(¢y) + Ip cos(¢py + o) (5.1)
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Figure 5.2: Leg whole workspace, and step-limit workspace.

for the position projected along the y axis,

Yee = lisin(¢y) + lp sin(¢y + ¢o) (5.2)

as well as for the component along the z axis.

Zce = sin(¢o)(lo + 1y cos(py) + Iocos(dy + o) (5.3)

With the equations (5.1), (5.2) and (5.3), the plots in figure 5.2 are produced. The left-hand
side plot shows the limb’s workspace; being the workspace each three-dimension Cartesian
point that the limb’s contact point is able to reach. Metric scale is represented with the real
physical size of the links Iy = 0.04,1; = 0.06 and I, = 0.14 (m). Likewise, the right-hand side plot
depicts the angular independent variables with numeric limits to approach the AH3-R joints’

movements to one-step in three-dimension space.

Equations (5.1)-(5.3) represent the forward kinematics using an algebraic approach to analyse
the limb’s kinematics. With this forward position equations and by knowing the control in-
dependent articular variables, the workspace variables are obtained. Nevertheless, it is our
interest to get an algebraic inverse solution. Unlike geometric approaches, such as using the
sine and cosine laws in order to solve for the limb’s angles, our approach is rather flexible to

mathematically model in case of reconfiguring or making physical changes to the limbs.

In this algebraic context, to solve for the inverse kinematic equations of the position model
that is denoted by the vector p € R3, it is proposed to algebraically expand, and then derive
w.rt. time as to express the new mathematical relation in terms of velocities. Thus, being

the expressions in terms of velocities, it is easier to drop-off the angular speeds vector since
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the robot AH3-R software technology solely allows to move the joints by using the angular
velocities ¢; and the angular positions ¢;. Therefore, by algebraically expanding the position

equations, the next expression for the component x is produced,

Xce = locos(¢o) + I cos(¢o) cos(s) + Iy cos(do) cos(pr + ¢2) (5.4)

However, for the y component (5.3), it does not require any further algebraic expansion. And

for the component z, the following expression is yielded,

Zce = losin(¢go) + 1y sin(¢ho) cos(¢1) + o sin(¢o) cos(¢y + ¢2) (5.5)

5.1.1 First order derivatives

The present approach states the first order derivatives w.r.t. time for the position compo-
nents. The partial derivatives of each workspace variable are defined as functions of the three

independent angular variables.

dxce = d doy + d 5.6
300 $o + 5 ™ ¢+ 5 n (0 (5.6)
for the component y,
OVce OVce OYce
dyce = d¢o + doy + d 5.7
h% e b0+ 5 ™ b1+ 5 5o P2 (5.7)
and for the component z.
azce azce azce
dzee = d¢o + d d 5.8
e b0+ 5 n é1+ 5 n P2 (5.8)

The three previous equations if arranged in the matrix form, then the Jacobian matrix of
derivatives is obtained. Hence, previous definitions are solved by developing the first order

derivative w.r.t. time, for the component %,

Xee = —losin(eo)Po + li[— sin(¢o) cos(¢1)do — cos(do)sin(dr)d]
+1o[— sin(¢o) cos(dr + Po)do — cos(do) sin(¢y + ¢2)(b1 + Po)]
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for component ¥ we have,

Ve = L1 cos(@1)Py + Lcos(dr + ¢o)(d1 + Po) (5.10)
and finally for the component z,

Zce = lo cos(o)Po + li[cos(do)cos(dr)do — sin(do) sin(py)1]
+1o[cos(o) cos(dr + ¢do)Po — sin(eo) sin(dy + do)(d1 + Po)]

(5.11)

Since our interest is on solving for the angular derivatives, we firstly expand algebraically the

same equations,

Xee = —losin(o)Po — Iy cos(do)sin(dr)ds — L sin(eo) cos(pr)do

L, sin(go) cosldy + da)do — L cos(do) sindy + do)ds — Ly cosldo) sin(ds + do)d 42
for the velocity ,
Vee = L1 cos(d1)Prlocos(dr + ¢o)d1 + lrcos(dr + do)do (5.13)
and for the velocity z,
Zee = locos(do)do + Iy cos(do)cos(dr)do — Ly sin(o) sin(dr)dy 544

+1p cos(do) cos(Pr + Po)Po — Lo sin(¢o) sin(dy + ¢o)d1 — Ly sin(¢o) sin(Py + ¢o)Po

Thus, in order to factorise the higher order derivatives, it is reduced algebraically in the

following manner,

Xee = — sin(go)[lo + i cos(ey) + cos(dr + Po)ldo
— cos(¢o)[lisin(¢r) + Lo sin(dy + ¢o)]ds (5.15)

~lp cos(¢o) sin(dy + o)

likewise, for the velocity y,

Yee = [l cos(Py) + Lrcos(dy + ¢o)d1 + locos(Pr + do)do (5.16)
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and for the velocity z.

Zce = cos(o)[lo + licos(Pr) + o cos(dr + d2)]do
—sin(o)[ls sin(¢1) + Lo sin(dy + do)lds (5.17)
—ly sin(¢o) sin(¢y + Pa)Po

Stating (5.15)-(5.17) in the matrix form, the second derivatives are factorised and the Jacobian
matrix J(®) = J(pg, d1, P2) is established. Therefore, the squared Jacobian matrix in the general

form is defined by the next expression (5.18).

Ooxe Ooxe Oxe

Oy 01 O

J(do, b1, do) = gi; ggj gg; (5.18)
0z, 0z, 0z,
O0do  Op1 O

Thus, since the Jacobian matrix expression terms are too long, then for purpose of practicality
they are substituted by new abbreviated expressions. Likewise, the trigonometric functions sin
and cos are substituted by the letters s and c, respectively. The values of the variables along

the first row are,
a = —so(lo + licy + lpera); b = —co(lis1 + lysio); c = —lycosip

for the second row,

d=0; e = licy + lpeqo); f =leyg

and the third row,
g = collo + licy + leyg); h = —so(lis1 + lrs1o); i = —lpspsyo

The Jacobian matrix is then simplified,

C
J=|d e f (5.19)
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Therefore, forward kinematics equation of the whole limb is presented in its matrix linear
form as expressed by the equation (5.20); where & is the vector of angular velocities, with

vector components b = (d)o, <i>1, d)Q)T-

p—J.- b (5.20)

The limb’s contact point Cartesian positions provided by the forward kinematics of equation

(5.3) are depicted by the plots of figure 5.3.
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Figure 5.3: Forward kinematics numerical simulations: Angular speeds(left); Cartesian speeds (center); and
limb's contact point positions (right).

5.2 Limb inverse kinematics

The limb’s inverse kinematic solution allows to obtain the joints control variables as functions
of the known workspace variables. The inverse kinematic solution is useful to directly control

the kinematic structure joints, knowing where it is desired to move the limb’s contact point.

From expression (5.20), the vector & is solved to represents the inverse equation form in

expression (5.22). This, by multiplying the inverse Jacobian in both sides of the expression:

Jhp=7"-0-9) (5.21)

and then the identity matrix I is the product of J~! -], hence

d=-71t.p (5.22)
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5.2.1 Singular matrix inversion

To solve the linear equation (5.22), the method of the inverse matrix is applied to the Jacobian

matrix. This algebraic process is developed since the Jacobian is a squared matrix, and there-

fore by obtaining its non zero determinant a solution is possible. The linear algebraic method

was already discussed in chapter 1.2.3.

m"“‘J a

Its algebraic form is obtained with the cofactors matrix Adj(A)

Ju Jio s
Adj(0) = | Jo1 Joo Jos
Js1 Jse 33

where each cofactor term for the 3 x 3 matrix is defined by,

d

Ji = (1) ¢ J 3 T =(-1)° f ;o Tz = (—1)*
h i g i
b

Jor = (—1)° ¢ 3 Joo = (1) ‘@ 5 Jos = (—1)°
h i g i
b

Ja = (—1)* c ;o Jse = (—1)° @ ;o Jas = (—1)°
e f d f

(5.23)

(5.24)

By defining the terms u = Iy + ljc1 + lhcyp and v = ljcy + lreqo, the cofactors are represented

by the next expressions,

Jir = =lilasgsy; Ji2 = lococrou; Jizs = —couv

Jon =0; Joo = lpsipulcd + s3); Jos = —u(lysy + lpsio)(s§ + cf)
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Jir = lilpcoso; Ji2 = lasociou; Ji3 = —spuv

In addition the determinant of the Jacobian matrix det(A) is obtained by the rule of Sarrus (see
chapter 1.2.1),
det(J) = aei + bfg + cdh — gec — hfa — idb (5.25)

hence,

det(]) = 1112(1052 — 1231 + 110132 + lQS1C2 + 12010232) (526)

and by using the equation (5.23) the inverse Jacobian is obtained, which is depicted by the

following expression (5.27),

j k1
J'=|l m n o (5.27)
p q r

where the terms of the inverse matrix J~! are expressed as given by the following expressions.

For the first row, the matrix factors are,

—50 Co
j=—: k =0; l=—
u u
the matrix second row terms,
CoC12 512 50C12
= ; n=-—; o=
lyisy 1y s lisy
and the matrix third row terms,
—CoV lis1 + lpsy —SoV
= ; = - r =
p 111282 4 111252 111282

5.2.2 Inverse matrix by Cramer theorem

The Jacobian inverse matrix was obtained by using the Cramer’s rule (5.28) as a second choice.

This method was already discussed in chapter 1.2.4. Let us state the next expression,

_ det(A;(p))

i = det(A) (528)



168 CHAPTER 5. MULTI-LEGGED OBSTACLE AVOIDANCE

where A;(p) is the matrix formed by replacing the column i for the vector p such that,

X b ¢ a x c a b x
detAq)=|y e f | det(Ag)=|d ¥ f|; det(Az)=|d e ¥ (5.29)
z h i g z i g h Z

the determinant of each matrix is given by the next expressions,

det(Ay) = Lilysy(zeg — xS0) (5.30)

and,
det(Ay) = Lu(ysyy + XcoCry + ZSpC12) (5.31)

and,
det(Az) = —u(y12c3312 + 3‘1123(2)312 + 3'111(:(2)31 + 5'/113%31 5:32)

+:'CIQC()C12 + ZlQS()C12 + 1"110()01 + Zl1SoC1)

Furthermore, the inverse solution of the joints’ angular speed are the results of the next

expressions,
. ZCO — i‘SQ
o = ————— (5.33)
u
for ¢o,
. YC1S89 + YS1Co + XCoC1Cy + ZS59C1Coy — X CpS1S2 — Z5051S2
¢ = l (5.34)
152
and for ¢s,
b5 = —(§lis1 + xlicoct + Plocisy + Ylosico + zlisocy 535
5.35

—I—i‘lgCoCiCQ + zlpspcicy — xlpcosi sy — 212508152)/11 lrsy

Thus, by algebraically arranging and reducing the equations (5.33), (5.34) and (5.35), the
same inverse matrix result J-! is obtained as the previous section equation (5.27). Numerical
simulations of the inverse kinematics model (5.22) yields the numerical results depicted in

figure 5.4.
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Figure 5.4: Inverse kinematics numerical simulations: Cartesian speeds (left); angular speeds (center); and
limb's contact point positions (right).

5.3 Robot's posture kinematic model

The global robot’s locomotion is contributed by all limbs’ movement configuration . Depend-
ing on the limbs angles of phase and their synchronous motion, the robot’s angular and linear
velocity (figure 5.5), both are impacted. The models in the previous sections were obtained
from the leg inertial systems, based on those will get the kinematic control models for the

robot. Previous sections analysis considered solely the limb kinematics, hence the limbs

Figure 5.5: Cartesian limb's kinematic in robot’s fixed inertial space.

speed vector might be transformed into the robot’s inertial frame system by,
PR = R(y)- b + t; (5.36)

where the index i represents the leg number; v; is the z-axis rotation angle for each leg, and
the vector t; is the position of each limb around the robot’s body. Thus, [')f2 is the limb’s speed

vector w.r.t. the robot’s centroid (see figure 5.5). Hence, the following proposition is stated:
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Proposition 5.3.1 (robot’s linear velocity). The robot’s instantaneous linear velocity is

modelled as an averaged limbs’ Cartesian speed, such that

6 6
1 1 . . 3
V== Y vi=2Y NP+ P+ 2] (5.37)
i=1

i=1

(o2}

In fact, as /&7 + 97 + z2 = |pR| and by substituting that direct kinematic model to represent
each leg’s velocity in terms of the Jacobians, it is also assumed that |pR|| = |JR-®R||. Hereafter,
the super index ? is omitted and we will assume the the limbs contact points are in represented
in robot’s fixed inertial frame~. Thus, the robotic platform with averaged absolute velocity is

defined by,

Vv =

6
DINIIEE 21 (5.38)
i-1

ol =

Similarly, by approaching a differential velocity approach, from a top view the right-hand side

legs have positive sense of motion, while the left-hand side have negative values, thus,

3 6
0= vi-> v (5.39)
i=1 j=4

By establishing a model for the robots angular velocity w¢ w.r.t. an averaged radius ¢ obtained
by the robot’s geometric centre, and the limbs contact point positions, thus the instantaneous

angular velocity w; = ¥/¢. Where,
1
N (5.40)

Each limb distance to the robot’s centroid l; has an angle «;, and an instantaneous average

value that represent all angles,
R 1
Q= ¢ Ei a; (5.41)

Given that, each a; can be obtained by,

a; = arccos <xcr> (5.42)
|2cr + ¥erl]
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Where the positions of the contact points w.r.t. the robot inertial space are,
x = rcos(;) + (x% + z2)? cos(0 + i) (5.43)

and,

y = rsin(6;) + (x? + z%)"? sin(0 + ¢y0) (5.44)

Therefore, it follows that, the transversal velocity component is stated as the numerator of the
following equation,
¥ cos(ay)

w = S (5.45)

And by substituting the whole terms in order to have the complete model equation (5.46),

Proposition 5.3.2 (robot’'s yaw speed). The robot’s angular velocity is inversely propor-
tional fo the distance of the limbs’ contact point w.r.tf. the robot’s centroid, and directly
proportional to the transversal Cartesian component of the limbs’ differential speed ¥,

equation (5.39). -
132017 - @i coslar)

i 5.46
%Z?:i(r + (x? + y2 + z)12) (5.46)

Now the input vector to control the robotic platform in terms of linear and angular speeds is

defined by equation (5.47), which is comprised of the equations (5.38) and (5.46).

- <V, w)T (5.47)

5.4 Optical flow analysis

The optical flow vectors represent the apparent motion of the objects in the scene w.r.t. the
visual sensor perspective, where the sensor is the local observer '~. Thus, it is of interest to
measure the optical flow of the feature points that are invariant to scale and rotation (SIFT)
detected in the scene (feature extraction). In order to measure the optical flow, the image
I(c,r, t;) is sensed and it is established data correspondence with the next consecutive image

Ilc,r, ty).
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I(cy + udt, r¢ + vdt, t + dt) = I(cy, ry, t) (5.48)

Previous expression represents the small differential values of columns cf, and rows ry w.r.t.
dt between two successive image frames. We refer to feature points (SIFT) with valid corre-

spondences in order infer their optical flow speed components.

oldey 0Oldry oI

= ialneiell AT Y g 5.49

dc dt ordt ot (549)
For the key points correspondence, we present the nearest-neighbour method that minimizes

differences among the feature vectors. Each SIFT key-point "' detected with its optic flow

components are comprised of the features vector f ¢ R® defined next,
f= (C'f,ﬁf,gf,Vf,Cf,I"f)T (550)

or as the following definition,

Definition 5.4.1 (feature vector). The feature vector is f € R®, where a given f;(t) is any

feature vector detected in image frame at actual time t

_ ol dCf ol dl’f f'f \Z/ﬁ T
F= <60 T e e <é > (¢f)? + (B)% 5, 1y (5.51)

f

Figure 5.6 illustrates the optic-flow-based feature vectors f, and depicts a set of correlated
key points measured during experimental navigation'”. Such feature points are detected by
deploying the SIFT algorithm because of its suitability and reliability for the present application.
Furthermore, the descriptors obtained in the present context are the optical flow of the SIFT

points because those poses invariance of scale and rotation.

Therefore, one of the main interest of this data association approach is to establish approx-
imated displacement speeds of the legged robot w.r.t. to the approaching objects' . This
information allows to infer how the robot may quickly avoid collisions by directly involving

such motion information in the robot’s navigation equations.
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Figure 5.6:  Optic flow of invariant features (SIFT). Real scene (left); optic flow vectors extraction (right).

5.5 Navigation control

For the sake of the robot’s safe navigation, the critical areas of consideration to detect obstacles
moving towards a collision generally converge in the visual feature centre (figure 5.7). The
area of convergence is depicted as a circular region that is of critical interest in order to detect
the collisions that might occur as the nearest objects empirically scoped by the radius r.. The
extrinsic parameters depicted in figure 5.7 are explained in the subsequent paragraphs of this

section, provided as postulates that comprise an inference engine for safe navigation”.

(Tp C,r)

Horizon

Figure 5.7: Image frame with area of critical interest of a motion feature point.
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The optic flow vectors falling within the encircled area are deployed as elements that con-

tribute to take decisions in order to yield changes of speeds for evasion, according to the next

coordinates criterion,

Postulate 5.5.1 (evasion distance). When the distance in focal plane of a feature vector
is less than the magnitude r., the optic flow feature vector representing an obstacle in

the local scene is in close proximity to the robot.

Ver —re2 4+ (ef —ce2 < re (5.52)

Besides, the optic flow vectors with direction to the robot are defined by the angles criterion

Postulate 5.5.2 (direction of collision). The obstacle angle of direction 6; is leading to-

wards the robot, if the following criterion occurs.

7 < O <7 (5.53)

Furthermore, in order to determine the magnitudes of speed displacements, the inequality
(5.54) is a criterion to discriminate whether or not a motion feature vector f in image frame

t —1 w.rt. its correlated one g in image frame t produces a relevant motion toward a collision.

Postulate 5.5.3. The magnitude of motion f at time t — 1, and at time t called g of an

object, indicates whether a relevant motion toward a collision has been produced or not.

S UY I -gill | s« (5.54)
j

i

With equations (5.52)-(5.54) it is possible to establish a condition, which indicates that there is a

feature motion vector within an emergency proximity area,
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Postulate 5.5.4 (near object detection). There exist is a near object in possibility of colli-
sion, when the feature motion vector is within an emergency proximity area, and there

is a considerable speed magnitude greater than a speed threshold ¢;.

<\/(r, —r)? + (¢ —co)? < re> A I -gill > & (5.55)
i

Similarly, it also possible to state a condition criterion to establish that there exist a free collision

path in front of the robot by the next postulate,

Postulate 5.5.5 (free-collision path). There is not any object collision when any optic

feature vecftor is out of the scope r., and angle 0; is out of criteria y1, .

<\/(rf —re)? +(cr —cc)? > r'e> A (’}’1 > 0 > ’}}’2) (5.56)

Likewise, it is possible to determine whether or not there are obstacles toward the direction

the robot is moving along, by using the next criterion

Postulate 5.5.6 (potential collision detection). There are obstacles within the critical cir-
cular area, and in close direction to the robof.

i

(m<b<m)A (D) Ifi—gill > & (5.57)
J

In addition, in order to know along which side of the robot the feature vectors are moving, the
angle 73 is analysed. The obstacles moving to the right side of the robot the next criterion is

used,
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Postulate 5.5.7 (right-hand side object avoidance). An obstacle is right-hand side avoided,

if this criterion occurs:

(<O <ym)n DN i -gil S ¢ (558)
i

Similarly, analysing when the feature vectors are moving to the left side of the robot,

Postulate 5.5.8 (left-hand side object avoidance). An obstacle is left-hand side avoided, if

this criterion occurs:

i

(o< <w)A DY Ifi-gill S e (5.59)
)

Therefore, from previous definitions of the avoidance criteria, it follows to propose the robot’s
velocity models that will provide suitable navigation behaviours'*. Starting from a first kine-

matic definition adt = dv, let us complete the integrals for each differential dt and dv respec-

tp Vo
a / dt = / dv (5.60)
ty 71

hence by performing the integrations in both sides of the equation,

tively, thus

a(ty —t) = vo — vy

the recursive model for v; 4 is stated by

Vier = Ve +alty — ) (5.61)

Similarly, the kinematic equations a = dv/dt, and v = ds/dt are true for our model, and both

are set for a second kinematic model,

vdv = ads (5.62)
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thus, the change of velocity w.r.t. the change of position is described by the next expression,

Vo So
/ vdy = a/ ds (5.63)
Vi S1

and by solving the defined integrals,

2 2
Vo = W1

2

= alsy - s1) (5.64)

Hence, exchanging the sub-index vio and sy, by the time counters, a non linear recursive

solution for the robot’s instantaneous velocity is stated by the following expression,
Vi = Vi +2a(si — s¢) (5.65)

Therefore, by combining the expressions of the optic-flow feature vectors stated as criteria
from previous postulates, the new control input velocity models are proposed as theorems.
The velocity model theorems comprise the inference engine, which is fundamental for the
control vector @t = (v, w)" that combines the acting-sensing models in terms of the linear and
angular velocities. Therefore, the robot’s instantaneous linear velocity behaviour is given by

the following expression,

Theorem 5.5.9 (linear velocity model). The robot’s acting-sensing behaviour of its linear

velocity model is stated by the present inference engine:

| \/Vt2 + 2a(s¢1 — st), <\/(rf —re)? + (cf —co)? > re> A (7> 6 > )

Vet =1 vi—alty ~ ta), (n <6 <m) A (LTl -gll <)

L

0, (Virr=reP + Ty =l < re) A (L% It - gill < &)
(5.66)

Likewise, the robot’s acting-sensing behaviour of its angular velocity is stated by the next

theorem,
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Theorem 5.5.10 (angular velocity model). The robot’s acting-sensing behaviour of its

angular velocity model is stated by the present inference engine:

~

oo+t~ 1), (75 <0 <) A (S5 1 - gill < &)

we—B(ty—t), (7 <6 <) A (Zi Yillfi —gill < €f> (5.67)

Wt = 3

0, (\/(PS—PC)2+(CS—CC)2>P6>/\(’}’1>9;>’}’2)

Thus, a state space linear equation that controls the robot motion in global inertial frame is
defined by
x = Ax + Bu (5.68)

Then, by defining the state vector x = (x4, ¥4,0,)7, it is also presented the state transition and

input matrices’ to complete the state equation

Xg % 0 0 Xg cosf, O
v
9 =1 0 %+ 0 v |+ | sing, 0 (5.69)
, w
0y 00 ! 0y 0 1

The feedback robot’s displacement ° arising from the optical flow observations are used to
control the navigation model, it deploys the position information provided by the optical flow
vectors. With the flow vector (c,rs)" on the focal plane'’, the angular factor f. is obtained
from the horizontal angle of view of the visual sensor by

fo = cf% (5.70)

likewise, for a numerical factor related to the vertical angle is given by

fr = rf% (5.71)
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The optical parameters of the sensor are depicted in figure 5.8. In addition, the sensor height
position is provided in metric units, such parameter is used in next equation to obtain metric

data about the feature points sensed in world-space w.r.t. the robot’s local inertial system,

h

I r——s v tan(fc) (5.72)

Xpe =

likewise, for the position along the y metric component,

Yre = htan(q) - (PV/2 + fR) (573)

ey, 777777

Figure 5.8: Robot’s plane, and sensor coordinate systems.

From previous metric definitions, the feature points metric locations'® are used to infer the

robot’s yaw variation in times t — 1 and t by

it —1) —yolt —1) y1(t) — po(t)
@y = arctan <x1(t  y—— 1)> — arctan <M> (5.74)

It follows that, a type of visual odometry is to estimate the robot’s displacement, as the position
variates incrementally over time, and is transformed onto previous observation inertial frame
by the Euler orthogonal matrix R(¢p,),

Ax X1 Xo
= R(gp,) - — (5.75)

Ay V1 Yo

Therefore, the navigation control law that projects the velocity vector in t + 1 is defined in

proposition (5.5.11),
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Proposition 5.5.11 (positioning control law). The reference model based positioning mo-

tion control is proposed by

a 1
Vi1 = & + /;(f/u — v,)dt (5.76)
t

where the state vector is defined by & = (%,¥)7, and it comes from the state equation in actual
time f. The relaxation time T is the time required to reach a velocity change. And ¥ is a

reference velocity model described by,
5=v+at+3awt? (5.77)

Hence, given a reference velocity, the unit vector u only provides the directions of the reference

velocity vector,
— x
u= M; X = (5.78)
|[Xts1 — x| v
In addition, by substituting the visual feedback planar displacement equation (5.75) in the pro-

posed navigation control law ', the observed speed v, is obtained:

X to _ _
ver=| 7 ]+ 1/ (v +at + 3awt?) <x”1x'> [ T dt (5.79)
Vg Ty | t yi—¥o
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Chapter 6

NAVIGATION USING EXPONENTIAL

DERIVATIVES

Edgar A. Martinez Garcia

Laboratorio de Robdtica, Institute of Engineering and Technology
Universidad Auténoma de Ciudad Judrez, Mexico.

In this chapter, an autonomous navigation algorithm for wheeled mobile robots (WMR)
for operating in dynamic environments (indoors or structured outdoors), and based on field
vectors '~ is formulated. The planning scheme is of critical importance for autonomous navi-
gational tasks in complex dynamic environments. To avoid potential crashes, reliable planning
algorithms must be computationally efficient while considering important WMR and motion
dynamic effects. The focus concerns a model for autonomous navigation with capabilities that
help to avoid collisions. This chapter presents a framework that includes the kinematics and
motion dynamics model in continuous-time merged with a general model to solve the motion-
planning problem. The model approaches a general velocity-based motion framework that
models causes and effects of motion. The speed control considers the functional form of mo-
tors rotational speed rate, and the robot’s size to determine the vehicle yaw speed, and with
such basis the actual and posterior position vectors are formulated. The combined scheme al-
lows any forward kinematics, and allows weighting factors to yield motion effects from multiple

sensed features.
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Figure 6.1: Multiple wheeled mobile robots using the proposed navigation scheme.

The topic of this chapter consist of given a WMR p with fixed inertial frame x} = (x, y)T, and
heading to 8y, it should pass through a sequence of local goals at x; with direction m; each. And
eventually the robot must reach a global goal destination . The Cartesian distance between
two points is generally defined by the norm of their geometric difference |8, =[x} — x¢||
(distance between robot p and obstacle ay). Goals are established to exert attractive accelerative
fields F} which easily conduct the robot. Detected obstacles a exert repulsive accelerative fields

F¢. Both types of fields in combination form an enriched directional map.

6.1 General navigation model

The navigation models begins by introducing a general control equation to govern the robot’s
speed (6.1). This relationship keeps the robot around a safe ideal velocity v°, while navigating
along the direction 6. The factor n is the gain value that if adjusted, defines the control

convergence of the speed.

Proposition 6.1.1 (controlled velocity). v; is proportionally controlled by the feedback

error w.r.t. the reference v¢, and magnitude limit h,

Vmax

91 = (Br_1 + (2 — S}k <W> (64)

The velocity vector v; is proportionally adjusted using the feedback velocity error w.r.t. a
reference speed, which in particular happens when the magnitude reduction function h(-) = 1.

The non-stationary ideal velocity is denoted by v° = v°(cos(6;),sin(6;))T. When an unexpected
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collision suddenly occurs, very short periods of time are generally taken. As a result, the model
(6.1) controls the velocity peaks exceeding maximal allowable velocities when the function value

is in the range 0 < h(-) < 1, as modelled by equation (6.2).

Definition 6.1.2 (velocity limit). The limit conditions factor h allow three behaviors of ¥y,

0, [0 =0
h(v™, [9e]) = 11, 0 < ||o¢] < vmax (6.2)
ymax pmax ”‘A7t[|

o]l *

The velocity model (6.1) recursively controls the real velocity fluctuating around v°, and
removes divergent magnitudes overpassing the maximal allowable velocity. The real velocity
vector ¥y at actual time t is defined in (6.3). The real velocity model in this context involves the
causes and effects of motion, as well as random fluctuations perturbing acceleration compo-
nents. The real velocity vector ¥; is expressed in terms of two global accelerative components
that yield % as in equation (6.3). One term is the directional field vector F; = (f,fy)" that
expresses the internal and external causes of motion by Newton’s 2nd law of motion F/m with
m = 1. The second term a; = (ay,ay)" is the general accelerative behaviour for any inertial
system (global a/, or local aR).

—_ = Ft — a{ (63)

The real motion model ¥4 expresses the robot’s global behaviour yielded by external causes of
motion. We encompass three external causes of motion (sensors are deployed in the process
for detection), next desired goals at sight, obstacles position, and final goal destinations. The
equation (6.4) models the directional fields described in terms of global accelerations F;. Causes

of motion: internal (F?), and external (F¢ and F7).

F(=F7+) Ff+> F/ (6.4)
a Y

Since the robot’s navigation depends on sensor observations, only sensor data feature are used

as regions of interest to exert weighted navigation functions. Each acceleration is defined with
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an adaptive numeric weight w(my, f;) yielded by the bearing location of the targets (local goal

destination, or obstacles) within the sensors field of view as defined in equation (6.5).
Proposition 6.1.3 (Vector field).

Fr=F)+ ) wimg, —fO)fF + ) wim, £])f] (6.5)
@ ke

The repulsive and attractive behaviour, which affect the robot’s behaviour accentuate the
magnitudes of the motion functions given in expressions (6.6) and (6.7), where 3,1 =x¥ —x}
is a distance vector between the positions of a goal/obstacle and the actual robot p. m; =
(xi,, —x4)/| x4, —x¥)| is a unit vector expressing the direction towards a next desired location
X¢+1. Thus, the weighting factor wy will affect the repulsive acceleration behaviour according

to,

Definition 6.1.4.
Ff(m, 8uq) = wimy, —£)f(8,) (6.6)

similarly the weighting factor will affect the attractive acceleration by,

F¢(m, 8,,) = wimy, £)£(5,,) (6.7)

The influence of the weight w; depends on the sensing direction ¢ of a goal/obstacle and
the actual acceleration f, as defined by the equation (12.2). If the actual orientation of the
vector acceleration f is about the same as the actual desired orientation my, then no change
of direction is required for the robot. It is expected that the orientation of the goal/obstacle
sensed at bearing ¢; is approximately along the direction of the next desired position. But,
if the orientations of vectors m; and ¢; are different, then the component f;cos ¢ must be

decreased by the yaw changes.

1, my-f > |fs| cos(d
e — ¢ - £t > |[f¢]| cos(o}) 68)

A¢, otherwise
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The influence of rotations that the robot must carry out is given by an influence term A; which
is an average of the fusion of all multi-sensory observations. As we established that the robot is
instrumented with s, different sensor devices i. Thus, A; is valued within the range 0 < A <1

based on an effective angle of view ¢y,

1 i
A¢ = sin <Sn Z (f:> (6.9)

Where s, is the total number of sensors involved in the perception of the objective (goal/obstacle),
and (¢¢);" are the angles at which each sensor i detected the same objective. Expression (6.9)
defines a greater numeric weight to objectives located nearly along the longitudinal robot’s axis
(fixed-frame, defined at 71/2). The sensing modality for environment mapping is by deploying a
laser range finder. The important features, which the robot is able to perceive are very critical
because on this issue, the robot defines the numeric weighting factors to impact significantly

the navigation functions.

6.2 Inertial frames

The definition of the robot’s motion is described in local and global Cartesian frames to rep-
resent the accelerations map (figure 6.5). Such scheme is useful to model accelerative motion
behaviour denoted by a;, already described by equation (6.3) to describe part of the real accel-
eration %. Let us consider the linear velocity components of a robot with averaged velocity
vt. By defining the velocity vector vR = (v,, vy)T in the robot fixed-frame, the components XV
represent the 2D plane of motion and is given by the expression equation (6.10),

v = v cos(d) (6.10)

sin(6;)

Where 0; is the robot’'s angle of motion w.r.t. robot’s initial posture. By transforming the
original robot fixed-frame using a transformation matrix R with rotation angle 1y between
the robot’s frame, and the global system. The new expression for the global frame becomes
as expressed by equation (6.28), which is the velocity behaviour without wheels kinematic

constraints. The Euler rotation matrix R and its inverse are critical in most mathematical
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definitions of this manuscript. Because of R is a non-singular matrix according to R™'R = I
or RR™! =1, and since R is an orthogonal matrix, hence R~' = R”. Thus, let us demonstrate

it (see 1.2.3),

R(p) = (cos Pt —sin lPt) ; R (yy) = (cos P¢  sin 1pt> 6.41)

sinyy cos Yy —siny; cos Yy
If cos s cos Py — (—sinyy)sinyy + 0, then R is invertible, if only if det R # 0, where det R =

cos P cos Py — (— sin P sin ;).

R — 1 (coswt —(—sindy)) (6.12)

det R \ _(gin ) cos Yy
and,
1 cosyy  —(—siniy)
R = 6.13
cos cos Py — (— sin Py) sin Yy (—(sin Wr) cos Py ) (6.13)

Thus, from previous definitions, R as well as R~! will be used to describe motion in both in-

ertial frames accordingly. Two ways to formulate an equation for af are presented. Firstly, with

linear matrix algebra (see 1.2), inversely transform the acceleration into the robot coordinate

framework by,

af = R;'(¥y)a] (6.14)

Thus, substituting terms in previous equations,

alt = cos(yy)  sin(yy) b+ |~ sin(6¢ + V) o cos(0r + ) (6.15)
—sin(yy) cos(Yy) cos(6r + Py) sin(6f + )
Algebraically expanding,

af = vi(6; + ) <— cos(¥r) sin(ir + 6;) + sin() cos(r + 9t)>

sin(yy) sin(Yy + 6;) + cos(y) cos(P¢ + )

o cos(ty) cos(6; + ) + sin(vy) sin(6; + Py)
— sin(y¢) cos(Ps + 0¢) + cos(¥y) sin(tpy + 6;)

(6.16)
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By substituting trigonometric identities, our expression is simplifyied,

aR = vy + 0) sin(¥r — (Pr + 6y)) o cos(Pr — (= + 64)) (6.17)
cos(¥r — (Yr + 61)) sin(Yr + (=t + 6y))
Thus,
af = Vt(lZ)t + Qt) (Sin(—gt)) + v (COS(_Gt)> (618)
cos(—06) sin(—6;)
Using the identities sin(—0¢) = —sin(6;) and cos(—6;) = cos(0¢). Thus, without lost of gen-

erality, the resulting simplified mathematical expression is now written as in equation (6.19),
where in the first term, v is still existing, nevertheless it does not yield any impact because

within the robot’s motion frame v is always zero.
. [ —sin(O cos(6
ak = vb ©)) , ¥ (6) (6.19)
cos(0) sin(0)

Secondly, another way to find a functional form for af is from equation v} = R~!v! and its
derivative is as it follows,

al = vl = R + R71y! (6.20)

By algebraically developing the second term in the right side of previous equation,

a — R-lal 4 (—sin P cosy ) v (cos(d)t + 90) 6.21)

—cos; —sin iy sin(Yy + 6)

arranging terms and signs

a® = R-tal — v, (sin Py —cos l[)t) (cos(@t + tp,)) 6.92)

costy  siny sin(6; + )

thus,

(6.23)

al = R~lal — gyv, (sin P cos(Oy + Py) — cos Py sin(6; + 1pt)>

cos P cos(0; + ) + sin Py sin(@ + ;)
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. i -6 —
all = R'al — ¢y, sinf =6 — ¥ (6.24)
cos(Pr — O — Py)
and
R 4 — sin 6y
ai =R7a; — Py (6.25)
cos 0;

Now, developing the first term of right-side of equation,

I , — sin 6; . [ cos 6 . — sin 6;
a; = v¢(6y) + ¥t T, (6.26)
cos0 sin 6¢ cos 0;
! . [ —sin6; . cos 0;
a; = V¢ Qt + V¢ (627)
cos 0; — sin 6;

vl = v (cos(@t * wt)) (6.28)
sin(@t + lpt)

Finally,

Now, the acceleration vector in global frame is obtained by equation (6.29),

al = vylb, + ) (— sin(6; + 1[)0) o (cos(@t + pb,)) 6.29)
cos(0¢ + ) sin(6; + )

Inversely transforming the acceleration into the robot's coordinate framework, and without
lost of generality, the resulting simplified mathematical expression is now written in equation

(6.30) as the robot’s local frame, hence ¥ = 0.

., [ —sin(6 cos(0
ak = v,0 (6) > (6) (6.30)
cos(6y) sin(6;)
Equation (6.29) is about the same as equation (6.30). In the former, the rotation frame angle v
is being considered for transformation into the global frame. Latter expression has no rotated

inertial frames, hence { = 0. Hereafter, equation (6.29) may be used as the general frame

solution. Being 1Y # 0 when global inertial Cartesian frame is required.
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6.3 Navigation model derivation

Based on the Newton’s law of motion, the next equation establishes that the sum of all acceler-

ations in the system is equal to a global acceleration,

as = %Z Vfx? + fy? = Z Vfx? + fy? (6.31)

For the sake of analysis, we define an unitary mass m = 1; and by simplifying it, equation (6.31)
it becomes (6.32). The acceleration a; is known as the robot’s global behaviour at any inertial
frame, and F; is defined as the descriptive equations of dynamic effects. The approximated

real acceleration model is denoted by the next equilibrium condition,
all = F/ (6.32)

The equation (6.32) describes the boundary case of equilibrium for a; = 0 constrained by the

following statements,

Theorem 6.3.1. (equilibrium conditions)

1. when d9¥:/dt = O, ¥; is constant.
(a) therefore for equation (6.1), ¥4 = ¥y, and n =1, then v¢ = 0

2. the condition for equation (6.1), ¥+ = 0, when the robot is initially stopped, or when

it reached its final goal destination.
(a) therefore for equation (6.1), ¥y = 0 and n = 1, then v¢ = 0

when such limit case condition occurs, sum of all accelerations will meet the condition
for the equilibrium case when,
do

a=Ft—af=0

The equilibrium condition of global accelerative model is then demonstrated by algebraic

development to validate the expression (6.32).



192 CHAPTER 6. NAVIGATION USING EXPONENTIAL DERIVATIVES
By substituting (6.29) and (6.4) in (6.3) with 1)y = 0 (both described in common inertial frame)

as follows,

— sin Oy cos 0;

v, +9r | =F+) Ff+ ) F (6.33)
a Y

cos 0; sin 6¢

The term FY¢ is the robot’s internal motivation with functional form in (6.34), which makes the
robot move along multiple local goals. Where § = ||x¢,1 —x¢| is the distance between the actual

robot location x¢ and the next desired goal x¢,1.

Ff = % <”§:H(Xt+1 - X¢) - Vt> (6.34)

The ideal linear speed v° sets a desired speed in xy components. There is a vector of actual

measured velocity vy, and a relaxation time 1 that defines the time taken for speeds change.

Arranging (6.33) by dropping off the velocity measurement, the next algebraic steps are

developed
— sin 6; cos 0 1 < vO
V¢ Qt + "Jt = — ( — X¢ 1 > Fa + Fy (635)
cos 6; sin 6; T\ ’ Z Z
therefore,
., [ —sinB o cos 6 vo
T Vtgt ! + VvV ! Z Fa Z ¢ = 7()(1 - X(+1) — V¢ (636)
cos 0; sin 0¢ ”gt I

We are treating the usual condition where both v; and 6; are approximately uniforms in
small periods of time T (with very small variations for 1), where in our context we define

that ft v¢ 0y sin 0,dt ~ v, sin 0y, since sin 6;_; ~ sin 6.

—sin @ cos 6 o
vi 0 ‘ +V ! th Zv;’ = ”‘é—”(xt — X{1) — V¢ (6.37)
t

cos 0 sin 6¢ o

Hence, due to units of time of 1, left-sided equation terms changed from m/s? into m/s, for

which there is an integrable functional form for ¥;.



6.4. POSITION MODEL 193

Thus, by dropping off the real approximated velocity vector,

. vo o — sin 6 cos 0;
¥ = T(xt — X¢p1) + th + Zv;’ — v | 6 — (6.38)
[[ o]l o P cos 6 sin 0¢

Our equation has now been solved in (6.40) as to have a model of motion that combines the

robot’s fixed-frame, with external dynamic constraints,

sinf; cos@ —6;

¥ = ”8 ” — X¢41) + th + th _ . (6.39)
t

—cosf; sin6; 1

Proposition 6.3.2 (The navigation model). A model of motion for any inertial frame.

Yt = *dr(é + l,b) g — V¢ o s th alx th “20” (Xt+1 = Xt) (640)
t

cos O sin 6¢ 7

Where d, = Tvy, it is defined as a short robot’s displacement during the relaxation period of
time. The expression (6.34) will be developed in next sections, as it involves the robot’s actual

and posterior position vectors.

6.4 Position model

The robot position vector x; = (x,y)T is a summation of all estimated positions overtime
w.rt. a common inertial frame from its starting position up to the actual time. The position
vector is calculated based on the actuators rotational kinematic model to quantify displacements.
We propose a solution to deduce x; based on controlling the wheels actuator. Although, the
kinematic parameters are fundamentals for any planning algorithm as reported "', we provide

a general solution that only consider any robot’s angular velocity w¢ equation.

Wt = = (641)
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The distance [ from robot’s centroid to any wheel’s contact point with surface is a numeric
constant value that is geometrically inferred from the robot’s size, as in (6.42),

VW2 4 L2

= —5— (6.42)

With W as the robot width, and L the robot’s length. On such basis, it is formulated that,

W

l (6.43)

cos(a)

As we are interested on the linear differential velocity projected over X-axis, we call it v
to satisfy the equation (6.41), we defined the following relation between the differential linear
velocity and its x-component

vE v

cosla) = . e vEcosla) = v

S H
I+

(6.44)

H
=

The equations (6.43) and (6.44) are equivalent, thus expressing (6.45) and then dropping off v

_wh

l (6.45)

<|:+ ‘}‘SH-

We substitute v into (6.41) and algebraically arranging we deduce the following expression,

Proposition 6.4.1. Robot’s instantaneous angular velocity model.

(vi —vOW _ r(gf —ehWw .
O S W D2 T IwEe Ly K@ (6.46)

For simplicity in this approach, we assume equivalents all wheels nominal radius, so that

let K be defined as a constant numeric value by

rW
K=—Fnr—F 6.47
(W2 + L?) (6.47)
For the case of two-wheel (dual asynchronous velocities) instead of four-wheel, L = 0 and the

same proposition applies.

wi = Kglét, ..., ¢f) (6.48)
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Where K is a constant, and the function g(-) represents the yaw rate model with wheels ro-
tational velocities ! as input parameters (its number will depend on the type of kinematic
structure). In equation (6.48), the angular velocity is directly controlled by the wheels rotation.
It is worth highlighting that the framework allows integration of other kinds of kinematic con-
straints by changing the w; model accordingly, such as the Ackerman type, synchronised type,

differential drive, or the platforms studied in

The approach to infer x; and x¢,1 is by quantifying the wheels angular displacement directly
by the speed drivers. We take advantage of the control hardware (motor drivers) which works
under asymptotic functions (although a non-linear motor speed curve will vary from product
to product). A general relationship between actuator’s angular speed ¢; and a digital control

variable ©2; kinematics is given by

(pt<Q) = (Heam> -b (649)

Where a and b are constants that adjust the non-linear angular velocity behaviour curve, A
is the constant of fast asymptotic fall, 2 is a control digital word which is associated with an
angular speed given directly by a user program, and p1 is the central value of the velocity curve.
By solving (6.49), we integrate the equation to obtain the next expression (6.50) en terms of

wheels instantaneous angle of rotation,
b a
] P()AQ = ¢(Q) = (a —b)Q + 3 In(1 + eMr=) (6.50)

We synthesize the robot’s direction and deduce a formal position model equation as expressed

in the vector form by (6.51) with the k rotation velocities ¢!.

dt | dt (6.51)

x tn tn cos(@y + K ["gl@l,..., ¢k)dt
= [ +/ VO+/ ot (6o [ g(¢; ¥r)

Yo to t sin(6y + Kft g((,’o}, s (bf)dt

Nevertheless, the problem of robot skid/slip is overcome by combining with the method re-
ported in' that deploys an in-house made inertial unit. It works reasonable because yaw rates
can directly be controlled by using low level commands. Thus, by simplifying previous expres-
sion, .

O =K | glgf,..., ¢f)dt (6.52)
ty
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Substituting (6.50) in (6.52) and algebraically solving,

d =K ((a — B + %ln(i + M=) (g — b)Q! + %ln(i + eA(ﬂ—Q”)) (6.53)
then, :
B . Loa 1 + eMu-€)

Hence, the actual position vector is written as,

X fn - cos(By + Py)
Xy, = + / (vo + / Vedt dt)dt (6.55)
Yo fo t sin(6y + $y)

The orientation 6; is solved by integration w.r.t. the time interval [fy, f,], in which wheels
rotations are controlled rather than collecting absolute odometry measurements (as commonly

proposed by other approaches). Thus, reformulating the robot’s angle by

t
0 =60 +K | gl@f,....ofdt (6.56)
t

and solving for the instantaneous angle,
Gt = 90 + cbt (657)

We assumed that the magnitude of the robot’s angular acceleration dw/dt at every control
loop is much smaller than the magnitude of the angular velocity. Arranging the actual position

vector to be implemented in terms of the robot kinematic structure,

xi— [ ) ars S0 (G 9) At Cf’s(go P (6.58)

Yt sin(6o + ®¢)
According to figure 6.2, in order to alter the robot’s orientation towards a next desired destina-
tion x¢,1, the motion control is based on the collection of consecutive sensor data that feedback
the controller. The next desired position x¢.1 defines a Cartesian objective, either attractive
or repulsive, which will depend on the nature of the objective. Rather than a single Cartesian
point, this objective is referred as a territorial section, or area scoping the ideal Cartesian

position ()no accuracy is required.
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Furthermore, the next position vector model arises from a function f’; that uses the actual
orientation 6;.

Xty = Xt + /Wt(mt'f,t)f/t((su)dt (6.59)
t

In this approach we alter the actual orientation 8; by weighting the accelerative navigation
function wy(-)f7"* previously given in equation (6.6) and equation (6.7). The fundamentals of
this algorithm is focused on equation (12.2) describing m;y - f;. This expression quantifies the
alignment of perpendicularity between yaw rate and a desired orientation my. If m; and f; are
approximately aligned, then it means that the velocity orientation is projected along the actual

desired goal and altering direction is not required. However, |f¢| cos(¢;) is the acceleration

Figure 6.2: Geometric definition of f';.

magnitude along the horizontal axis (common frame) respect to objective angle ¢. A very
small value of ||f;]| cos(¢), signifies that practically no change in direction is required. If such
magnitude is too large, an important correction in orientation must be established through
the weighting factor A. The objective (attractive or repulsive) is represented by sensor data
features, the more sensors detect the same feature, the more certainty about the dirtection
objective will improve the weighting factor A. If ¢ is very near or along the robot heading
axis (about 90°), then A = 1 approximately (see equation (6.9). The actual accelerative force f;
is altered and defined as f'y, there is an objective angle correction (¢ — 6;), thus, the direction

of ||f¢] is rotated by equation (6.60),
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f'c = R — Oy)f; (6.60)

where R(¢p — 6;) an Euler rotation matrix that corrects the yaw. Thus, extending the expression,

we now have,

g, fx cos(¢; — 0) — fy sin(¢; — 6) (6.61)

fr sin(¢; — 0) — fy cos(d; — 0)

by developing in the vector form f'¢ = (f,, f,)", the new next-position vector,

xy o frcos(¢p — 6) — fysin(p — 6¢) |
Xer1 = et = &t (6.62)
R P //t t /f f. sin(é — 6;) — f, cos(d — 6)

The new desired direction w.r.t. the actual orientation is given by the vector f';, which is a

transformation into the global coordinate frame, since observations are locals.

6.5 Exponential derivatives

A gradient vector field assigns the direction of a function leading to each Cartesian point. The
gradients can be viewed as accelerations acting on a positive sense, attracted to the negative
goal. Obstacles have a positive sense that forms a repulsive acceleration leading the robot
away from the obstacles. The combination of repulsive and attractive accelerations directs the

robot from a starting location to the goal location while avoiding obstacles.
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Figure 6.3: Exponential derivatives in 1D. Attractive (left); Repulsive (right).
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A vector field is a set of vectors or potential functions, which are differentiable real-valued

functions; where the gradient of the potential is the acceleration.

The gradient is a vector with components that point out along a direction that locally maximises

the function.

Definition 6.5.1 (Repulsive exponential derivative).

e”xa“qu/R

& = —V,ulR (6.63)

[Xa — Xy

The denominator is determined by the factor (R~!||xq — x,|) and defines the function to
respond fast against situations in too close interaction with obstacles. Solving for its gradient
operator, we obtain that ff = (%, %). The equation (6.64) is a general function with the gradient
operator, where ug is a constant defining the acceleration amplitude, and R is a stationary value

defining the asymptotic potential falling value.

« v o e”xa*qu/R 6.64
fi = =Viaug m (6.64)
Differentiating w.r.t. 6f%/0x and 9f“/dy,
Ru?
——@ __elxa—xl/R Xq — X || 7 12(0q — x
(880 | Moz e = 51205 = .
OB\ e R kg w25 - 5,)
[(xa — x)| R (6.65)
ell®a=xull/R oR 5 lea —x,) || 7*2(xca — x)
el 1Rug R e = Xl 2w — 1)
Arranging and ordering the terms,
ugR(x — x)e”xa*xu”/R ug(x — x)e”xoz*xu‘]/R
of* ot [Xa = Xu 3 - (Xa — Xp)
(G 2) | ueme = yjelmnlm sy —yele iR (6.6

[xa — xu* (Xa — Xp)
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Thus, algebraically arranging and factorising common terms,

1 R
- o ug(x —-x e”xfl*xu“/R( _
afi afi — ) (Xg = Xp)  (Xq — Xp)32 (6.67)
ox ' oy udly — y)elxxl/R( 1 _ R
“ (Xq — Xp) (Xo — xp)3/2
in order to facilitate let us use notation f{* instead, and let us define t00 ||Sua| = [|Xa — X4
oelaxl/R [x, —x 1 R
oo Y@ 0 T " < i ) (6.68)
18sal  \ o —5,) \NSual  (Xa =)

Finally, some terms of the derived equation may be substituted and simply expressed as,

8ual/R 1 R Xoq — X,
f o0 R [T 6.69
CT Bl <n&mu &m> (ya—;m) oo

Previous expression if defined in terms of a velocity vector,
v = / frdt (6.70)
t

lwal/R 4 R Xg — X
fr=ug® .

. 6.71
L e O o

Previous expression is defined in terms of velocities by (6.72), where such term will satisfy the
real velocity of equation (6.40),
vf = / frdt (6.72)
t

Similarly, equations controlling the robot course to a global goal destination yield motion be-
haviour as depicted by figure 6.3-left. The set of goals ys are defined a priori as intersection

points along the full course path. The general 1D artificial potential equation is defined by,

Definition 6.5.2 (Attractive exponential derivative).

f7 = ~V,yuge ldnIR (6.73)
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Where R represents the radius of a goal's territorial scope. The distance vector between
the robot p1 and the goal ¥ is defined by & = x{ —x!". The constant factor uy scales the attractive
accelerative forces amplitude. Solving for its gradient operator the attractive potential function

general equation is defined by,

£ = =V ule ISR (6.74)

Thus, by deriving the function w.r.t. x and y, it yields,

e =1, |xy — x|
- _ute- xR Z2) Xy ~ Xullg oy
(2,9 o) m_ (675
ox’ oy —qu/R(_1)w2(
R

_uoe—[‘xz/ J— Yy — yp)

simplifying the expression it now becomes

Xy —X,

ft?/ = y°eI®r—xul/R ley_;;pll (6.76)
Rxy—x,|

Algebraically arranging, the 2D potential function becomes as follows,

=8 I/IR [ x,, — x
ft?’ _ uoe B Y (6.77)
RI8I \y, -,

Oe*”gm/”/R x‘l —x?,

v _
I = v Rye]

(6.78)
yu - y’y

Finding a general solution for equation (6.40), previous expression is rather defined in terms

of velocities, than accelerations (6.79), as a term that partially satisfies (6.40),

vl = /t £7dt (6.79)

By combining both directional fields F¢ + F7, figure 6.4 illustrates an obstacle and a goal gradi-
ents interaction of robot accelerations. Experimentally, a set of known goal destinations 7' were
established and the robot was able to reach them all. The robot built up a map of accelerative
interactions between attractive and repulsive directional fields (figure 6.5). Furthermore, dur-

ing outdoor sensing experiments, numerous features of critical interest for system feedback
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Figure 6.4: 3D potential fields combining F, + F,, at < —=5,0 > v is located, and at coordinates (4,5) an
obstacle is located.

were detected. Such features are the directions to local goals (my) . Each sensor observation is
comprised of a high density repulsive local map, but concurrently combined with a priori attrac-
tive directional fields'“. The resulting experimental directional fields map is depicted in figure
6.5. The nearer the obstacle, the larger becomes the accelerative potential force magnitude

exerted by the proposed model. In further experimental simulations, figure 6.6 shows how

Figure 6.5: Robot's directional fields dynamic interaction of accelerations. Left: repulsive accelerations; Right:
attractive and repulsive.

functions evolve to safely avoid two obstacles. There exist two obstacles at x, = (15, 50)T and
Xg = (-2,20)T. The robot parameters for this experiment are v° = 0.5m/s from Om to 100m
along the vertical Y-axis. In figure 6.6(top-left), the robot navigates vertically from x‘tf) =(0,0)T

up to x’fn = (0,100)T, where location of v is denoted by a triangle. Figure 6.6 (top-right) depicts
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the robot’s attractive accelerations towards the goal. As the distance ||y — p|| is getting shorter
gradually, the rate of motion behaviour is decreasing until the robot reaches 7. In figure 6.6
(middle left-right), the acceleration components yielded by the presence of both obstacles are
depicted versus the distance respect the actual robot positions. It is worth noting at figure 6.6
(down left and right) how the acceleration components evolve (dots x-component, and crosses
y-component) along the y-axis. In particular at y-coordinate 20m and 50m to avoid obstacles

B, and subsequently «, and then return to the desired trajectory.

Attractive vy
100 - . 10 T
g0k ---- e P VK
; ; Y S — Y
€ aoF.---- P -
£ | o 2
A0k - e
o 5 0
20 ...... : .......... E .......... : ........
; ; 5 :
R0 a 50 0 50 100
A(m) Iy =l im)
Repulsive « Repulsive B

5 ; ;

-10 : :
0 20 40 B0

50 100 0 50 100
Y Y (m)

Figure 6.6: Robot's initial position x, = (0,0)T; goal at x, = (0,100)T; obstacles at x, = (15,50)7, and
xg = (~2,20)".
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Chapter 7

EXPLORATION AND SEARCH ROBOT

NAVIGATION

Edgar A. Martinez Garcia

Laboratorio de Robdtica, Institute of Engineering and Technology
Universidad Auténoma de Ciudad Judrez, Mexico.

The process of a mobile robot exploring an environment to search for a goal, might be a
common robotic mission in numerous applications. Assuming this process as a generalised
engineering problem, we may assume that the unknown goal emits an arbitrary form of energy,
and by deploying a mobile robot instrumented with a suitable sensing device, it will explore in
order to found the goal. Hence, the robot’s sensing device requires a calibration process to fit
the data with the robot’s Cartesian location. In this chapter, it is assumed that a mobile robot
is instrumented with although general sensing device, but appropriate to search an objective
goal. A general navigation model for exploring and searching is formulated for any type
of mission, considering the sensor’s measurements £ minimally informative for the robot to
have a good estimation of the goal location. Where E represents the general measurement of
a type of energy (active or passive) by the goal destination. In next sections we will establish
a mathematical approach to fit an empirical measurement model with a theoretical model to
calibrate our equations assuming that the distance is a universal variable of interest for many

researchers.
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7.1 Fitting a theoretical-empirical model E;-r¢

A calibration process between the instantaneous experimental measurement E; and the theo-

retical distance ry will yield a non-linear relation for generalised conditions.

Postulate 7.1.1. The actual measurement E; has close relationship with actual distance
|&¢ — &o]|, and actual magnitude arising from an unknown destination. The general model

of instantaneous distance r; is,

re = /o — 202 + (50 — 9% + 23 = | - &0l

When [|&; — & = O, the goal is reached. It denotes the robot at &, and the unknown goal

location at &y = (x0, ¥, Zo)-

The postulation is sustained by an empirical model to calibrate the theoretical model, using
measurement data. The data representing distance measurements #, versus a measured type
of energy E is approached by a polynomial regression. The sum of quadratic residuals s, =
Z? e’ is defined by the i'" empirical observation of n measurements of #; as a function of
E;. The error e = p; — r;, is given by the observation f;, and a theoretical model r;(E;) =
ag + a4 E; + agEi2 + o0+ akEik. Substituting a cubic model that may fit suitable for numerous

physical systems (see sec. 1.6.3),
. . ) 2
Sy = Z(ﬁi —r)? = (ﬁi —ap+aE; + agEi2 + %E?) (71)

The partial derivations w.r.t. unknown parameters are led to find cubic model' parameters

next, R
0s, . N ~ A~
= 2 Ei (ri —ao+ a1 Ei + apE? + agEi3> (—1) (7.2)
0s, “ A a0 a3
Ba; =2 Ei <Y’i —aop + alEi + agEi + a3Ei ) (—Ei) (7.3)

INevertheless, the degree of the polynomial may be determined according to the practical problem.
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0s,. . A £0 i3 2

. Ei : (ri —ao+ a1Bi + ak? + sk ) (—E2) (7.4)
0sy . A 0 3 3

X =2 E (ri —ap+a1Ei + agE7 + agEi> (-Ep) (7.5)

Then, we arrange algebraically,
n n n n
Zf’i =a0(n)+aizﬁii +aQZE?+angi3 (7.6)
i i i i
n n n n n
Zf'iﬂ=aOZEi+a1ZEf+aQZE?+angi[‘ (7.7)
i i i i i
n n n n n
YomEl=ao) Ef+ary E'+ayy Ef +asy E? (7.8)
i i i i i
n n n n n
YomE =ao) El+ary Ef+ayy EP+asy EP (7.9)
i i i i i

it follows to arrange and simplify in matrix form,

Yy n YiE XPE O XPE [a
YieE | | XPE LIRS OLIE OLIE| |a (7.10)
YinE | |SiE XPE OLIE XTE| |a
YieE) \XIE LE O YTE LIE) \as

As the main matrix is of squared size, we applied the theorem of Cramer to solve for the cubic

polynomial coefficients (see sec. 1.2.4). Thus, the solution for coefficient aq is,

PIHETIEND DHE > T DHD D Deip o4
g | SORE XTEE XTE XUE
€
LTS MR D D D Wil 24
Y | Ef P EP F EP
ao = X . X . z - (7.11)
n n E E
E E E
det

(und

(wpld
(wpd

!

F-Dj)
(1071717
(end

-3 T3 ™3
(apd
~ R =g =S

(107107

-3 "3 "3 ™3
(apd
~g =L =g~

~ o "pg: S TN

-3 —™3
(epd
~ g =S
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the solution for coefficient a4,

n Y P e XUE
| TTE O TinE o SNE wyR
e XieEr YE OXUE
PRHE D Wit 1 D Deip S D
A R T
w|oE T o o
e OYE OYNNE XTE
OB OYE OLTE XTE
the solution for coefficient as,
Y PR pRRS Y E}
dot | 20 B YiE Yimbk YUE
AN D DAY D DHS 4D D &
B ONTE YiabE YOUE
YT wE wE oE
wloE e oo o
AR D DB D W S Wi 2
AR D DHE D D > D iy 24
the solution for coefficient as,
X e YR Xih
dot | 2t B YIE YNE YAk
B OXTE O YTE XiAE
B VD v v B VL
N SE SiE SE
w|TE T oS o
e OYE OSVE O XTE
B YR OXTE O XTE

(7.12)

(7.13)

(7.14)
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Thus, the new adjusted theoretical model r(E) is a cubic polynomial of the general form,

r(E¢) = ap + a1 E¢ + aE? + asE; (7.15)

7.2 Model for directional derivatives

To establish a math form for the directional fields in terms of distances and potentials, the

following postulate is stated,

Postulate 7.2.1. The equilibrium condition is stated as E; = 0, when & = &, through its

continuous search by -V, Q.

(7.16)

I =VQd = '

0Q(Er,re)  0Q(Enre) \|
(et 2o o

We apply the gradient operator to derive E¢ w.rt. x and y, so we obtain an analytical
solution on how the energy of E; behaves w.r.t. the instantaneous Cartesian position &;. From
a mobile robotics planning approach, the problem to be solved is to yield the automatic search
of the unknown Cartesian location £y, which is a constant position. The general robot motion
equation is given by (7.17), its derivative w.r.t. t yields the linear velocity vector vO exerted

by the integration w.r.t. time of the gradient —V Q. Where u° is a constant value that setup

ot — o [ (39, 00,
ve(t) =u ,/t<6xl+ ay])dt (7.47)

velocity amplitude.

Let us define x = xt, — x9, and y = y4, — ¥o, and substituting the functional form of Q(E’, r¢) as
a function of the actual measurement, and the non linear fitted model r(E),
vl(t) = —u® / (E rexi+ Ertyj> dt (7.18)
t

algebraically re-arrange and group terms,

vQ = —u®E; /(rtxi + ryy j)dt (7.19)
¢
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before integrating w.r.t. time, we substitute the Cartesian displacements by averaged compo-

nent accelerations r; = ast?, so that,
vQ = —uOI:Zt/(at 2% 21+ a2 £2§) dt (7.20)
t

Hence, integrating the equation in time,

. t° >
v@ = —u°E, <a,a‘t5i + at;§75j> +c (7.21)

backing to original distance variables, and algebraically arranging,
0 op t, t
v< = —u®E; rtxgl + rtyg;u +c (7.22)
and finally, our velocity vector is given by a directional derivative equation,

u® .
ve = = tEire ((xq, = &1)i+ (v, £ &9)j) + ¢ (7.23)

Where, €1 and &, are discussed in next section. The potential behaviour of E; w.r.t. Cartesian

positions is the function of attractive potential field to find the goal destination.

7.3 System of non linear equations for searching tasks

Finding a solution to reach the goal or equilibrium point from a vector field perspective, &
is postulated as a search problem (see figure 7.1). In principle, this postulate states that it is
possible to infer the Cartesian values &, automatically by iteratively feed-backing the Q(E, ry)
measurements. The distance r; is calculated by measuring E, which is the key-issue to pro-

gressively lead the robot towards &.

Postulate 7.3.1. The distance r; = |&(t) — &| is a relationship of time, and a measurement

that is modelled by the equation of the measurement model,

6t = M ult) + z (7.24)
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Where, M is an arbitrary measurement factor, zj is a known vertical height of the goal position,

and f(Q, t) is any non linear potential function associated to the measurement,

u(t) = f(Q, 1)

In figure 7.1-a) the robot is depicted at two different Cartesian locations at temporal frame
bounded by times t; and f,. In time frame of length |, — #;|, a two-dimension robot's dis-
placement Ax and Ay between £y and the robot actual position occurs. At time t; the robot
is as far/near of &y as (Axy,Ay;)T. Subsequently at time f, the robot is as far/near of &, as
(Axy, Ays)T. The robot’s absolute distance w.r.t. &, changes from &; to § at t; and t re-
spectively. The robot’s wandering-like motion is remarkably non linear, however the robot is

continuously attracted to &) according to the motion behaviour of the potential function.

location

b)

Figure 7.1: a) Search and exploring parameters; b) attractive directional field.

It is desired to find a solution for the vector &j,. Thus, it is assumed that £(t) is iteratively
known online just by analysing pairs of sensor measurements with consecutive spatio-temporal
differences. Thus, a system of non linear equations with quadratic terms are proposed, which
consider pairs of consecutive sensor observations, and pairs of robots’ postures combined
within the same system of non linear equations. Hence, it gradually approach the robot to the

pipe underground fail (parameters are illustrated in figure 7.1),
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Postulate 7.3.2. ||&(t) — &y]| — O as the measures approach to the goal, and by linearising
the attractive motion by 6(m) = M u(t)? + zg. The figure 7.1 is formally described by the

next non-linear equations system,
St = (X0 — x,)* + (yo — ¥4, )? (7.25)

and,
8ty = (xo = x4,)* + (90 — ¥5,)” (7.26)

Proof 7.3.2 Analytic solution of the system of non linear equations: To reduce terms, we define

&1 = X9 —xt, and & = yo — ¥y, as to have now both equations as,
8t =€l + € (7.27a)
5% = (g1 — Ax)? + (g5 — Ay)? (7.27b)
by developing the quadratic terms, we have now both equations as,
- 82 = —2 — € (7.28)

thus,
(SS = ef — 261 Ax + Ax? + e% — 2e0Ay + Ay? (7.29)

quadratic terms are eliminated, and in order to simplify the equations, it is defined a known

term A; = Ax? + Ay?, now equation (7.29) becomes (7.30)
85 — 82 = Ay — 2(e1Ax + £5AY) (7.30)

algebraically reordering (7.30),

_<5§—5f—At

5 ) = g1AX + & Ay (7.31)
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simplification is by grouping the known factors,

2 _ <2 A
h=— <6261t> (7.32)
2
so then,
h — e Ay
- 7.
& Ax ( 33)
Subsequently by substituting €1 to solve for &y,
52 = w 2+€2 (7.34)
1= Ax 2 .
developing the quadratic term,
8§2Ax? = h? — 2e5Ayh + e5Ay? + €} (7.35)
e3(Ay? + 1) — &5(2Ayh?) + (h? — §2Ax?) = 0 (7.36)

from previous expressions, we now have a general quadratic form equation, and by solving

&7 = €2 + €3 to have a general solution,

Ayh + \/ (Ayh)? — (Ap? + 1)(h — 62Ax?)
B Ay? +1

£y = (7.37)

It follows that in next equation, the term (Ayh)? > 0 always because of its quadratic exponent.
Only real root are of interest because they represent Cartesian displacements that provide

clues on how the mobile robot must navigate.

\/ (AyR)? — (Ap? + 1)(h — 62Ax?), (Ayh)® > (Ay® + 1)(h — 62Ax?)

fi = \/ (Ayh)? + (Ay? + 1)(h — 6Ax?), (Ayh)? < (Ay? +1)(h — 6{Ax?) (7.38)

0, (Ayh)? = (Ay? + 1)(h - 67Ax?)

Hence, by substituting expression f; in (7.39), the new equation form is given by,

—(Ayh) + f;
€2 = A2 1 Ay? (7.59)
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Thus, a decision engine is formulated for &5 to apply it during searching process,

~

miny, (L), (<b +fi > O)A(=b ~ fi > 0) Ay, < 0)

Ax®+Ay?
. (—b+f1>0), (—b+f1<0)/\(—b—f1>0)/\(th>0)
2=<
(-b—-f1>0), (=b+fi>0)A(=b—f1 <O)A(ys, > 0)

| max;, (;@gfgg) , (=b+fi <O)A(=b—f1 <O0)A(yy, >0)

(7.40)

Thus, for g4, if it happens that V 5% > 0, then calculate two function values gy (x¢, €5) and gy (x¢, €5),

—~\/6f~€2, xt1>0 ~\/512+82,
g1(xe, €2) = 1 +1/6? — €9, x4, <0 Golxy, €2) = 1 +1/67 + &,

0, Xty = 0 0,

Therefore €1(gy, go) is given in terms of &, and functions g; and go,

g1, 67> e
€1 =1 gy, 5% < &y
0, &l=¢g

x,1>0
xt1<0

xt1=0

(7.41)

(7.42)

The model for prediction of next posture approaching &, with terms €4, an &y is denoted by

next equation,

Ju — €2, ¥4y >0 Xty — &1, Xy >0
Yt =1y, + €2, y1, <0 Xty =yxt, +€&1, x4 <0
Vi vy, =0 Xty xt =0

Therefore, the theorem 7.3.1 is stated as,

Theorem 7.3.1. The solution for the equilibrium point & = (xo, ¥o, 2o

)T

(7.43)

is found by the

recursive system, x¢,1 = Xt + &, and y¢ + &; until the boundary distance € is reached by

(x12+1 + yt2+1)1/2 < e
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It follows that behaviours of €; and &, given by equations (7.39) and (7.42) respectively, are
depicted in Cartesian space by figure 7.2. Vertical axes represent the distances given by €y,
which are calculated at each control loop. €1 solves for the x-axis, while &5 solves for y-axis.
Nevertheless, €1 depends on &y, according to previous formulation. Depictions in figure are

7.2 left-sided for €4, and 7.2 right-sided for &y, respectively.

€ (m)

Figure 7.2: Behaviours of &; (left), and &, (right) are plotted in Cartesian space. Both values are non
stationary calculated at every control loop, automatically leading the robot to the goal &.

7.4 Robot kinematics

With the magnitude of g1 overtime, the robot trajectory is controlled through a sequence of
locations, until reaching the end of each &;5. Once the distance is reached, new values of &1 o
are recursively computed, and again a set of line segments must be navigated by the robot.
Any geometrical trajectory can be modelled by a sequence of segments of curves. Where,
a straight line may be considered as a segment of curve with infinite radius, where such
radius coordinates is known as instantaneous centre of rotation. Thus, a model to compute the
instantaneous centre of rotation is required.

The sequence of Cartesian locations tracked between the segments namely Ax = |g1 — x¢|
and Ay = |&y — y¢|. The instantaneous robot’s speed is defined by v = |v?| as well as its
direction angle 6; = arctan(ey — y;/e1 — xy),

_d6 _ (Ay — gt — (Ax —x)y

— = T.b4
t dt x? N ytg ( )
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Thus, projecting at t + 1, and combining the velocity v, the controlled trajectory model is,

—sin(6y) + sin(0 + wAt)

Eipr =&+ % cos(6¢) — cos(0 + wAt) (7.45)

w At
v

We refer to a non-holonomic four-wheeled driven robot for all-terrain navigation, figure 7.3.
Four asynchronous wheels speed lead the mobile robot to be controlled by a skid-steer modal-

ity, providing less kinematic restrictions for robot's manoeuvrability

25
w R . *-\‘I
__________________ G S
10
’ Ay ! ;E: 7\\
Lo(1); : | s
R E 0 J/
o) ) —
B " G : ~.
/ r

. . - 40 a0 20 40 o0 10 20 30 40
Zero-turning region b) X@)

Figure 7.3: a) 4WD mobile robot kinematic parameters with z-turn axis. b) Different trajectories of the robot
toward &, produced by the proposed search approach.

The depiction shows that % [@i(t)} is the i'h wheel’s rotational velocity. w(t) is the robot's
yaw rate. The ability of the robot to steer itself through slippage/skid motion effects has its
fundamentals on inferring a Z-turn axis at (xgr,¥r)’. The square region scope of figure 7.3 is
defined by the wheels’ contact point as the boundaries for (xp,yr)T. We state that the Z-turn
axis can be modelled as a movable axis point, according to the inertial effects suffered by the
robot’s body by the wheels’ velocity configuration. The property of skid-steering that depends
on the point (xg, yr) gives the robot the ability to change its turning axis, in accordance to
the wheels lateral slippages. The authors took advantage of this effects, by calculating a point
coordinate called (xp, yg). During preliminary motion tests, variations occurred in the motion
patterns. A kinematic restriction of this effect establishes that the rover turning Z-axis only

moves within a squared area bounded by the wheels’ contact point (as depicted in figure 7.3). By
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modelling the observed effects when parametrizing different angular speeds on the front and
the rear wheels, its manoeuvrability equilibrium point is changed. The derivatives to calculate

xpr and yp (in ms’i) are formulated to model such inertial effects.

rl

d d? d? d? d?
= ton(t)} (5 (ot + 5 (0t} = 5 oult)} = S fomt})  (740)

4Vmax

Where yp is the turning Z-axis displacement along its longitudinal axis; L is the distance
between the rear and front side wheels (units m). vy, is the maximal allowed robot velocity

reached up to a contact point.

d w [ d d? d? d?
gt 0] = oo (S o)) = S5 fonlt} = S ()] + S5 fml0}) (740

4Vmax

Similarly, g is the displacement or shift of the robot reference through its transverse X
axis. It follows that a solution for the inverse kinematic parameters depends on four control
variables §q(t), @o(t), @s(t) and @,(t) with physics units rad/s>. Four linearly independent
equations are established to solve the control motion system. The equations of v, @¢, Xp and
Yr meet this requirement, and we just have to rearrange the equations terms to simplify the
solution process. If we arrange the linear equation in terms of the wheels parameter (rotational
velocities), we found out the following set of equations, also known as the direct kinematics

model. As for the 4WD kinematic structure the transition matrix has the following parameters

ki =rl4 ky = J% ks = %, and k, = 45mfu' Thus, the forward kinematics equation system
model is as follows,
& i) ki ki ki R & {p(t))
St} | |k <k ko k| | & {e(0) (7.48)
& {xr(t)} ks —ks —ks k3 ;TQQ {os(t)}
4 [yr(t)} ~ky —ky kR & {oult)}

By rearranging the equations system it is analytically solved by an algebraic method. Now, the

solution represents the inverse kinematics control vector namely 2 = r({py(t), Po(t), P5(t), Pa(t))T
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k' k' Ry k! & vlt)}
| e “t S “et R 4ot
%{Q(t)}= T E j’{ 0} (7.49)
k' k' —ky' Ry 4 p.(t)}
k' —ky' Ryt R & {py(t)}

The variable % {Q(t)} is the vector inverse kinematics solution, which contains the wheels
linear velocities, used to control the in-wheels actuator. The first term (d&;./dt)T~" leads the
robot to local goals. It is the internal robot’s search motivation, which refers to the robot’s
motion exerted through a sequence of small increments between the robot’s actual posture
until reaching the end of €15 magnitude. The term (d&;,,/dt)T~! yields a motion behaviour
constrained by the non-holonomy of the robot’s four-wheel four-drive (4W4D) kinematics.
As a° is given in terms of acceleration (units of m - s72), the first term yields a set of small
consecutive displacements that are tied to a relaxation time 1, which is the robot’s time frame
required to develop velocity changes. The second term dv®/dt gradually yields the robot to a
global goal. It exerts large motion displacements, and it refers to accelerative directional fields.
The second term dv?/dt is implicitly effected by calculations of &4 9. dv?/dt establishes larger
displacements to the goal.

1/d d
e _ — [ = o0
a =z <dt€t+1> REFTAS (7.50)

our final equation for the goal searching is,

—sin(0¢) + sin(6 + wAt)

_ v d
a=1"— [& + 5 cos(6;) — cos(f + wAt) + ——t

WAt
v

Some results from potential equations and analysis discussed along the chapter are illustrated
in figure 7.3-B). Where, five different search routes were yielded towards the target (source of
energy to be found). The nearer the robot approaches, the larger the number of measurements
E the robot gets (r; vs E. The increased number of measurements near the goal is because the
values of €1 » magnitudes gradually decrease, allowing the robot to obtain more measurements

at smaller displacements.
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Chapter 8

MULTI-ROBOT PATH/TASKS PLANNING

Nilda G. Villanueva Chacén and Edgar A. Martinez Garcia

Laboratorio de Robética, Institute of Engineering and Technology
Universidad Auténoma de Ciudad Judrez, Mexico.

In this chapter a highly concurrent tasks planner for a distributed multi-robot systems is for-
mulated. Unlike other works ', the present approach discusses two issues: a) a path-planning
model; and b) a robotic-tasks scheduler. A set of kinematic control laws based on directional
derivatives allow us to model the robots interaction for dynamic environments. Distributed
wheeled mobile robots perform the execution of diverse autonomous tasks concurrently and
synchronized just in time. Distributed tasks planning reconfigures and synchronizes the robotic
actions throughout exponential functions which dynamically change the priority primitives:
sense, plan, and act. The objective is to formulate an automatic planning system using multiple
mobile robots to manage the material supply, rubbish recollection for industrial transportation
tasks. The task-oriented approach concerns carry-and-fetch, and material collecting, as well
as the robots’ ability to navigate for battery charging at dock-stations. A diversity of task sce-
narios such as traffic congestion peaks, orders arrival during the execution of tasks and order
modifications have to be considered. When the system is modified, the flow of material during
the process differs from the previously used routes.

Mathematical formulation and numerical simulation experiments illustrate the parallel com-
puting performance, and the distributed robots behaviour. Simulation results depict how the

robots deal with highly concurrent robotic tasks, and dynamic events by a parallel scheme. A
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kinematic model for a differential drive robot is formulated. In addition, an acceleration-based
model is proposed to provide the messenger robot the ability to navigate and perform trans-
portation tasks. To deal with the computational cost involved in this work, the effect of varying
the number of processors executing a job, have been examined. Parallel computing is a capa-
bility to manage threads broadcast to different physical processors. The available processing
power utilization is maximized to accommodate as many tasks as possible while satisfying the
required deadline of each task. Simulations demonstrated the feasibility and efficacy of the

proposed task/path planner.

8.1 Robotic tasks scheduler

The tasks and motion actions are synchronized and coordinated by a scheduler designed to
be able to synchronize tasks in real-time. The tasks scheduler has the ability to assign multi-
threads to different physical processors. All tasks are classified into three types of robotic
primitives as traditionally known: planning fp, sensing fs, and acting f4. The real-time system
develops online synchronization through shared-memory, execution of multiple threads, and
threads priorities are dynamically assigned, depending on which task type fp, fs and fa has

more statistical demand.

The function fs acquires, decides, sorts and stores environmental data to be available for
the tasks of planning and acting. The planning task function fp reads collected sensor data for
generating a plan of actions in accordance to the type of event that is occurring at actual time,

and fp prioritizes sensing/acting tasks.

For instance, the presence of multiple dynamic obstacles blocking the actual direction to-
wards the desired goal, online path generation are usually non linear. Each robot re-plan a new
local route when new dynamic obstacles block its actual pathway. The Lagrange interpolation
polynomial of cubic order arising from numerical Cartesian points (x;, y;) that comprise the
desired pathway. The interpolation gives a polynomial (see section 1.6.2) with origin at robot’s

fixed inertial frame by,
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And algebraically expanding with x0, x1 ..., xg, and y; numerically known,

X —Xq X — Xo X — X3 X — Xo X — Xo X — X3
y(x) = Yo + yi+
Xp — X1 Xo — X2 Xo — X3 X1 — Xo X1 — X2 X1 — X3

(8.2)
X — Xo X — X1 X — X3 X — Xo X — X1 X — Xo
E) G) G)» (2) (=3 (55 »
X9 — X0 X9 — X1 X9 — X3 X3 — Xo X3 — X1 X3 — Xo
Eventually, the developed algebraic polynomial expression becomes
y(x) = ap + a1 x + asx? + ... + apxk (8.3)

hence, the segment of distance to navigate is represented by s;,

sy =\/x? +y? (8.4)

Similarly, in order to reach the goal just-in-time, a new non linear interpolation representing

the exact time as a function of the segment of distance s; is stated by

3
r=ts) =3 | 6] 5 "_szi (8.5)

by substituting the mathematical form of s into T,

Postulate 8.1.1. The segment of distance fo be displaced just-in-time

AT
r=3(nl] \/x: il 86)
0

+y2 - \/ x} + yi
Re-writing the polynomial equation I'(s) by a third order polynomial,

[ = by + bys + bys? + bzs® (8.7)

In all situations, time is a factor that is conditioned by the battery timing supply. By using the
discharging battery curve of Peukert’s Law, it is possible to validate the just in time polynomials

previously defined as applicable models.
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tp=H <§{>k (8.8)
Where:
t Time that the battery will last given a particular rate of discharge (hours).
H The discharge time in hours that the Amp Hour specification is based on.
C The battery capacity in Amp Hours based on the specified discharge time.
I Discharging rate (Amp).
k Peukert number for the battery.

A period of time limit (¢,) that is safe for a robot to reach the charging dock station is defined
for each robot based on the distance to the goal I'. Thus, the robots already charging energy

await for the going discharged robots in order to exchange work duties each other.

mrg, tp<t
mr = oo B (8.9)
mr,, tp2>t,

8.1.1 Tasks scheduling

The scheduler is an algorithm that synchronises the tasks fp, fs and fa, as elements of the set
(u).
U = {fs,fa.fr} (8.10)

In order to automatically select a type of task to be performed, the function f(x) = Ae™*
describes the external events behaviour that activates the tasks of U. Therefore, in order to

estimate the possible external event occuring at actual time, the inverse solution is defined by

- -2n()

It is assigned as a numerical weight, or as a probability value depending on the time that the

tasks is occurring.
re ™, x>0
flx) = (8.11)
0, x <0
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The cumulative distribution function is modelled by
X
F(x) = / AeMdxr =1 —e™™ (8.12)
0

The distribution function models occurrences for automatic selection of fs, fp by defining a

uniform random distribution in interval [0, 1] to produce the number R.

1-e™ =R (8.13)
and
1
, a<x<b
R = b-a (8.14)
0, other
Solving for x,
x = ~)%ln(R) (8.15)

The next variable Sem is used for controlling access and indicates if the system is available to
execute the acting or sensing task. In this way Sem tracks the status of the resources being

assigned, through a status value associated,

Definition 8.1.2. The tasks controlling access has four states

0, wait
Sem?, =g YR>r1
S = p=9-(R>1) (8.16)
Sem®, 1s=g ta<R< 1p)
Sem?, Ta =g '(ta > R)

The scheduler P selects a task from a list of waiting tasks, signals the communication
center to begin execution of that task, and calls the resource manager to update the dynamic

resources list.
fo(tp), (g 'R > 1p) &= BA-C

P =1 fs(ts), SemS (8.17)
fa(ra), (At < ) A -C
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Likewise, next constraint is postulated:

Postulate 8.1.3. B and C create a condition to satisfy the just-in-time constraint.

B=(Ati_1 — ;) V(Ati_y < 1)V (Atp_q — 1)

and

C = -Sem? A =-Sem? A -Sem?®

[ Frequency of
occurrence of
| +tasks into a

1 dynamic

;
1
1
1
]
i
]
1
1
; | scenario
1 1 T
1 1
H
]
1
TS

TP

Figure 8.1: Scheduler function for the messenger-type robot.

8.1.2 Dispatchers

For dispatching, a mobile robot collects amounts of types of materials from a queue’™. The
queue is managed by a group of dispatcher robots, where their goal is to maintain available
material for the messenger robots. & defines the set of dispatching robots (dr, and let Jf be
the set of messenger robots (mr), and LR a subset of M with the messenger robots loading

material. RR is a subset of M that containing the robots ready for transporting material.
9D = {dry,dry, ..., dry} (8.18)
Where n defines the number of dispatcher robots available.

M = {mry, mry, ..., mry } (8.19)
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and subsets,

LR = {mry..mr;} RR = {mrj,y..mry} (8.20)

The following conditions have to be met,
RRcM LRcM RRNLR = {} (8.21)

In addition Semy is defined as a constraint to access raw material or semi-finished parts,

0, loadingRobot Vv dispatchin
Semy = g P g (8.22)
1, other

The loadingRobot function supplies the robot with raw material, and dispatching is the

continued activity of robots dispatchers.

loadingRobot, (mat # 0) A (loaded < cap) A Semgy
DispatchingTask = dispatching, LR # {0} A (mat = 0) A Semy (8.23)

pause, else

By using the DispatchingTask function, it possible to create a complete scenario for the

process of delivery and loading raw material (Figure 8.2).

Dispatcher

" MaterialA  pm—m
100 MaterialB  mm

80

60

40

Dispatched Batches

20

Robot1  Robot2  Robot3 DispA DispB  Loading Ready

Figure 8.2: Simulation of dispatching activities. Three mobile robots taking different quantities of two types
of materials. Simultaneously, two dispatcher-robot put raw materials in holding position.
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8.1.3 Parallel Tasks

Clusters computing has emerged as a new paradigm for solving large-scale problems. A
cluster of computers is generally defined as a collection of interconnected stand-alone comput-
ers working together as a single, integrated computing resource. The most critical software
components of the cluster are the allocation and scheduling algorithms. Allocating tasks of
a real-time application on a certain processor is the most critical step towards achieving the
optimal schedule for the application. Figure 8.3 shows times taken to perform a series of 60

tasks distributed and executed as real-time tasks into different number of processors.

Parallel Tasks
100
90
80 -
70
60
50 -
40
30
20
10

Time (%)

No. CPUs

Figure 8.3: Time to complete 60 real-time tasks using a parallel computing scheme.

8.2 Robot's motion model

In this section we formulate the kinematic models of four-wheel robotic structures with dual
differential drives. Thus, inverse and forward kinematics models are provided as functions
of the rotational wheels’ speed. The robotic platforms are depicted in Figure 8.4. Based on
a dead-reckoning approach wheels’ speed are directly measured from proprioceptive sensors

(rotary encoders). Thus, the robot’s displacement As is inferred by

As = ?(nr + ) (8.24)
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(P/V v vy

l&
€

Figure 8.4: Wheel angular position with dual asynchronous velocities (left and right).

Where r is an ideal wheels’ radius, f, is the encoder resolution in pulses per revolution, and
n,,; is the number of pulses sensed of the right/left wheel overtime. The tangential velocity

v, and the angular ¢, ; of the wheels are defined by:

d
Vrl = ra(.or,l (825)
and
t2 T
oy = | ZZnat (8.26)
t1 fn

Because of the instantaneous robot’s velocity approximates an averaged speed along a distance

s, velocity and acceleration are described as functions of time,

ds

= 27
v T, (8.27)
as well as
dv
= — 8.28
a= g (8.28)

Thus, by equating both expressions through the common term dtf, and by integrating the

Sf Vf
a / ds = / vdy (8.29)
S0 Vo

Hence, the next non linear expression with averaged acceleration is obtained,

differentials ds and dv.

2 2
Vf -V

2

a(sy — so) = (8.30)
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By considering starting position zero, the acceleration form is simplified,

v? (Vr + Vl>2
-2 _ L 8.31
“ 2s 8s ( )

Since a solely depends on the variations of v for this functional form, its vector form is:

( x ) ( sin 6 )
v = =v (8.32)
v —cosf

0 = arctan <Z> (8.33)

likewise,

and the magnitude of v is defined by
[v] = Va2 + §2 (8.34)
Describing the robot’s model as depicted in figure 8.4
Vp =V + Wy (8.35)

and

V=V + v, (8.36)

The wheeled mobile robots forward kinematics is described next,

Proposition 8.2.1. The wheeled robot’s direct and inverse kinematic solutions are provided

by
v 1/2 1/2 v,
= 2b 2b : (8.37)
w aZ+b?2 a2+ b2 i

and by solving for the inverse solution of equation (8.37), the functional form in terms of v,

a’? + b?
R I Y (8.38)
o L + b? w :
4b

and v; is
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8.3 Robots acceleration models

For the messenger-type robots, their navigation control equation” is proposed by expression
(8.39). The acceleration term a, speeds up/down in order to reach the zones where they

navigate from the warehouse to the recharging dock-station, shipping and station areas.

Proposition 8.3.1. The robot’s general navigation control law is defined by

2
am = —Vsap(f) = -V, <‘2]s + [aw, + ala™ —aw,)] + a“ed + aaw,id> (8.39)

Where the term g—z guides the robot to the shipping area, the term aw; + ala™ — awy)

controls the robot’s motion directing it towards the warehouse, and the term agyoiq yields a
motion behaviour to avoid near static/dynamic obstacles. The tasks are accomplished in time

frame constrained by inequality (8.40),

<>

(t)

1

< tepsi (840)

Where tqps1 represents the maximum allowed time in reaching to execute the material trans-

port task successfully on-time. Likewise, ¥ is the robot’s translation velocity.

Acceleration to warehouse aw typically develops as the starting robots’ motion, reaching
the warehouse zone to collect raw material that is transported to the workstations. Expression

(8.41) describes the robot acceleration to warehouse,

ref

aw,,, = aw, + oc(a - aWt) (841)

Where 0 < a < 1, and awy41 is the next desired controlled acceleration. aw; is the actual
measured acceleration, and a’® is a reference acceleration model used to track a desired
magnitude together. In addition, an adjustable constant gain factor a is used to attenuate
convergence. Likewise, the acceleration to shipping area a is provided by equation (8.42) that

defines the robot’s acceleration required to reach the shipping area.
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ag = — (8.42)

Figure 8.5 depicts the behaviour of the acceleration ak with respect to distance and speed. The

acceleration model acts like an attraction acceleration.

i

\ Edv=02mis E Eds=05m “'A“H\\‘ \
3. l BEv=05mis E FEds=08m \ \
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5 j& 5 E // g
8 15] 8%E
< AT L e
= 0sE o
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T " 3 et Lo,
d) Distance (m) b) Velocity (m/s)

Figure 8.5: a) Distance vs acceleration. b) Acceleration vs velocity (constant distance). c) Acceleration as a
function of distance and velocity.

Considering the distance s as the norm or Cartesian distance of the x and y points the next

expression is stated,
1/2
s = ((xo = x0)* + (%0 — 31)%) (8.43)

Where x,, y, is the x and y position of a reachable point on the global plane, and x,, y, is
the global position on x and y of the robot. We replace the Cartesian differences x = (x, — x,)
and y = (y, — ¥») in order to summarize in next mathematical expressions. Thus, by rewriting,
2
v
a=———>» 8.44
2(x? + y2)ii2 (8.44)
Considering that the sensor measurement of the distances that might arise from different types

of ranging sensors (i.e. LiDAR, ultrasonic sonar),then distance model in Cartesian space is

COS Q;
S8 = 6i d) (845)

sin ¢;
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Where ¢; defines the direction of each sensor’s beam w.r.t. the local fixed robot’s plane.
Therefore, by replacing the distance model in (8.46)

2

\%
- __ 8.46
a ; 2(ij + yj2)1/2 ( )

Figure depicts two maps created by using range sensors and odometry, the left-sided map has
inconsistencies due to the non linear trajectory of the robot. Please notice that at the right-sided

map, it prevails quite consistent due to the robot's simpler trajectory motion.

2.5 g 2.5
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Figure 8.6: Top view of environment model using a ring of sonar on board the robot to build the map. Non
linear robot's trajectory (left). Linear robot’s trajectory (right).

The scenario is a workspace constrained by walls and corridors. The acceleration towards
station ag is constrained by a route, if no route exists, bottlenecks or stoppages may occur. By
defining a general vector field with components of distance to the station x = |x, — x4| and
Yy = |y¥r — ¥yl let felx,y) be an equation of mobility to assure the robot to reach the station.
Where x and y are the displacements by Cartesian components required to reach the station

zone.

felx,y) = Vx2 + y2 — e VX’ (8.47)
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Hence, we apply the gradient operator with an arbitrary adjustable constant gain kg,
fr = —V”gH Kefe(x,y) (8.48)

with ||8] = v/x2 + y2, a deriving w.r.t. x, then the x-component function is denoted by,

af X —/x24y2
&*W(““ ”) (8.49)

Likewise, for the y-component the function is given by,

of ¥ R
Ry (1 e y) (8.50)

and

v = | - Vfslx,9)] (8:51)

Velocity magnitude to the station is provided by (8.51), and the angle equation provided by (8.52),

(852)

0 = 6, — arctan <6f/6y>

of | ox
Finally multiple mobile robots navigation toward the station are controlled by the equation

(8.53) of next proposition.

Proposition 8.3.2. The robot’s navigation vector function to reach the station:

= <1 = e‘\/m> X
fe(x,y) = o , (8.53)
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Chapter 9

NON-LINEAR REFERENCE MODEL

TRAJECTORY CONTROL

Omar Ramirez and Edgar A. Martinez Garcia

Laboratorio de Robdtica, Institute of Engineering and Technology
Universidad Auténoma de Ciudad Judrez, Mexico.

Service robotics is strongly tided to highly accurate navigational tasks where pathway track-
ing is a practise commonly carried out through control algorithms. This study proposes the-
oretical model references of non-linear pathways presented as kth-degree polynomials. This
study establishes proportional controls using variable reference models at the level of second
order derivatives, in order for the robot’s motion to be adapted on-line. Initially, a Cartesian
trajectory model is inversely transformed into wheels’ angular acceleration component equa-
tions, which function as the ideal reference models. Although, our proposal may be applied to
any type of robot’s kinematic structure, we are presenting an example for dual asynchronous
differential active wheels. Obtained results raised from successful experimental practise, and
numerical simulations as well. In order to complete a navigation task, a robot must be capable
to follow a desired pathway. The pathway complexity may vary depending on the environmen-
tal geometry. In recent years, numerous research have been realised upon the path-following
problem . From control schemes combining conventional integral terms and fuzzy logic for

the adjustment of proportional gains, up to control schemes using path following algorithms
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with back-stepping schemes”. As a difference from cited approaches, in the present study we
introduced an adaptive non-linear path following control using second order derivatives as a

reference model changing overtime, as a scheme for the wheel's acceleration control.

9.1 Polynomial pathway models

Let us assume any non-linear function s(t) defined as the trajectory that a wheeled robot will
follow. Firstly stating that a non-linear function represented by a polynomial form fits a set of
Cartesian points (i.e. pathway). Such pathway points are fitted by accomplishing a polynomial

interpolation approach. Thus, considering that the set of points are given by

{(x0, 0, t0), (x1, 31, t1), - ., (Xn, ¥, ta) } (9.1)

every single coordinate of the pathway is reached by the robot to follow it in a certain time f,.
The Lagrange-based interpolation for polynomials (see section 1.6.2) is developed in order to
obtain a functional form of the distances travelled in terms of the two Cartesian components

x(t) and y(t), which are given by

Postulate 9.1.1 (pathway components). Path generation is provided by the Cartesian com-

ponents as functions of time.

n n t _ t
x(t) = [T ]t (9.2)
i=0 j=0,i#j + 7
and
n n t _ t
y(t) = [1 %) st (9.3)
i=0 j=0,i%j =

Higher than second order derivatives (accelerations), our equations would be formalised as
Jerks. However, our interest is solely on the second order derivative equations, because the pro-
portional model references are treated as linear systems. Hence, the path generation approach

consists of a maximal of four Cartesian points, which comprise third degree polynomials.
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Such that

x(t) = ap + art + ast? + ast’ (9.4)

and

y(t) = by + byt + bot? + bst® (9.5)

The speed components along the trajectory positions are described by their first derivatives as

the travelling speeds, modelled by the general expressions

X = %x(t) = ay + 2ayt + 3azt? (9.6)
and

. d 9

y = xay(t) = by + 2byt + 3bst (97)

By expressing previous expressions in terms of the cylindrical form of motion (v, 6) for each
Cartesian point,
V2 = 1% + §° (9.8)

hence,

0 = arctan <i> (9.9)

These speed models are easily transformed (roto-translated) into any arbitrary desired refer-
ence model. Thus, the acceleration linear polynomial is useful to represents the functional form
of the robot’s kinematic of motion, and subsequently to obtain an inverse kinematic analytical

solution.

9.2 Robot's kinematics

The robot’s kinematics is developed approaching a dead-reckoning modality, where the input
vector is defined by u = (v, w)T, and their components are described as functions of the wheels’

speed @;.
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Figure 9.1: Differential speed control wheeled robot Franky.

9.21 Forward kinematics

Let us consider a differential wheeled robot with ideal wheels’ radius r (figure 9.1). Each wheel’s
contact region keeps a metric separation by fixed a baseline, namely d. The kinematic model

for this structure is described by,

(1.)) i (r/2 r/2 ) . <(.pr) (9.10)
0 2r/d —2r/d o

The equation (9.10) describes the robot's linear speed v, and the angular speed 8 as mathemat-
ical functions of the wheels rotational speed, right and left respectively (¢,, ¢;). The robot’s

translation velocity is decomposed on its speed components X and ¥, the angle 6 as in shown

(x) (cos 9)
=v- (9.11)
v sin 0

By substituting the functional form of v, we may express previous equation with the speed

by equation (9.11),

components, and evaluated in terms of the angular speed of the wheels (matrix form).
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x cos0
- (ri2 ri2)-
Y sin O 1

b (9.12)
The complete direct kinematic model is described by (9.13) as a function of the input vector of

wheels velocities. This model has its fundamentals on the robot’s geometric configuration in

terms of first derivative of the actuators’ motion.

X cosf O
r/2 r/2 Gr

‘.S'] = Sin 9 O . . (913)
2r/d -2r/d o)

0 0 1

9.2.2 Backward kinematics

The inverse kinematic model is obtained by solving previous equation for the wheels speed
vector by equation (9.13), so that we have the inverse kinematic model given by,
X
Pr 1/r d/4r cosf sinf O

= . |y (9.14)
o 1/r —d/4r 0 0 1

noi This model represents the basis to obtain the second order (acceleration) reference
model given a path functional form (arising from Taylor’s theorem, sec. 1.3). By assuming
that the wheel speed reference model has been computed with constant period of time 7. It is
required a precise as possible observation of the real wheels speed. Thus, by using the finite
central differences method (see section 1.7) as a wheels sensing model, an inferred numerical
version of the angular velocities is enhanced to approach a measure of the wheels acceleration.

Described by

e TEa (9.15)

where w = {l,r} represents any of left/right wheel. The wheel acceleration reference
model is obtained from its direct velocity measurement. Hence, the wheel speed reference
model has foundations on the inverse transformation of the first derivative of the polynomial

function of the original desired pathway.
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9.3 Fitting the actuators model

A common problem found when controlling rotary actuators is the non-linear response, which
is yielded by different engineering factors such as the speed-driver electronics. Usually, such de-
vices are manufactured with optoelectronic components that inherently add non-linear power
responses. Besides, its output differences are given from commercial product to product. Nev-
ertheless, in our approach a suitable digital set of commands has to fit the desired angular
speeds. The theoretical model to control the actuators are not explicitly given; and even if it
would exist, it would change with the presence of small loads variation (i.g. frictions, loads).
Thus, under such circumstances a manner to model the real actuator’s behaviour is to obtain its
an empirical model of ¢; ; as a function of the digital control commands §. Nevertheless, even
when having the actuator’s empirical model available, the theoretical model is determined by a
fitting numerical method (see section 1.6.3). To control the real output speed of the wheels, we
fitted a theoretical equation with an experimental motor’s model. We highlight the importance
on finding a mathematical relationship between digital control commands, with an analytical
output speed. Thus, for our home-made robotic platform, the next model fitting the real motors

behaviour was calculated.

The theoretical model linking the set of digital control commands to output the rolling
speeds is based on the empirical speed measurements. They were inferred by sweeping the
range of computer control commands (from -100-0, and 0-100) w.r.t. averaged observed sam-
ples. The response of the actuators resulted as depicted by figure 9.2. Because the actuators

rotation’s sense were similar, the waveforms were approximated by a unique function.
@ =ae*”® +b (9.16)

where 6 corresponds to the actuator’s digital output control command, ¢ corresponds to the
output speed, and a, b, ¢ were used to make convergence of the function into the empirical
response. Finding the inverse solution for §(¢), we obtained the desired output speed digital

command (9.17).

8) = L1n <"” - b) (9.17)
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Figure 9.2: Empirical model based of wheels speed measurements.

The theoretical solution depicted in figure 9.3 matches accurately the empirical models

shown in figure 9.2, including the inherent perturbations (i.e. frictions).

9.4 Trajectory tracking

The acceleration control model is introduced by equation (9.18) as {¢,4 that is recursively
calculated as a function itself @,,¢_1, with proportional gain 8. The instantaneous error is

calculated by the difference between a reference model (9.15), and the actual observation .

(9.18)

‘pt+1 - (pt~1 o
2t <p>

Pre1 = Pr-1 + B <
Hence, the theoretical model ¢ is produced as a function of the independent digital variable &,
and the speed control scheme (9.19), which is iteratively used to satisfy the controlled acceler-

ation (9.18) by means of the theoretical model (9.17).
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Figure 9.3: Simulation of wheels speed theoretical model.

. . d t
Pre1 = e +a | —s(t) —/ Prradt (9.19)
dt 0

where ¢y, is the wheel's controlled angular velocity, recursively calculated as function of past
¢¢_1, and proportional gain is 0 < a < 1. The desired path model is represented by %s(t), and
the real velocity observation is obtained by integrating ;.1 in the time domain.

Numerous experiments were realized to obtain real-time actuators’ response with foundations
upon (9.18) - (9.19), and including different non-linear reference models. The first sets of
experiments involved ideal paths that when inversely transformed into the wheels’ reference
model, they represented constant numeric values (figure 9.4-left). Likewise, a second set of
experiments involved pathways modelled by second degree polynomials, which when inversely
transformed, they represented linear speed models (figure 9.4-right). Moreover, the controlled

speed vector is compounded of the left and right angular speeds, as defined by
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Figure 9.4: Wheels actuator’s angular velocity response over time w.r.t. the wheel's reference model.

Proposition 9.4.1 (inverse trajectory tracking vector). The robot wheels controlled velocity

vector is a function of the reference model Cartesian components.

Pr Pr a [ (XcosB +ysinh) + gé — jot P41 dt
= _|_ —_

. . r 9 9 9 ; t..
P/ o), (X cos O + ysinb) — ZO — Jo Pre1dt

(9.20)

Previous mathematical proposition states that the inverse solution, or wheels angular veloc-
ity is obtained from knowing the reference model, which is obtained from actual segment of
pathway. The pathway at hand usually (for this work) is generated as third degree polynomials.
Therefore, by substituting the controlled speed of equation (9.19) into equation (9.17), the com-
plete control expression (9.21) given as an inverse function of the digital control command is

provided.

) d ..
Pt-1 + <dts(t) - fot <Pt+1d‘[> -b

6t+1 =—In (921)
C

a

The complete control vector involves the left and right wheels’ angular speed, which is obtained

through an inverse decomposition that obtains the following reference model,
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1 d .
R < (tcosf +ysin6) + ;6 - N <p,,+1dt> -b

r
a
6 1
= Eln 1 d. t (9.22)
S 1 P11 + <r(5c cosf + ysinf) — EG — ]o <‘p1,+1dt> -b
a
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Figure 9.5: Wheels' actuator angular velocity response over time w.r.t. each wheel’s reference model, high
slope (left), and low slope (right).

Experiments involved theoretical and empirical paths of second degree polynomials, with
high slopes reference models. The robot’'s weight, and its mechanisms friction perturbed the
robot trajectory tracking. However the proposed control algorithm acted fast and reliable. The
second order adaptive reference model control was tested experimentally with a dual velocity
differential robot, and through numerical simulations. Third degree polynomials represented
pathways with the minimal degree required. Their second order derivative produce linear
functions as acceleration reference models. Second degree polynomials yield linear but con-
stant value reference model with the best performance. Higher than third degree polynomials
with low magnitude slopes perform acceptable. The proposed approach is a general solution

for any type of wheeled robotic structure of dual or greater asynchronous speeds.
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Chapter 10

ALL-ACTIVE L-WHEEL KINEMATICS

Erik Lerin Garcia and Edgar A. Martinez Garcia

Laboratorio de Robdtica, Institute of Engineering and Technology
Universidad Auténoma de Ciudad Judrez, Mexico.

Wheeled mobile robots (WMR) are rolling devices capable of performing locomotive tasks
on surfaces solely through the actuation of wheels in contact with the surfaces of displacement.
Some link assemblies contain passive suspension, while others contain active suspension.
In this chapter a general kinematic control law for multi-configuration of four-wheel active
drive/steer robots is discussed. This work models four-wheel drive and steer (4WDS) robotic
systems” where all wheels drive and steer simultaneously. The control variables are wheel yaw,
wheel roll, and suspension pitch by active/passive damper systems. The latter implies that a
wheel’s contact point translates its position over time collinear with the robot’s lateral sides. We
present a suspension mechanical system featuring three DOF per wheel. We define wheel's yaw
B, wheel's roll angle ¢, and an uncommon characteristic regarding mobility based on the wheel
contact point location controlled by the suspension angle . A possible manner for navigating
ground surfaces and avoiding obstacles is to use holonomic or kinematic redundant vehicles? .
The WMR'’s degree of holonomy is determined by the value of mobility and manoeuvrability
(how quickly the direction of travelling can be changed). This value is measured by the wheels’
restriction, and WMRs are classified as systems with holonomic and non-holonomic properties
according to their degrees of mobility m and steerability. The holonomic WMRs are able to

move in all degrees of freedom available in the workspace, thus this kind of robot does not
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have mechanical constraints that limits mobility. Accordingly, the non-holonomic robots are
not able to move in all directions because they have kinematic constraints in their locomotion
structure (one example of this mechanical structure are the like-car robots). In all-terrain
WMRs, use of odometry to obtain distance and direction displacement usually is not enough;
to improve distance and direction estimations, the addition of inertial measurement units, GPS

and optical speed sensors are needed.

10.1 4W Kkinematic structures

Full active rolling systems explicitly need a function that models for each control variable
With combined passive drive and active steer, the degree of controllability is poorer than full-
active driving because wheels lose the ability to move forward/backward at individual contact
point speeds. With all-active drive/steer DOF, wheeled systems behave in a nearly fully holo-
nomic manner. Full-active systems have advantages over combined partial-passive systems
when feasibility and reliability in manoeuvrability * are demanded to navigate complex terrain
surfaces. Because all-active drive-steer systems allow multiple kinematic configurations, they
provide diverse advantages for self-adaptation to different geological surface features. In all-
active 4WD/4WS there are a number of possible locomotive configurations that the kinematics

may yield. Some locomotive configurations are illustrated in figure 10.1.

P 04 ¢ o0 ¢
1 IR ¢ &L B

a) b) c)

D Driven wheel D Driven steerable wheel

Figure 10.1: 4W locomotion modes. a) dual differential drive; b) asynchronous fix-driven wheels; c) differential
drive/steer; d) 4W synchronous drive/steer; e) 4W asynchronous drive/steer.

Figure 10.1 matches the 4W categories described in table 10.1. It shows the different config-

uration modes of 4W systems’ and shows how driven wheels and steer wheels are configured.
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Table 10.1: 4WD4S main configuration modalities (NH: Nonholonomic, H: Holonomic).

4WD configuration modes
Holonomy | Speeds Description Steer Figure 10.1
1 NH @, @ | 2 differential drives. - a)
2 NH ®1,.., ¢, | 4 differential drives. - b)
3 H @1, ¢, | Rear-wheels, front- Bs. Br c)
wheels steer/drive.
4 H @ 1 speed, 1 steer. B d)
5 H ®1,.., @5 | % drives, 4 steers. Bi,...,Bs e)

According to the categories laid out in table 10.1 we have different locomotive configuration
modalities with respect to wheel rolling speeds ¢, and steer 8. This chapter introduces a
mechanical design of a wheeled mobile robot, in the category of a 4WD4S displayed in figure
10.2. The kinematic design possesses 12 DOF, being 3-DOF by wheel, which includes a spring-
mass-damper angle (7), a wheel rolling angle (¢), and a wheel steering angle (B). Depending of
the locomotion configuration mode adopted, when the number of this variables in use are larger
than three (x, y, 0), the resulting mathematical system is considered with kinematic redundancy.
An advantage of this complex structure, is that its wide degree of freedom capability allows

different holonomic configuration modes to be featured.

Steer speed [3

Steer motor
st . Encoder B
€er motor
ﬂﬁ Active suspension module N /
S 22 . |
Encoder B > 4 Steer speed B . 4
S ) Linear sensor 7y s Slip ring

Suspension
angle y
Drive motor

and encoder ¢

Linear sensor y

3 -
®
1 \_ Drive motor . . .
Drive velocity ¢ Drive velocity ¢
Encoder ¢ . Contact point of the wheel

Figure 10.2: Design of the 4W robot mechanical prototype, and one wheel suspension assembly.

Figure 10.2 depicts several suspension elements proposed for the wheel-suspension assembly.

The platform is instrumented with two DC motors with encoders, one for the steer (8), another
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to drive (¢). One slip ring to transmit electrical signals between the robot, the motors and the
encoders. Articulated arms with a sensor angle measurement (). The lateral mobility restric-
tions of the robot’s wheels (orthogonal forces) are also called the non slip kinematic condition.
Figure 10.3 depicts a top view of the 4W structure kinematics. The wheel’s instantaneous an-
gular velocities are denoted by ¢4, ..., ¢;. Likewise, the wheels’ steering angle are defined by
B1, .., B, which represent its value within the robot’s attached coordinate frame. The wheels’
contact points locations are given in cylindrical form by a4, .., a,;, with their respective distances
i, Vi={1,---,4]} w.rt. robot’s geometric centre. Thus, the orthogonal kinematic components

constraints s” for fixed and centred wheels is described by,
cos(a + B)sin(a + B)lsinB| R(O)E =0 (10.1)

where £ is the robot's posture, and R(6) is the rotation Euler matrix. This is the kinematic

restriction given by a single wheel yielded to the robot’s entire motion behaviour.

YR
A
oczzn—a._-". o, =0 e
oc3=7c+oc".‘4 o,=2n—o. g L
B B
Pt N | | S RN
% W NE o

Figure 10.3: Top view of a 4W drive-steer robot's kinematic configuration.
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We started our reasoning following the reported method of non-slip kinematic conditions, and
the notation established. Thus, working from equation (10.1), the kinematic restrictions matrix
is defined by K,

cos(a + B1) sin(a + B1) Isin(By)

K, —cos(a — By) sin(a — Bs) Isin(By) (10.2)
—cos(a + Bs)— sin(a + Bs)l sin(Bs)
cos(a — B;) —sin(a — B4)lsin(B;)

The fixed-wheels matrix K, is obtained from the orthogonal kinematic restrictions of all in-
volved fixed conventional wheels in a 4WDS structure. In addition, the kinematic conditions
for the centred steerable wheels are given in matrix Ky. The resulting mobility capability using

the non slip conditions yields a mobility degree of 6,,=0, and a steering degree of §;=3
6m =3 —rank{K,}

and

6s = rank{Ky}

The numeric value 3 arises from the number of degrees of freedom in the robot's plane of
mobility x,y, 6. In our particular case (i.e. 4WDS structure), this factor uniquely includes centred
steerable wheels. Thus, both matrices are K; = K,. This is because the rank(K;)=3. Moreover,
hereafter u(f) is the control input vector, so the general formulation for the posture kinematic
model is z = B(z)u(t), obtained from the product of transposing the orthogonal rotation matrix

R(0)T and the vector solutions (the null space vectors) of Ky, described by X(K,) as

z = R(O)TE(Ky)u (10.3)

Since the rank(Kj)=3 it is not possible to obtain the posture kinematic model because the

null-space vector for Ky has dimension zero.

Y(Ky) =0 (10.4)

Therefore, a real mathematical solution for this algebraic problem is tackled from a differ-

ent kinematic approach in the next sections.



258 CHAPTER 10. ALL-ACTIVE 4-WHEEL KINEMATICS

10.2 Damper kinematic constraints

We model pure rolling conditions affected by the suspensions damper effects. Figure 10.4
depicts the suspension’s mechanical parameters. x,, is the wheel position along the robot’s
longitudinal axis this value refers to the wheels’ contact regions, also defined by equation (10.5).
Xy, varies as the suspension’s angle 7; changes overtime. Such wheel variations in translation
affects the robot’s global controllability and manoeuvrability. The wheels’ coordinates along
the robot’s fixed longitudinal axis are x;, as depicted by figure 10.4. Coordinate values along
the robot’s transversal axis are y;, and for each wheel such values prevails as a constant, as

denoted by equation (10.6).

@ Z turn axis

. i v, =V,
‘

Ay, Ys

_Reee
LT I}

(Frontal area of
W 4 4 2 ’ the vehicle)

o) Xy
L 1,
¥ i

/ ii B, B

Figure 10.4: Left: robot suspension system (side view). Right: kinematic parameters (top view).

Definition 10.2.1. The robot’s wheel position is (xy,, yw,) Vi = {1,...,4}.

Xy, = dq +dy + dcos(y;) (10.5)

with parameters d, dy, ds, and

Y = (10.6)
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In addition, the model for v; is given by the active suspension system. Let us define the
following parameters, A; is the suspension offset that sets the device’s fixed height (given in m).
m is the spring mass (in kg). k, and k,, are the restitution and viscous coefficients, respectively.
g is the gravity acceleration constant (m/s?). Finally, s and ¥ are the instantaneous velocity
(m/s) and acceleration (m/s?) of the spring-mass elongation. Wheel contact points prevail with
no change when steer angles are |B;| > 7 and no damper effects exist. k, = 1, and k, = 0.

Gravity force exerts no affects over wheel contact points.

v; = arcsin <Ads> (10.7)

Proposition 10.2.2. With no damper effects, it is assumed the z-turn axis is placed
on the robot’s geometric centre. Hence, this location is taken as a common reference
through ;.

l; sin(a;) = xy, (10.8)

Thus, three linear equations that project x“i are stated. Since the model is already
known from a wheel plane perspective, then the expression (10.5) is substituted. A first

equation approach is proposed:

l; sin(a;) —dy —dy — dcos(yl) = 0; (10.9)
A second equation approach is defined,

Yw, tan(a;) —dy —dy —dcos(y;) =0 (10.10)

And a third mathematical approach,

yW,‘

m - d1 - d2 - dCOS('}’i) = 0 (10.11)

The robot’s global motion behaviour is given critically by the instantaneous value of 7;.
An electric adjustable resistance (potentiometer) is used as a linear measurement device to

obtain direct measurements ¥;. Nevertheless, a set of functional forms for 7; are proposed, in
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accordance with the actual terrain and manoeuvrability situation. Thus, two more propositions
for y; behaviour are stated, suited to different situations. The following propositions assume

magnitudes of [; as variables and converge to the z-turn location (x,, y,).

Proposition 10.2.3. Damper effects are restricted to vy = v4_1, V t, steer angles 3; = 0, Vi,

and (x,,y,) is located at the robot’s centroid as a consequence of = 0.

(10.12)

. [ Mg —Ky¥s + As
7l(y)_< K:r-d >

Proposition 10.2.4. Damper effects have no restrictions, and vy + v 1 Vt, a; + 0, B; + 0,

and (x,,y,) varies its location.

mg — mys — KyYs + As)

101
o (10.13)

?’i(i]s:ys) = arcsin <

10.3 Instantaneous z-turn axis model

In this section, a mathematical model is proposed to infer the z-turn axis location. The z-
turn is a virtual axis that implicitly governs the robot’s body yaw speed w.r.t. its rotation
point. There is not any existing sensor device to measure (x,,y,). However, we introduce
an approach to infer this on-line by deploying 2-axis accelerometer devices on board (figure
10.5). This is a contribution approach where the z-axis location is used to control the robot's
manoeuvrability, forcing it to reach a desired posture regardless of slip/skid effects. We state in
this manuscript that the z-turn region of translation is scoped by the wheels’ location (xy,, ¥w,)-
Inertial accelerometer devices at fixed locations are deployed to infer (x,,y,), by means of
their instantaneous acceleration measurements overtime. Velocities in local inertial systems
are deduced by numerical integration w.r.t. time. Let us define a velocity vector v = (%, ;(I)T for
each robot’s inertial device on board. In accordance with figure 10.4, let us represent the two

accelerometer devices a; and asz as they match the wheel number.
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The general model of average acceleration is
adt = dv (10.14)

Thus, integration w.r.t. time in interval At = t, — t;, and highlighting that acceleration & is the

Vo tQ
/ dv =a / dt (10.15)
A% fl

Developing and algebraically arranging previous equation for two dimensions:

sensor measurement,

x Xt_ X
‘ (1] At (10.16)

Yt Yt Yt

T Wheel 4 T Wheel 3
I e I
T 4 [

o (Frontal area of
VXR the vehicle)

4
1
1

Figure 10.5: a) The z-axis location is displaced from the robot’s centroid; b) robot’s direction (green arrow)
effected by the z-turn and wheels’ behaviour.

The instantaneous acceleration a is the sensor’s measurement with two components & =
(5&, f?)T. As depicted by figure 10.5, two accelerometers a4 and az were fixed to robot’s body. a;
the reference of a given inertial device. To find an exact solution for two dimensions, we set

two equations as a minimum requirement.
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Proposition 10.3.1. The trigonometric ratio between accelerometer, z-turn axis, and

measured speeds defines the next relationship.
e v
s Bt A / ¥ ) at (10.17)
X, — x4 ¢ \ X%

This proposition satisfies the stipulation that the j' accelerometer location (x%,y%) w.r.t.
(x;,¥,) has the same geometric ratio as the accelerometer readings f P /x%dt, if and only if
it is aligned with the robot’s fixed frame. Thus, from this proposition, the next theorem is
presented, which states that an equation system allows description of a behavioural z-turn axis

location.

Theorem 10.3.2. One linear equation describe a single accelerometer, and at least

two speed measurements are required as a necessary and sufficient condition to infer

. A4 .o A4
e [ o= e [ () 1018
t t
A3 . d3
Vs —x/(iﬁ,s> dt = y® —x%/(;gs) dt (10.19)
t t t t

(X2, ¥2)-

and

This particular set of equations is algebraically rewritten and integrated w.r.t. time, accord-

ing to equation (10.16). Thus, for device ay,

. ay Say . ay Sag

Vilg + 9 At Vil + Vi AL

v — | e o =y - | S ™ (10.20)
Xy + X AL Xl + X AL

Likewise the equation for device asx is

9, - I, + DAL X, = g — vt + At X (10.21)
x5y + XAt x5y + XAt

Hereafter, by substituting some terms for the sake of easy when treating the equations system

algebraically, let us define & = (¥{",/x{;), n; = ¥*, and @i = x®.
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The system of linear equations is therefore arranged in the matrix form, and it is solved
for an analytical solution:
-G} [x m — 1

_ (10.22)
1-C5 b s — 033

The solution for planar coordinates of the z-axis is expressed through the next corollary,

Corollary 10.3.3. Given a squared matrix, the Cramer theorem yields the z-turn model

solution stated by
—C3(m —0161) + Ci(ns — 03 — &3)
-G+ G

Xz = (10.23)
and
9, = M — 0303 — M + Q181
’ -G+ G

(10.24)

In addition to theorem (10.3.2) and corollary (10.3.3), this idea is complemented by the

kinematic effects yielded by the suspension angle behaviour 7; through the factor [;.

L =\ (Ax)? + (Ayy)? (10.25)
defined by the terms,
AXj = Xy, — X, (10.26)
as well as the magnitude,
AY; = |Yw, — ¥4 (10.27)

The angles a; denote the angular relationship between [; w.r.t. the x-axis (counter clockwise)
as depicted by figure 10.4. Each «; angle value varies according to [; values, which are effected
by the suspension oscillations. For —y, a negative arcsin sign is obtained with ay = 27 +
arcsin(Ayy/l;), and ay = s — arcsin(Ays/ly). For —y, a positive arcsin sign is obtained with
az = arcsin(Ays/ls), and a, = ;1 — arcsin(Ay,/l;). In addition, we may obtain a simplified

expression for a by replacing the terms,

6; = arcsin < Alyl> (10.28)

i
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Hence, a4 = 2w + &1, ap = 7t — 69, az = 53, a;, = 1 — 6, Likewise, the formulation of f3; to
control the wheels’ steering is 1 = —ay + ¢1, B2 = —ap+ o, B3 = —az+ ¢P3, B, = —a, + ¢, where
the variables ¢; are the direct angle measurement given by the encoders to quantify steering
angles. For instance, when the wheels are set fixed with no steer, then ¢; = 0. Without loss of
generality, by applying theorem 6.2 and corollary 2, figure 10.6 depicts the robot’s pose with

its instantaneous z-turn axis relocation during a trajectory.

T wre T . . T
Robot position and direction ----#
Zturnaxis ©
‘
o
‘
[0}
1/
¢}
‘
o
'
3F o R
‘
¢}
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Figure 10.6: Z-turn axis displacement (circles), with respect robot's pose (vectors).

10.4 Motion stability analysis

When the inertial effects exceed the friction force between the four wheels contact points
p: = (x;,¥:)" and the ground surface, the wheels may lose physical contact with the terrain
surface and manoeuvrability efficiency and stability are disturbed. The wheels’ contact point
separation from the surface occurs due to exceeding magnitudes of z-axis moments of inertia

I, w.rt. its farthest instantaneous wheel contact point, namely p. and obtained by,
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dy = max |[p; - pi|

1<i<4

Hence, the angle «; is maximized with dy and is given by ay

cos(ay)
pc = dy (10.29)
sin(oy)

In figure 10.7 depiction of the turning point p, = (x,,¥,)" is given (also represented by circles
in figure 10.6), in which an instantaneous moment of inertia I, is yielded. Considering only the
strongest angular moment magnitude M = [,a, among the four wheels’ contact points unlike

other vehicle’s mass point is meaningful.

Figure 10.7: Dynamic variables and parameters related to the moment of inertia w.r.t. p,.

This is assumed to be the case when wheels strike no obstacles on the terrain surface
that would forcibly separate the wheels from the ground. Nevertheless, our concerns is with
the magnitudes of inertial effects that may yield instability. A vehicle’s swift actions might
continuously yield strong inertial moment effects. As a consequence, instability rises as |y;]
increases in magnitude. Thus the case that better suits the situation was previously given in

proposition 10.2.4, for the angle 7; as a function of ¥ and §.

mg _mj']s _Kvys + As>

0,9.) = avcsin —
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Variations of I, and |y;(¥, §)| contribute to separating the robot's centre of gravity from the
ground, and damper effects occur more frequently impacting the contact points’ friction with

the ground’s surface. Thus, wheels vector point location p; is given,

dcos((9,9,)) b\'
D = ( 9.5.) ,2> (10.50)

hence, according to figure 10.7 the vehicles geometric parameters are defined as
c13 = ||pz — P13/ cos(ay 3) (10.31)

and

Cou = ||Pz — P24 coslag) (10.32)

Likewise, considering that the vehicle’s height a(y;) changes overtime in terms of 7;,
a(yi) = r +dcos(y) + As (10.33)

The robot’s inertial moment is a mass property of a rigid non-uniform body, in which its

inertial moment is located around its z-turn axis p,. Thus, the parallel theorem is applied for

cq bQ m
I= /02 <12> ?dc (10‘34)

Then, after integrating the general expression,

an arbitrary axis.

M2 4 2 (10.35)

[=—
12

Hence, substituting the variable limits, ¢ = ¢; + ¢y (from figure 10.7), the z-turn axis inertial

moment is given by,

I'= % <b2 + ([lpz — p1] cos(ay) + [|p; — P2 cos(ag))2> (10.36)

Since the angular moment is equivalent to the torsional moment M = I,dw/dt, we refer to the

tangential effects on pe,
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Proposition 10.4.1. For the farthest wheel contact point p. from the instantaneous spin-

ning point p;, the tangential force fr has the equivalence I,dw/dt = frds.

dw,
IZW =m-ar||p; — pe (10.37)

The tangential acceleration ar of the wheel point w.r.t. z-turn point ||p, — p.| is,

I vc

| 1058)

ar =

Furthermore, a second proposition terms of the energies associated with the tangential force

fr is defined,

Proposition 10.4.2. The instantaneous torsional moment M, yielded w.r.t. p, as a func-

tion of the kinetic and potential energies,
M, = fT“pz — Pc ” (10-39)

The torsional moment expressed in terms of the Euler-Lagrange form,

d /oxX oxX
M, = at <6q> - E (10.40)

The generalized coordinate vector q = (v.,w.)" represents actual wheel’s contact point
P whith highest inertial value. v. and omega. are tangential and angular velocities
respectively.

1 1
L= §mvf + §Izw§

Therefore, the tangential force fr of p. if defined by,

|P(ﬂﬁ—wﬁ
Y4t \aq) " aq

= e, — vl

(10.41)
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Therefore, from propositions (10.4.1) and (10.4.2), the inertial equilibrium conditions arises,

and its defined in lemma (10.4.3),

Lemma 10.4.3. The system has inertial stabillty when either of following equilibrium

conditions occur:

a) If a. < €4, pc remains in contact with the ground’s surface. Where g, is the limit

acceleration magnitude, in terms of moment of inertia (Prop.10.4.1).

L

— | < &g (10.42)
mez - pc“

b) If fr < &, p. remains in contact with the ground’s surface. Where & is the limit

force magnitude, in terms of energies (Prop.10.4.2).

IMe |

oz = ool < & (10.43)

10.5 Wheels kinematic control law

This section concerns the robot’s kinematic analysis on the wheels’ degrees of freedom (DOF)
not yet discussed in ¢; and 3;, and how they contribute in effecting the robot's posture. Figure

10.4 depicts a description of the wheels steer angle 5; Vi = {1,...,4}.

Lemma 10.5.1. The robot’s body motion (x;,¥;,6;) is partially contributed to by each
ih with wheel tangential velocity r¢;, of nominal radius r, and of angular speed ¢;. A

single-wheel contribution to the robot’s motion is described by equation (10.44),

cos(a; + B;)

v =£ sin(a; + Bi) | o (10.44)

6, sin(f)
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However, the whole robot's translational and rotational velocities &€ = (x, ¥, 0)7 are given as an
average of all wheels fixed to the system. The four wheel restrictions along the centred wheel

plane are described by expressions (10.45)-(10.47).

4
X = %Zcos(ai + Bi) i (10.45)

A
y = ZZSin(ai + B @i (10.46)

In addition, see the model for 0 in terms of [;, the latter discussed in previous section,

\ 3

4
sin(B;) @
= Y L (10.47)
i=1

Thus, in stating the wheels kinematic constraints in vector form for a 4W4D system, the wheel's

plane restriction is governed by the vectors k;.

This is described in the following equations (10.48)-(10.51).

Ky = <cos(a1 + By, sinlay + B, Si“l(fi) ) ! (10.48)
Ky = <cos(oc2 + By), sinfas + Ba), s“‘l(QBZ) > ! (10.49)
Ks = <cos(a3 + Bs), sin(as + Bs), S‘“f“) (10.50)
Ky = <cos(a4 T B, sinlay + B), Sinliﬁ‘*) > ! (10.51)

Such that, the four wheels rolling condition vectors comprise the transition non-squared matrix

K containing all-wheel restrictions, given by,

K=(KZ1 Ko K3 KZ4) (1052)
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Similarly, we define a vector of rotational velocities & to simplify the four-wheel system,
d=r(gr g 5 Pu) (10.53)
The functional form for each wheel speed ¢; is described by the third degree polynomial,
@i(di) = ao + ard; + axd} + asd} (10.54)

Obtained from the response curve of the actuator device (DC motor), with calibrated coefficient
terms ao, ..., as. d;, the i" digital control variable at computer level is associated to its rotational

speed ¢;(d;). Thus, without loss of generality, we state the next corollary:

Corollary 10.5.2. The control vector of a 4W active system is described by

u= - (10.55)

Furthermore, the K matrix is not a square and, except for the fixed suspension and syn-
chronous and differential steering mode the matrix inverse does not have a trivial solution,
and for this reason the inverse matrix K;! is obtained numerically. The inverse kinematic so-
lution for the generalized system is given through a general inverse form of the non-squared

transition matrix K, namely pseudo-inverse for linearly independent columns, where,
d=4K" - (K-K")'.u (10.56)

where the Moore - Penrose pseudo-inverse exists and is unique K* - K = I. Such that, K* =
K- (K-K").
Moreover, regarding the robot’s forward kinematics solution, it is in principle given within

a local inertial system. Nevertheless, its enhanced description of a global system may be

described by,
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Theorem 10.5.3. The posture £ of a 4W system with active ¢, B, and ¥ variables is
controllable through the state equation (10.57),

&1 =R(0)- & + B(O)u; +t (10.57)

where t = (., t,,0)" is a translation vector, and R the squared orthogonal Euler rotation
matrix, R(0)" = R()~".
cos(0) — sin(6)0
R(6) = | sin(B) cos(6) 0 (10.58)
0 0 1

Hence, the squared transition matrix B is defined by,
cos(6)00

B(6) = [ sin(6)00 (10.59)
0 01

For instance, the recursive form to calculate the robot’s position at time t + 1, expanding the
control vector u is stated. By assuming t = (0,0,0)7, which means the common coordinate

system origin is given at the robot’s initial posture, we have
. . 1 .
& =R-&+ ZB(Q) -K(a,B) - @ (10.60)

Thus, by algebraically expanding the expression (10.60), the general equation (10.61) for a four-

wheel robot rises to allow multi-configuration of a diversity of four-drive/four-steer kinematic

modalities:
, @1
Xy cos(ay + Bi)cos(ay + Ba)cos(as + Bz)cos(as + Bs) i
; r ¥
E g =R-|[y |+ ZB(G) - | sin(ay + B1) sinay + Bo) sinlas + Bs) sinlay, + i) | - | (10.61)
0 sin(By) sin(Bs) sin(Bs) sin(B.) $s
t Iy lp I3 L,

@
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Finally, the next statement (10.5.4) is an inverse general solution, which is consequent of the

previous theorem.

Corollary 10.5.4. The wheel velocity A¢ required to displace the robot from & to &£ .4
in a global inertial system is modelled by (10.62),

d=4KT-(K-K')"' B (&1 - & - 1) (10.62)

This last equation (10.62) provides the wheels speed magnitudes required between the pos-
tures &1 and &. However, the major contribution of this mathematical solution is that we
now can manipulate the variables «;, and ; to associate their configuration with different

4-drive/4-steer kinematic modalities as will be discussed in next section.

10.6 Kinematic multi-configuration

In this section, we deduce the kinematic control law transition matrix K for some structures
to describe their locomotive modalities. To provide a better understanding, figure 10.1 depicts
some related kinematic variables and parameters. Configuration with fixed suspensions and
wheels. Lateral velocities are vy = vy = v,,, and vz = v, = v;. For fixed suspensions, as well as
the z-turn axis aligned in the robot’s centre, the magnitudes of Ax; = Ax, Ay; = Ay and the
values of [; = | are set as constants.

The values are setas a3y = 21 —a, ap = T+ a, az = a, and a, = 71 — a. In order to align
the wheels’ orientation with the robots local reference axis X, the value of the 8 angles are
equal to the negative value of the respective a, angles (with this assumption, it is not necessary
to consider clockwise rotation of the left-side wheels). Thus, B; = —ay, B2 = —ag, Bs = —as,
and B, = —a,. By replacing the values 8, a angles, the kinematic control matrix is obtained
accordingly. Additionally, if we assign the value of a = 7, the resultant equation yields a
kinematic model for a 2W differential-drive robot. This locomotion and steering configuration
is depicted in Figure 10.1-a), and is included in table 10.1 in the non-holonomic group 1:NH.
The values a,, B, angles and | used for differential mode, are restricted to fixed suspension

and steering angles. Thus, ay = 1/47, ap = 7/47, az = 3/4, and ay;, = 5/4, andB; = —a;.
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For this configuration mode the vector of velocities for the right (wheels 1 and 2) and left
(wheels 3 and 4) is described by the wheels’ speed vector ® = r(¢,, ¢;)". Through equation
(10.52), a simplified restriction matrix (10.63) is obtained.

2 9
K=|0 0 (10.63)
V2
1

ax

Furthermore, the matrix K is conversely described with its inverse solution K~! provided by

the next expression (10.64),

10 IvV2
= (10.64)
4\ 10-1v2

For simulation purposes, the wheels’ tangential speed ranged from 0 to 0.2m/s in alternate
directions on sides of the 4WD4S. The trajectory obtained in the global plane is depicted in

figure 10.8 for two types of robotic structures: a two-differential speeds, and a four-differential

speeds.

Y(m)

T
Robot position and direction -----

-

Y(m)

T T
Robot position and direction ——

X(m)

X(m)

Figure 10.8: Two-differential drive locomotion configuration trajectory; and 4W-differential drive (four asyn-

chronous speeds) trajectory.

The change of kinematic properties from 2WD to 4WD, improves the robot manoeuvrability

by reducing kinematic mobility constraints, as depicted by previous figure, accordingly.
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Another numerical analysis case is depicted by figure 10.1-b), which concerns case 2 of table
10.1, 4W four drive, and fixed wheels with no steering control. A simplified restriction vectors

matrix (10.65) is algebraically obtained:

1 1 1 1
K=| 0 0 0 o0 (10.65)
1V21VE_1V2_ 1.2
21 21 21 21

Likewise, the inverse matrix K is described by (10.66). An issue with the differences between
this configuration mode and the previous one already depicted by figure 10.1-a) is the difference

in the wheel's velocities vector. For this case, all-wheel systems are explicitly described in

(i) = r(('pll (PZI (PSI (p/x)T'

10 V2l

. |10 V2l
K'=2 (10.66)

4 110-v21

10-v21

For the sake of simplicity in obtaining the matrix solution, we again considered the case with

fixed suspension, with no variations of a; and f; angles 10.8-right.

The values for [;, a;, and B; in each wheel are the same over time. The angle ¢ was the
only angle showing synchronization of all wheels. Again for the sake of algebraic simplicity
in the solution form, the suspension is considered fixed. Thus, a; and [; have the following
constant values ay = 1/4, ag = 7/47w, as = 3/47m, ay, = 5/4st, and B; = —a; + ¢;. The transition
matrix of four wheels kinematic restriction for an asynchronous robotic structure is given in

a simplified form by equation (10.67).

cos(Bs) cos(Bs) cos(B;) cos(B)

K = | sin(B¢) sin(B¢) sin(B¢) sin(B) (10.67)

sin(% +p¢) cos(F +p¢) _ cos(¥ +Bx) _ sin(% +p¢)
l l l l




10.6. KINEMATIC MULTI-CONFIGURATION 275

Likewise, the inverse matrix K is described by (10.68).

cos(By)sin(By) 2sin(7 + By)l
cos(By)sin(B) 2cos(7 + Bl
K*'==2 (10.68)
4 cos(By)sin(Bs) —2cos(F + i)l

cos(By)sin(B) —2sin(F + By)l

The figure 10.9 a numerical simulation of trajectory obtained by the synchronous steer/drive
locomotion configuration, starts at a steering angle of —90°, with increments of 15°/s, and all-

wheel speed of 0.2m/s. The robot’s initial location is xo = 0.5m, yo = 1.0m, 6y = 0 degrees.

a) x

Robot position and direction —

Y(m)

b) X(m)

Figure 10.9: Robot's synchronous mode (above); trajectory simulation (below).






Numerical Modelling in Robotics (2015)

Bibliography

(1]

Arslan, S., and Temeltas, H., Robust motion control of a four wheel drive skid-steered mobile robot,

In 7th Intl. Conf. on Electrical and Electronics Engineering (2011), vol. 2, pp. 415-419.

Campion, G., Bastin, G., D'Andrea N.B., Structural properties and classification of kinematic and
dynamic models of wheeled mobile robots, IEEE Trans. on Robotics and Automation, vol.12(1), pp.

47-62, 1996, doi: http://dx.doi.org/10.1109/70.481750.

Cordes, F., Dettmann, A., Kirchner, F., Locomotion modes for a hybrid wheeled-leg planetary rover,

IEEE Intl. Conf. on Robotics and Biomimetics, pp. 2586-2592, 2011 doi: 10.1109/ROBIO.2011.6181694.

Duan Song He-nan Chen Dan-yong Li, Y., Visibility-based fault-tolerant lateral and longitudinal

control of 4w-steering vehicles, IEEE Transactions on intelligent transportation systems 12(4), 2011.

Filipescu, R. S. A. F. V. M. S,, Sliding-mode trajectory-tracking control for a four-wheel-steering

vehicle, In 2010 8th IEEE Intl. Conf. on Control and Automation, pp. 382-387.

Freitas, G., Gleizer, G., Lizarralde, F., Hsu, L., Reis, N. R. S., Kinematic reconfigurability control for an
environmental mobile robot operating in the amazon rain forest, J. Field Robot, vol.27(2), 197-216,

2010, doi: 10.1002/rob.20334.

Grepl, R., Vejlupek, J., Lambersky, V., Jasansky, M., Vadlejch, F., Coupek, P., Development of 4ws/4wd
experimental vehicle: platform for research and education in mechatronics, IEEE Intl. Conf. on

Mechatronics, pp. 893-898, 2011, doi: 10.1109/ICMECH.2011.5971241.

lagnemma, K., Rzepniewski, A., Dubowsky, S., Pirjanian, P., Hunts-berger, T., Schenker, P., Mobile robot

kinematic reconfigurability for rough-terrain, 2000.



278 BIBLIOGRAPHY
[9] lagnemma, K., Rzepniewski, A., Dubowsky, S., Schenker, P., Control of robotic vehicles with ac-
tively articulated suspensions in rough terrain, Autonomous Robots, vol.14, pp.5-16, 2003, doi:

10.1023/A:1020962718637.

[10] Kasahua, M., Mori, Y., Trajectory tracking control of the four-wheel vehicle according to speed

change, In SICE Annual Conf. 201, pp. 3449-3452, 2010.



Content

Numerical Modelling in Robotics (2015) ®mmagc'ence

Chapter 11

CONTROL OF A SELF-CONFIGURABLE

QUADRUPED

Manuel Vega Heredia and Edgar A. Martinez Garcia

Laboratorio de Robdtica, Institute of Engineering and Technology
Universidad Auténoma de Ciudad Judrez, Mexico.

This chapter describes the mechanical design, an Euler-Lagrange analysis, and the mo-
tion model of a self-reconfigurable quadruped robot. The quadruped robot changes its limbs
locomotive configuration through different kinematic configurations. The proposed limb mech-
anism poses 5 independent rotational control variables, and are discussed through a kinematic,
and an energy-based analysis. The design of a leg-wheel that is self-reconfigurable allows
the robot to change its locomotive settings according to the type of terrain. Thus, the ba-
sic approach of this chapter is on the dynamic modelling of the limb required for control of
locomotive functions. In recent years there have been a series of rules based on space tech-
nologies, among the most recognizable is the Athlete robot of NASA “, which is a hybrid robot
with limbs and wheels, it uses both forms of locomotion found simultaneously. Likewise, a tele-
operated hybrid reconfigurable robot” with limbs was developed where the wheel becomes a 4
degrees of freedom mechanism. In previous reported work artificial locomotion control with
human-robot interaction has been developed'. Applications of industrial inspection deploying

hexapod robots with laser range and vision as been reported”. The kinematic control play
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a fundamental roll in redundantly actuated robots””, as well as the slip measurement control
of leg/wheel mobile robots’. Realization of biped leg-wheeled robots®, and leg-wheel hybrid

quadruped’ has been reported.

11.1 Limb’s mechanism description

In this section the design of a self-reconfigurable leg-wheel mechanism is disclosed. The limb
system has the ability to drive the links through the joints to adopt positions as depicted in
figure 11.1-right. Figure 11.1-left depicts the limb’s kinematic diagram, which consists of 5
rotational driven joints, providing the capability to configure as wheel, leg, hook, foot, and

aquatic fin.

Yy [; - link length fixed
¢; - joint’s rotational angle

' Amphibious — like~
swimming (s-like)

Figure 11.1: Kinematic diagram of the proposed limb (left.) Locomotive limb's configurations (right).

Some of the rotational servomotors allow 2srrad of motion, while other servomotors only
work within a range of motion of srrad, accordingly as required. According to figure 11.2, the
position of the wheel configuration depends on the ensemble secured by a magnetic docking
device located at the end-point of each rigid link forming a kinematic chain, which may be
closed with the rear section of the first link. Likewise, the mechanical design of the limb
includes a magnetic device that allows a safe posture capable to support loads, connecting the

core with the middle of the third link.



11.2. LIMB KINEMATIC ANALYSIS 281

Steering device

(b)

.Joint

(a)

support

Magnetic lock

/ Rotational axis

Figure 11.2: Self-reconfigurable limb’s mechanism design.

11.2 Limb kinematic analysis

The mobility of a mechanism is defined by the number of independent variables known as
driven joints. Each structure component is considered a rigid link (ideally non deformable).
The analysis is developed with foundations on a generalized coordinate system for the entire
limb, shown in figure 11.1-left. The general kinematic vector equation with inclusion of all

active joints represent the limb’s contact point with the surface p € R, such that p = (x,y,2)",

Axiom 11.2.1 (Limb’s position model). The algebraic limbs model with all active joints is

{la + lp cos(6y) + L. sin(6y) + s cos(B + O0s) + L, cos(6y + 05 + 6,)
+15cos(0p + 05 + 0, + 05) } cos(0;)
P= | Isin(0) + L, + l3sin(0y + 05) + L, sin(0y + 05 + 6,) + ls sin(0y + 05 + 6, + 65) (11.1)

{la + lp sin(By) + I sin(6) + Iscos(0y + 05) + 1, cos(6s + 05 + 6,)

+15cos(0y + 05 + 0, + 65)} sin(6;)
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By deriving the position equations w.r.t. time, the following equations are obtained:

,_d
p= dtp
and
X = iJC' g = i ; Z=—z
“ar YT T dt
Therefore,
X = (I + lp cos(6y) + L. sin(By) + I3 cos(fy + 63) + I, cos(By + O3 + 6,)
+15c08(6y + B5 + 0, + 05)) sin(6)(81) + <—zb sin(6)(6y) + Lo cos(6s)
—I3 sin(92 + 03)(92 + 93) -1 Sil’l(@g + 65 + 94(92 + 93 + 94)
—15 Sil’l(@g + 93 + 94 + 95)(92 + 93 + 94 + 95)> COS(91)
and
S/ = lb COS(QQ)(@Q) + lc + l3 COS(QQ + 93)(92 + 93) + l4 COS(QQ + 93 + 94)
By + 05 + 0,) + lscos(By + 05 + 0, + 05)(By + O5 + 0, + Os)
as well as

z = (la + lb sin(92) + lc Sil’l(@g) + 13 COS(QQ + 93) + 14 COS(QQ + 93 + 94)
+l5 COS(QQ + 93 + 94 + 95)) 005(91)(91) + <lb COS(QQ)(QQ) + lc COS(QQ)(QQ)
-I-l3 sin(GQ + 93)(92 + 93) + 14 sin(92 + 93 + 94)(92 + 93 + 94)

+l5 Sil’l(@g + 93 + 94 + 95)(92 + 95 + 94 + 95)) sin(Gi)

(11.2)

(11.3)

(11.4)

(11.5)

(11.6)

Figure 11.1-right shows the different kinematic configurations, where the limb’s kinematics

is reconfigured by cancelling motion in some joints, but still uses other joints that are necessary

for a given locomotive configuration. Thus, next sections will define the kinematics of those

locomotive configurations.
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11.2.1 Limb’s posture configured as wheel

For the wheel configuration, only steering angle and driving joint are enabled to be controlled
for each limb configured as a wheel. The rest of the joints will prevail with constant positions
over time, while the kinematic configuration is used. The next vector equation is postulated

and describes how its kinematic models a wheel.

Postulate 11.2.2 (Kinematic model for wheel configuration). The kinematic vector model for

wheel configuration is postulated by

cos By (la + Iy sin(6y) + L. cos 6y)

Pi lp cos Oy + I sin Oy (11.7)

sin 0y (la + Iy cos(6y) + . cos(6y))

By defining some expressions, the following algebraic process is simplified, l;, = (la+Ib) sin(6,),

lip = (la + Ib) cos(By), loq = lc cos(By), and Iy, = lc sin(6;). Hence, the wheel’s velocity vector,

—sin(01)01 (Liq + loa) + cos(01)(Lip(6) — Lops)

vi= |y | = —5in(0)0slb + loq By (11.8)
VA

cos(01)0: (lip + log) + sin(01)(—liq by — loy0y)

Equation (11.1) describes the general kinematics of the entire limb. However, by replacing the
angular constant values combined along the joints, we can set special postures to exert variants

of locomotion over walking cycles. Thus, hereafter such special positions are established.
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11.2.2 Limb’s posture configured as half-wheel
Similarly, as previous section, for the half-wheel configuration, some angular values are re-
quired to be defined to set the joints posture accordingly. Thus,

9(1 = —-15+ 92,' Qb = =30 + 92; QC = —45 + 92

And by substituting previous expressions, the vector position is stated,

Postulate 11.2.3 (Kinematic model for half-wheel configuration). The kinematic vector model

for half-wheel configuration is postulated by
cos 0y (la + I sin(6y) + I, cos By + 13 cos(0,) + L, cos(6p)
+15 cos(6.))

Pii = (11.9)
(I cos By + I sin O, + 13sin(0,) + I, sin(6y,) + I5 sin(6,))

sin 6y (la + (I, cos(6y) + L. cos(6s) + 13cos(0y) + 1, cos(6y) + Is cos(6.))

Therefore, its derivation w.r.t. time produces the limb’s velocity vector,

— sin(6;)01 (la + sin(B)Ib + lc cos(By) + 13 cos(6,)
+14 cos(By) + 15cos(6,)) + cos(0;) cos(6,)01b
—lc sin(6,)0y — 13sin(0,)0y — L4 sin(6p)0y — 15sin(6,)0s)

* — sin(0,)01b + Ic cos(0,)0y + 13 cos(0,)0
vi=|y| = . . (11.10)
+14 cos(6,)0, + 15cos(6..)0,

cos(61)01(la + Ib cos(6s) + lc cos(6y) + 13 cos(0,)

+14cos(6y) + I5c0s(0,)) + sin(6;) — sin(6y)0s1b

—lc sin(6,)0y — 13sin(0,)0y — L4 sin(Bp)0y — 15sin(6, )0,
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11.2.3 Limb’s posture configured as walking hook

285

For the walking hook configuration, a different set of joints need different numerical constant

angular values, which are required to be defined as to set the posture accordingly. The links

lig = lqg +1p sin(6y), Lip = lq + I cos(6y), Ip = I + I3 + 1,. In addition, the joints’ angle 055 = 0, + 65,

and 05 = 6, + 65 And by substituting previous expressions in the position vector, the following

postulation defining positions of a walking hook in Cartesian space is stated.

Postulate 11.2.4 (Kinematic model for walking hook configuration). The kinematic vector

model for walking hook configuration is postulated by

cos 01 (liq + (Io) cos(Bs) + s cos(fas))

Piii = (I, cos B,(1p) sin(By) + I5 sin(Bas))

sin 0y (l1b(12) COS(QQ) + 15 COS(QQS)))

Likewise, its first order derivative vector equation is given next,

- sin(01)91(l1u + (I) cos(By) + ls cos(6a5)) + cos(0y)(cos(0s)0y

lb — (lQ) Sil’l(@g)ég — l5 sin(025)(9'25))

* —Ip Sil’l(@g)Qéng +1p COS(92)2
Vii= |y | = N .
3 (I2)02 + 15 cos(6g5)(625)

cos(61)01 Liply cos(By) + s cos(Bos)

+ sin(0;) (=1, cos(6s)ly sin(65) 0y — 15 sin(6ys)00s)

(11.11)

(11.12)
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11.2.4 Limb’s posture configured as leg

For the leg configuration, a different set of joints need different numerical constant angular
values, which are required to be defined as to set the posture accordingly. The links [, =
lo + Ipsin(6y), lip = lq + lpcos(By) I = I + I3, and 5 = I, + Is. The joints’ angle 6y, = 6, + 0,
and 60y, = 6, + 6,. Thus, by substituting previous expressions in the position vector equation,

the next is obtained:

Postulate 11.2.5 (Kinematic model for leg configuration). The kinematic vector model for leg

configuration is postulated by

c0s 0y (liq + (I2) cos(6s) + (I45) cos(Bas))

Py = (Ip cos B(lp) sin(0y) + (I45) sin(0y,))) (11.13)

sin 64 (11 (lo) cos(6s) + (I45) cos(6a4)))

Furthermore, the first order derivative w.r.t. time is stated by

—sin(01)0 (lq + (I2) cos(6s) + (Lus) cos(0a4)) + cos(64)(cos(6s)0s

Ib — (Ip) sin(6s)0 — (Lus) Sin(604)604)

x —1b sin(6,)20,(15)
ool | . (11.14)
+1b cos(02)(1)0s + (L5) cos(694)004

z

cos(01)0 (11 (Iz) cos(0s) + (Lis) cos(0p))

+ sin(6y)(~1b(cos(6s)) (L) sin(62)0, — (Lus) sin(024)04)
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11.2.5 Limb’s posture configured as foot
For the leg using foot configuration, a different set of joints need different numerical constant
angular values, which are required to be defined as to set the posture accordingly. Thus,
lig = lg + lpsin(By);  Lip = lqg + lpcos(B); Ip =1+
and
Ops = Oy + 04 Opus = 0p+ 0, + 05 Oy =00+ 05 Opus =0p+ 0, + 05
By substituting previous expressions, the position vector is stated by

Postulate 11.2.6 (Kinematic model for foot configuration). The kinematic vector model for

foot configuration is postulated by

c0s 01 (liq + (I2) cos(6s) + (I4) cos(Bas) + (Is) cos(024s5))
Piv = (I, cos By(1p) sin(6s) + (1) sin(By;) + (I5) cos(Bos5)) (11.15)

sin 61 (I1p (I2) cos(6s) + (I4) cos(624) + (I5) cos(Bas5)))

likewise, the velocity vector is defined next,

- sin(91)91(11ﬂ + lg COS(@Q) + lz, COS(924) + l5 COS(9245>)
+ ¢0s(64)(cos(02)Baly — (I2) sin(62)02) — L sin(6s4)0os

— 15 5in(0245)Oos5))

lb COS(GQ)IQ COS(QQ)QQ + 1, 005(924)924
v = | 9| = ' (11.16)
5 —I5 sin(0a45) 045

COS(91)91 liblg COS(GQ) + l4 COS(924) + l5 COS(9245)

+ sin(6y)(—1Ib cos(By)ly sin(62)0s) — 1, sin(64)0n,

15 8in(B045) Oous
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11.2.6 Limb’s posture configured as aquatic fin

For the aquatic fin configuration, there are more active needed joints. Similarly, a different
set of joints are set with different numerical constant values to define the posture accordingly.
With links li, = Iy + I sin(6),lip = l; + I, cos(By), and I, = I, + Iz. And joints’ angle definition
Oos = Op + 04, Opus = Oy + 0, + 05, Oy = O + Oy, Oous = Oy + 0, + O5. Therefore, by substituting

previous expression in the next position vector,

Postulate 11.2.7 (Kinematic model for aquatic fin configuration). The kinematic vector model

for aquatic fin configuration is postulated by

c0s 6y (lq + (I2) cos(Bz) + (L) cos(6as) + (Is) cos(6ass5))
Pyi = (Ip cos By(1p) sin(6s) + (14) sin(Bos) + (I5) cos(Bass)) (11.17)

sin 61 (I1p (1) cos(Ba) + (I4) cos(6as) + (I5) cos(Bass)))

From previous postulate, by deriving w.r.t. time the velocity vector is defined,

- sin(91)91(lib + lg sin(Qg) + 14 COS(924) + 15 005(9245))
+ COS(91)(COS(92)églb - 12 Sin(eg)ég

~1, 5in(0p4)0p; — I5 sin(0245)0045)

lb 005(92)12 COS(QQ)QQ + 1, COS(024)924
vei=|y|= (11.18)
z

15 in(Bo45) Oous

COS(91)Q1 (l1le COS(QQ) + 14 COS(924) + l5 COS(9245))

+ sin(0y) (=1 cos(By)ls sin(6s)0s — L, sin(6s,)00,

—I5 8in(6945)Oo45)
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11.2.7 Numerical simulations

Thus, the numerical simulations of vector positions for each kinematic configuration that were
modelled previously are depicted now in figure 11.3. Each curve was plotted assuming a step
of a natural walking gait. Thus, the plots represent the limb’s contact point track in the way
a given locomotive configuration would move. For instance, the wheel configuration motion
(green color) only rotates, and each plotted point is the track of the limb’s contact point as
shown in figure 11.3. Likewise, the half-wheel configuration rotates touching the ground only

during a half circumference (7t rad) of the wheel, thus it is depicted by the red curve.

wheel
e, Half - wheel @
B, " leg @
" foot @

1 " hook
“r _ * _Amphibious @

Figure 11.3: Limb trajectory of different kinematic configurations.

Considering the same simulated Cartesian positions depicted in figure 11.3, the gait behaviours
are simulated in terms of the velocity space. The Cartesian components XYZ are illustrated

separately in figure 11.4 for the same limb’s kinematic configurations.

Figure 11.4: Distance vs. Time of the Cartesian components, X (left), Y (centre), and Z (right).
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11.3 Energy-based analysis

In this section an analysis of the evolution during a cycle of displacement of a leg-wheel system
is provided. Likewise, the instantaneous kinetic and potential energy behaviour during a motion
tasks is modelled. Thus, let us define the kinetic energy for a limb’s link assuming it poses a

cylindrical shape,

K = %mv2 + %mrQwQ (11.19)

where m is the mass of the link in kg. v is the translation velocity in m/s. and w is the link

angular velocity in rad/s. Likewise, a link potential energy is modelled by

P = mgh (11.20)
where g is the gravity acceleration constant in m/s®. h is the height of the mass of the link

in m. Hence, the total energy of the mechanical system is stated the Langrange operator X,

which consider the total kinetic energies and the total potential energies of the limb.

5 5
L= k- p (11.21)
i j

Hereafter, equivalences are indistinctly used ¢; = v and g» w. Thus, by expanding the

Lagrange expression,

}6

Il
N =~
3
e

N
_|_

|

3

=~

N
€

N

|
[
NO| =~
3
Q
TN
N~

' > sin q; (11.22)

and

1 L, 1 .
m;(x? + y? + 2%) + —m;(2)?67 - —m;g <> sin q; (11.23)
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11.3.1 Limb’s posture configured as wheel

Lagrangian calculation for the wheel configuration on each driven joint used. Thus, from

velocity equation 11.8 and figure 11.3,

Li = SMmivi + omi | 5 07 — 5mig | 5 ) sina; (11.24)
and analysing each link separately,
Ly = D18~ gl (11.25)

2 2

Thus, making some substitutions in order to simplify the next equations
fi = —lp cos(62)0s + L. cos(6:)0s; fo = lg + (cos(B2))ly, + l.(sin(6s))
f5 = lp(cos(0,))0y + L. (cos(6y))0y; fi = —lp(sin(6,))0y + I.(cos(6s)0s)
f5 = lp sin(0,) + L. sin(6y)
and m = my + my + mz + m, + ms. Thus, substituting previous expressions in next equation,

Li, = %(005(91)(1’1 — fosin(64)01)(cos(01)(f1 — fo + (sin(61)fs + fo sin(64)01))(cos(61))0;)
(11.26)

(sin(61)fs + f2cos(61)61) + f5) + E(E)Q@f +63) — %ng

11.3.2 Limb’s posture configured as half-wheel

The Lagrangian calculation of the half wheel configuration for each DOF is developed. It

follows from velocity equation (11.10) and figure 11.3, that

1, 1 LN? ., 1 L\
£ii = émivhalfwheel + Qmi § Qi - leg § sin qi (11.27)

likewise,

L, = %1%912 - %g(sin(Qg)(lc + 15 cos(45) + 1, cos(45) + 15 cos(45))) (11.28)
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Likewise, by defining some expressions for subsequent algebraic simplifications,
fi = —lp(sin(6))0y + lo(cos(02)Bo);  fo = Lo + (cos(62))lp + L (sin(6y))

As well as fs = lp(cos(62))0s + l.(cos(62))0s, with m = my + my + ms + m; + ms, and I, =

(12 + 12 + 12). Therefore,

Lii, = %((003(91)(—]‘3 — (f2) sin(61)01))(cos(61)(—f5s — (f2) sin(61)01)) + ((sin(61))(f1)

+(f2)(cos(641))01)((sin(61))(f1) + (fo)(cos(61))01) + (f3)(f5) + %(((12)

+15cos(45) + 1, cos(45) + Is 005(45))/2)%(912 +62)

—%m2g(lC + I3 cos(45) + 1, cos(45) + 15 cos(45))

11.3.3 Limb’s posture configured as walking hook

Likewise, Lagrangian calculation of the hook configuration for each driven joint, the velocity

equation (11.12), and figure 11.3 are considered to state the following expression,

1, 1 L., 1 L\ .
£iii=§mivHook+§mi § Gl- —§mig § SIn g; (1129)

and defining m = my + mg + mz + my, + ms, and lp = (lg + l% + lg). Hence, modelling links in

motion separately,

Liii, = %l%é)f - %g(sin(Qg)(lc + I3 cos(45) + 1, cos(45) + I5 cos(45))) (11.30)

and m = my + ms + my + ms, with links Iy = /(12 + I2 + 12) and lps; = I3 + I, + (I). In addition,

for the following link in motion,
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(= sin(61)(01)((lq + cos(6)l + (Ips4) cos(Bp) + 5 cos(0s) + cos(61)(— sin(6s)(02)) 1

;ﬁiiig =

| 3

(-
—(lg3s) sin(05) 0y — 3 5in(05)(0s)) Iy + cos(Ba)ly + (Iy34) cos(Bs) + I3 cos(Os)
+cos(0y)(— sin(6y)(6s))lp, — (lg3s) sin(6y)(0s) — L3 sin(03)(85)))) + ((((cos(61)(H1)) (I + cos(Ba)l
+(ly34) cos(By) + I3cos(B5))) + sin(6y)(— sin(6y)(0s))lp — (lo3s) sin(Bs)(Bs) — L5 sin(3)(85))(((cos(64)(By))
(I + cos(Ba)lp + (lozs) cOs(0s) + I3 cos(05))) + sin(6y)(— sin(6) (D))l — (Ioss) sin(6s)(8o) — 15 sin(65)(65)))
+((Iy cos(02)05 + (Iy3,) c0s(05)0s + l5 cos(05)0s) (1, cos(05)0y + (lyzs) cos(0)0s + Is cos(65)05))))
))

+ 55 (s 2(((12)/2)(6F + 8) — Tgl(sin(2)( + 15 + 1)

and Iy = /(2 + 12 + 12), and ly3, = I3 + I; + (Ip). Thus, for the next link in motion,

Liti, = %(( sin(61)(01) (I + cos(Ba)ly + (Is) cos(6y) + Ls cos(6s)
+cos(0y)(— sin(6)Bo) 1, — (Iyss) sin(02)8y — I3 sin(05)0s) (1, + cos(Ba)ly + (Iy34) cos(Bs) + I3 cos(Bs)
+cos(0y)(— sin(B2) o)1y, — (Iyss) sin(62)8y — L5 sin(65)0s))) + ((((cos(6y)b4)

(Iy + cos(Ba)ly + (In34) cos(0s) + I3 cos(65))) + sin(6y)(— sin(6s)0o)ly — (lozs) sin(6y)0,

— L5 5in(65)(05))(((cos(61)(01)) (la + cos(Bo)ly + (Iz3s) cos(6s) + I3 cos(Bs)))

+ sin(0y)(— sin(0y) (02))1, — (Io34) sin(6s)(Ho) — I3 5in(65)(0s))) + ((Ip cos(6)(0s)

+(lo34) c08(02) (D) + L5 cos(65)(85)) (Lp cOs(02)(Ba) + (lozs) cos(6s)(Bn) + s cos(65)(B5))))
ms l5

TG (8 + 83 + 08) — Tg(sin(6y) (sin(65)(15))

11.3.4 Limb’s posture configured as leg

The Lagrangian calculation of the hook configuration for each driven joint starts from the
velocity equation (11.14). Please note its trajectory in figure 11.3. Thus, stating the following

expression,

1, 1 L\?., 1 L
<;€Vf=§miVLeg+§mi D) 07 — 2 m;g D) sin qj (11.31)
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defining the mass expression, m = my + my + ms + m; + ms, and the links lp = /(12 + l% +12),

and los, = Iz + I, + (I). Hence,

£, = %l%(éf - %gsin(eg))(\/lg TR AR 415+ 1, + 1) (11.32)

The Lagrangian L,, represent the first set of links in the leg configuration that yield rotational
motion for providing leg’s steering. Please notice that previous equation contains only a de-
scription of kinetic energy that is relevant to rotational movement. As for the potential energy

description, the height model is for the leg’s first joint, which yield steering motion.

Furthermore, the mass expressions are defined to simplify subsequent algebraic processes
as m = my + ms + m; + ms, and the links lp = /(12 + 2 + 12), Iz = I + I3, and 4l5 = I; + Is.
In this leg configuration, the motion includes some joints, which are required to walk without
foot. Only the last link’s contact point is assumed to touch the ground with minimal to ankle’s

bend.

Therefore, by substituting previous expressions of mass, and links’ length, then the second

Lagrangian equation is formulated for the following set of links and joints,

Ly, = %(((—sin((ﬂ)(él)((la + cos(0o)ly + (Iy3) cos(By) + (Iys) cos(6y)
+ cos(0y)(— sin(0,) (o))l — (lg3) sin(0s)(Bs) — Uus sin(6;)0;)
(la + cos(Bo)ly + (loz) cos(Bs) + (Ls) cos(0;) + cos(6y)(— sin(6)6s)
Iy — (lps) sin(62)(B) — (Lss) sin(6,)(6,)))) + ((((cos(61)(B1))(Ia + cos(6a)lp

+(lo3) cos(0y) + (Ius) cos(6s))) + sin(6y)(— sin(02)(Bo)) 1y — (Ioz) sin(62)(y) (11.33)
—(Lus) sin(6,)(0,))(((cos(01)(01))(la + cos(Bo)ly + (loz) cos(Bs) + (Ius) cos(s)))
+ sin(0y)(— sin(6y)(0e))ly, — (lo3) sin(6y) () — (Ls) sin(6,)(6,))) + (I, cos(6s)(Hs)
+(ly3) cos(05)0s + L5 cos(0;)0,) (1, cos(62)8y + (Iy3) cos(0r)Bs + Ls cos(6;)6,))))
+%((123)/2)((123)/2)(912 + 65) - %9((Sin(92)(123 + Li5)))

For the next link in motion, the mass definition is m = m, +ms, the links I, = /(12 + l% +12),

los = Iy + I3, and I;5 = 1, + Is. Thus, by substituting such expressions in next equation,
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Lo, = %((— sin(0;)(01)((ly + cos(B)ly + (Iy3) cos(6s) + Iys cos(6,)

+cos(0y)(— sin(6y)(6s))lp — (lgs) sin(6y)(Bs) — Lus sin(0,)0;) (g + cos(Ba)l, + loz cos(6y)

+(l5) cos(0;) + cos(0y)(— sin(By)(0s))ly, — lys sin(02)8y — Ly 5in(6,)6,)))

+(((cos(0)0y (Iq + cos(B)ly, + lyz cos(Bs) + L5 cos(6,))) + sin(6y)

(— sin(6,)00)lp — los sin(62)0y — Lys sin(0,)0;)((cos(61)61 (I, + cos(e)ly + loz cos(Bz) + Lus cos(6s)))

+ sin(0y)(— sin(0)0o)ly, — los sin(05)0; — Lys sin(60,)6;)) + (I cos(02)0s + lys cos(05)0s + Lys cos(6,)6s)

, , , Ls\? o o
(lb COS(QQ)@Q + 123 COS(QQ)QQ + 145 COS(94)94))) + % <;5> (912 + 9% + 9,%) — %g Sil’l(@g) Sil’l(94)145

(11.34)

11.3.5 Limb’s posture configured as foot

The Lagrangian model of the foot configuration is produced from the velocity equation (11.16),
with trajectory depicted in figure 11.3. Thus, the Lagrangian operator is defied by the next
equation,

1

1 2., 1 L
Liv = §miv%00t + gmi <12> 9i2 - Emig <2> sin g; (11.35)

This foot configuration is actually a leg with a link functioning as foot. The last rigid link
works as foot with active angular motion in its joint to resemble an ankle’s motion. Previous
equation includes potential energy description, as well as translational and rotational kinetic
description. The set of rigid links in this linkage configuration evolves with translation and
angular motions.

Thus, let us define the following mass expression for further algebraic simplification m =
my + my + m3 + m; + ms. In addition, let us define the rigid link’s distance Iy = /(12 + [Z + [2).

Hence by substituting previous definitions in next expression,

m.,,. m .
Loy = TR — T g(sin(@:){05) + 15 + 1) (11.36)
And by defining m = my + mz + m; + ms and I = \/(I2 + [? + 12), and lys = I, + I3, the next

equation is stated,
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(((—sin(61)(61)((ly + cos(Ba)ly, + (I3 cos(6s) + 1, cos(Bs) + cos(6;)

‘fiVQ =

a w\s

(— sin(62)) 1y, — (lp3sin(Bs)0y — 1, sin(B5)(5))(Iy + cos(B)ly, + (los cOs(By)
+15,cos(65) + cos(6;)(— sin(6s)(Bs))lp — (o3 sin(62)6, — L, sin(65)0s)))
+((((cos(61)01) (I, + cos(Ba)ly + (Iyz cos(By) + I, cos(Bs))) + sin(6y)(— sin(6y)0)1p

—(Iys sin(6,)(62) — L, sin(65)(0s))(((cos(64)(61))(la + cos(6a)ly + (loz cos(6s) + 14 cos(6s))) (L.37)
+ sin(0y)(— sin(02)0o) 1y, — (los sin(0)0s — 1, sin(65)05)) + (Ip cos(6)6s)

+(loz c08(02)0y + L cos(05)05) (L, cos(02)0y + (loz cos(02)0n + 14 cos(05)05))))

+5 () €% + &) = Daltinonias + 14))

Likewise, m = m, + ms, and the links Iy = \/(I2 + [2 + [2) as well as lys = lp + I3. Thus,

E((—sin(Gi)(Ql)((la + cos(0)lp + (lpz cos(By) + 1, cos(Bs) + cos(6,)

O\eiV3 = 2

(— sin(6)00)lp — (lp sin(6y)0y — L, sin(05)0s) (L, + cos(O)ly

+(ly3 cos(By) + 1, cos(Bs) + cos(6y)(— sin(6s)(Ho))L

—(lys sin(6)(Ha) — 1, 5in(05)(05)))) + ((((cos(61)(61))(la + cos(B)lp + (I cos(Bs) + I, cos(65))) 1158,
+ sin(0y)(— sin(6s)H) 1y, — (Is + Lo sin(6y)0y — 1, 5in(05)05)(((cos(64)61)(ly + cos(Bo)l,
+(ly3 cos(By) + I, cos(B5))) + sin(6y(— sin(6)0)l, — (Io sin(6y)0y — 1, sin(65)6s))

+((lb 005(92)92 + (123 COS(OQ)QQ + 1, COS(Qg)ég)(lb COS(OQ)QQ + (123 005(92)92

R B+ ) — glsin (@) sin(es).)

+1; cos(65)65))) +
11.3.6 Limb’s posture configured as aquatic fin

The Lagrangian modelling of the aquatic fin configuration considers starting from the velocity
equation (11.18), and depiction of its trajectory in figure 11.3. Thus, the Lagrange equation is

stated by

X i —im-v2 +1m~ b 292—1m l sin (11.39)
Aqual‘lci—2 iVyi D) i D) ) ig 2 Qi .
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Rather than an aquatic fin, this configuration resembles a swimmer limb. Although, gaits
patterns are not a matter of this manuscript, but a swimmer limb may be capable to perform
numerous types of patters for underwater swimming. Thus, this configuration’s motion is
developed in 3D Cartesian space, where only the initial and final angles of motion may be set

to change multiple gaits.

Let us define the following mass expression m = my + my + mz + m; + ms, and links
Ly = \/(I2+12+12), ls = Iy + I3, as well as the rigid link expression l;s = I, + Is. Thus, by

substituting in the next expression,

mo,:, m ,.
Loiy = 51%9% — 5 9(sin()(ly + 15 + 1, + 15)) (11.40)
likewise, consider that m = my+ ms+m,+ms, lp = /(12 + 12 +12), I3 = lp + 15, and U5 = I, + 1.

Hence,

m

2
+c0s(0y)(— sin(0) (o))l — (lo3))) sin(602)(0s) — (Ls) sin(6;)(6,))
(lg + cos(Bo)ly + (lp3)) cos(By) + (I45) cos(B;) + cos(6y)
(— sin(62)(62)) s — (l25))) sin(62)(02) — (Lus) sin(6,)(0.)))) +
((((cos(61)(01))(Iq + cos(Bo)ly + (l23))) cos(s) + (Lus) cos(62)))

+ sin(0y)(— sin(62) (O2))ly — (13))) sin(62)(02) — (Ls) sin(6,)(6,)) (11.41)
(((cos(01)(01))(lq + cos(Bo)ly + (13))) cos(0s) + (Lus) cos(6s)))
+ sin(6;)(— sin(6y)(62))l — (ls))) sin(62)(Bz) — (Lus) sin(6,)(6,))
+((Ip cos(02)(0a) + (Io3))) cos(0s) (Do) + (Lus) cos(0,)(0,)) (I cos(0s)(0y)
+(lp3))) c0s(62)(62) + (Lus) cos(64)(6.)))))
+ 5 () /2) (1s)))/2) (87 + 68) — - al(sin(@e) (1) + (s))

Loi, = —(((—sin(01)(01)((lg + cos(Bs)lp + (123))) cos(6s) + (Lus) cos(6s)

The mass expression is formulated for the next set of rigid links,

m = m,; + ms



298 CHAPTER 11. CONTROL OF A SELF-CONFIGURABLE QUADRUPED
and the definitions of the rigid links are provided by

L=\ +12+12
and
123 = 12 + 13
as well as
145 = l4 + l5

Therefore, the last Lagrangian operator is defined by

Loty = 75 (= sin(01)(01)((la + cos(Ba)ly + (1z3))) cos(6y)

+(I15) cos(6y) + cos(0y)(—sin(6)(6))1, — (la3))) sin(6y)(6s)

—(I45) sin(6,)(0,)(1q + cos(B)l, + (lo3))) cos(s) + (I4s5) cos(6y)

+¢0s(61)(— sin(62)(02))ly — (I25))) sin(65)(6a) — (Lis) sin(6,)(64)))

+((((cos(01)(01))(lq + cos(Ba)lp + (loz))) cos(6s) + (Lus) cos(64)))
+ sin(6y)(— sin(8)(8) 1y — (Iss))) sin(6:)(8) — (145) sin(6,)(6,)) (11.49)

(((cos(61)(B1))(Iy + cos(B2)lp + (In3))) cos(By) + (Lys) cos(6y)))

+sin(6y)(— sin(6s)(6))ly — (I25)) sin(62)(62) — (Lus) sin(64)(64)))

+((Ip cos(0)(Bo) + (la3))) cos(6o)(Ba) + (Ls) cos(6,)(6s))

(I cos(62)(B2) + (I23))) cOs(62)(Bs) + (Lus) c0s(64)(64)))

2
o <’425 > (6% + 03 + 0) — 2. g sin(6y) sin(0, )L

11.4 Limb’s configurations Euler-Lagrange analysis

In this section, an Euler-Lagrange analysis particularly describes each joint individually. Where
X4 represents the Lagrangian equation of the 1st joint used for steering. £, is the Lagrangian
of the 2nd rotational joint. {5 is the Lagrangian of the first link. Likewise, £, is the Lagrangian
of the second rigid link. And 5 is the Lagrangian of the third rigid link. An analysis of energies

may be observed for each driven joint without explicitly describing a particular gait trajectory.
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For the first driven joints and links the Lagrangian is defined by

1 R 1
L1 = -myr'(0) — —nmug

2 2

<<12 Sil’l(@g) + 13 sin(Qg + 93) + 14 Sin(92 + 93 + 94))
2

11.43
<I5Si1’l(92+93+94+95)>> ( )
_I_
2
And subsequently,
1 o 1 2102 | p2 1
Lo = szVQ + ngr (6f + 65) — ngg
Iy sin 6, + I3 sin(0y + 03) + 1, sin(6y + 65 + 6,) + I5sin(0y + 05 + 0, + Os)
2
and
1 2 1 202 | p2 L A2 1
Lz = 5Mevs + ;msr (07 + 65 + 635) — 5msg
I3 Sil’l(@g + 93) + 1 sin(OQ + 93 + 94) + I5 Sil’l(@g + 03 + 94 + 95)
2
and
1 0 1 202 L A2, P2, P2 1
Ly = oIMavy + Hmar (07 + 65 + 65 + 67) — 5mg
L, sin(@z + 05 + 94) + I5 Sil’l(92 + 65+ 0, + 95)
2
as well as
1 1 , , , . . 1 I5 si
L5 = gmavd + g msr” (O + 6 + 0 + 07 + 0) — Jmsg ( sin(6y + 23 O+ 95)) (11.44)

Thus, the behaviour of the energies involved in the mechanical system of the limb for each

locomotive configuration is described by the general Euler-Lagrange differential equation,

(11.45)

_d (oL OLi
Tl—dt<afli>_3(b

for instance, torque calculation of the wheel configuration is provided by

Ty, = %lﬁh - %QSin(Gi)éllb (11.46)
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The following expressions are defined, fi = I, + cos(6)lp + . sin(6y), fo = l.cos(By), f3 =
l. sin(6y), fi = lp sin(6y), and fs = I, cos(6y).

And by substituting previous expressions in next equation,

Ti, = (- (—4cos(01)(~f50s + fody — (f1) sin(01)01)(— cos(6s)lp + f2) sin(6y)0;

m
+2cos(6y) cos(201)(f49§ — c0s(0s)Boly, — f502 + foby — (—sin(0y)Boly, + foby) sin(6;)6
—(f1) cos(61)010; — (f1) sin(6)d6;)(— cos(Bo)ly + fo) + 2cos(6;) cos(6y)(—fs5)0s

+f20s — (1) sin(01)0:)(sin(6o) Dol — f305) + (2(cos(61)01 (—f10s + f205) + sin(6;)

(—f505 — f10s — 305 + f20o) + (—f10s + f205) cos(61)0y — (f1) sin(6,)61 6

+(f1) cos(61)B1)) sin(01)(—f4 + fa) + (2(sin(61)(—f402 + f20) + (f1) cos(61)61))
cos(601)01(—f4 + fo) + (2(sin(01)(—f140s + fobs) + (f1) cos(64)y)) sin(6y)

(—fsba — f300) + (2(—~f05 + foba — f305 + £200))(f5 + fo) + (2(cos(62)0alp, + f202))
(—£400 — f302)) + m2/4(15)0; — m2/2(—4 cos(6y)(— cos(0y)Boly, + f200

—(f1) sin(61)01)(f105 — f302 — (—f1 + fo) sin(61)01) sin(6y)0; + 2 cos(6;) cos(6y) (402
—cos(69)Boly, — 502 + foBo — (—f10s + f200) sin(61)01 — (f1) cos(61)016

—(f1) sin(61)01) (105 — 302 — (—f4 + f2) sin(61)0;) + 2cos(6y) cos(6y)(— cos(6s) bl
+fo0p — (f1) sin(01)01)(fs05 + fa0y — f205 — f30s — (—fs02 — f300) sin(61)6y

—(~f1 + f2) cos(601)010y — (—fs + f2) sin(01)0) + (2(cos(01)01 (—f10o + f20s)
+sin(0))(—f502 — f40 — £305 + f20s) + (— sin(6y)Boly, + f20s) cos(6y)0y

—(f1) sin(61)0101 + (f1) cos(61)01))(sin(6y)(— cos(02)Baly, — f300) + (—f4 + fo)

cos(61)01) + (2(sin(6;)(—f.0s + fobo) + (f1) cos(01)61))(cos(01)0; (—f50y — f300)
+sin(0y)(f,05 — cos(02)Boly, — fob3 — f30) + (—f50s — f300) cos(61)0;

—(—f4 + f2) sin(61)010y + (—f4 + fo) cos(0y)B4) + (2(— sin(6)021, + f5By — f502 + fo05))
(—f402 — f300) + (2(cos(02)0aly + fobo))(—fs05 — f40s — £205 — f305))
+%g(— sin(6,)Boly — f505))

Similarly, torque analysis for the half wheel configuration may be described by

Tii, = ml}d; — hmgsin(6;); (11.47)
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Thus, following definitions are stated,
f1 =1y +cos(O)ly + I sin(By); fo = l.cos(y); fz = I, sin(6y)

and

fi = lpsin(6y); fs5 = Iy cos(By)

hence,

Tii, = (2sin(6y) sin(6;)01 (— cos(6,)0s + fobs — (f1) sin(61)01)(—f502 + f202 — (f1) sin(61)61)
—4cos(01)(—fs0s + f20 — (f1) sin(61)0y) sin(6y)(sin(6)PeBoly, — f5bs — f50200 + f2bs
—(—£405 + f205) sin(61)(B1) — (f1) cos(61)(0161) — (f1) sin(64)By) — 2 cos(6;) cos(6y)(—fsHs
+£205 — (f1) sin(01)01)(—fs0z + f20 — (f1) sin(61)01)(01) — 6(cos(61))(—f50s + foby

—(f1) sin(61)01)(—f502 + fobo — (f1) sin(61)04)(f1)01 ((— sin(61))61)(—fss + fo(62)

—(f1) sin(64)61)(sin(02)(8200)ly, — 50 — f3020s + foby — (—f105 + f205) sin(61)0;

~(f1) cos(61)0161 — (f1) sin(64)61) — 2(cos(61))(—f502 + fobs — (f1) sin(61)0;)(—fs s

200 — (1) sin(01)01)(—fs0s + f20s — (f1) sin(01)01)(—f40s + £202)0; — 2(cos(64))

(—f502 + foby — (f1) sin(61)01)(—f50z + fo0s — (f1) sin(61)01)(—fs0z + f202 — (f1) sin(61)6y)
(£1)01 + (2(cos(01)01 (—f10s + f20s) + sin(6y)(—1y cos(02)050, — f105 — 305 + f2b0)
+(—f10s + f2b0) cos(61)0; — (f1) sin(61)6? + (f1) cos(61)8y))(cos(61)(—f10s + f20s)

—(f1) sin(61)01) + (2(sin(61)(—f202 + f20o) + (f1) cos(61)01))(— sin(04)01 (—f10 + f205)
+cos(01)(—1 cos(02)8005 — £,05 — f30005 + f205) — (—f105 + f205) sin(6y)(6;)

~(f1) cos(61)(6161) — (f1) sin(61)61))

Therefore,

_d <a;ei> _ oL (11.48)

T ar oq; oq;
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11.5 Quadruped kinematic motion

The robot’s global motion is an averaged value on its chassis structure provided by the contri-
butions of each limb’s motion. The robot’s motion is represented in terms of its pose, velocity,

and acceleration; either in fixed inertial frame, or in a global coordinates frame (figure 11.5).

—

X

—

b

v
1

L

Uy

B Ep.
o s

x | p |

|

global %, X,

Figure 11.5: Robot’s trajectory control w.r.t. a global inertial system (left). Quadruped general kinematic
configuration (right).

The robot’s instantaneous linear velocity vy is approached by an averaged model of the four

limbs’ speed v;, as next equation (depicted in figure 11.5),
1
V= Z(Vi + Vo + V3 + V) (11.49)

Furthermore, the robot’s instantaneous angular velocity w; is modelled approaching the robot’s
differences of lateral velocities. The velocities are yielded by the four limbs w.r.t. the robot’s

centroid, which is the origin of the coordinate system fixed to the robot’s body.

2a
Ww=—F—5VI+Wv—-vz—-v 11.50
(12 T b2( 1 2 3 4) ( )
In previous equation vy are positive because move counter-clockwise w.r.t. to the robot’s

centroid. Likewise, vz, are negative as they normal sense is clockwise.
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For instance, let us assume that the limbs are configured as wheels, thus it follows from vector

equation (11.7) p; = (x;,¥i,z;)" that the kinematic description of one wheel is provided by

x; = cosb;(la + lp sin(6y) + . cos B), (11.51)

and
vi = sin 0y (la + I, cos(6y) + 1. cos(6y)) (11.52)

and
zi = lp cos Oy + [, sin O,. (11.53)

To solve the i'" limb’s tangential velocity the norm of the three Cartesian components is

obtained

vi = (12 + 92 + 52)° (11.54)

which is equivalent to the following expression,

2 2 2\ 2
V= <<((11txp‘> <((11t‘ypl> + <c§ltzpi> > (11.55)

Therefore, the whole expression is deduced as provided by the next equation,

Corollary 11.5.1 (Quadruped’s instantaneous linear velocity). The quadruped’s instantaneous

linear speed model regardless any locomotive configuration is stated by

V=’”<<<jt ol + (oo + (Ggzm?) + (Sl + (Sl + ()

1 1 (11.56)
d d d : (.d d d ’
(o + G + (Gpzm?) + (e + G + ()
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In addition, for the robot’s angular expression a similar expression is deduced,

Corollary 11.5.2 (Quadruped’s instantaneous angular velocity). The quadruped’s instanta-

neous angular velocity model regardless any locomotive configuration is stated by

1 1

2ra d d d 2 d d d 2
=c12+b2<<(dtx’“)2 (il + Ggon?) (G + g+ (o)
(1157)

d d d 2 d d d 2
- (15l + (G + (2l = ((pmed® + (ol + (20

From previous speed models, the robot's first and second derivative are represented in a

global inertial system I. Thus, for the global velocity vector,

vl = —yy (COS(Q " d))) (11.58)
sin(6 + )

by deriving w.r.t. to time and algebraically arranging, the acceleration vector w.r.t. a global

coordinate system is obtained,

al = v (C?S(Q " ¢)> + v (_ sin(6 + 1b)> (w; + V) (11.59)
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Chapter 12

DIRECT/INVERSE ANALVSIS OF

REDUNDANT WALKING ROBOTS

Diana R. Uribe Escalera and Edgar A. Martinez Garcia

Laboratorio de Robdtica, Institute of Engineering and Technology
Universidad Auténoma de Ciudad Judrez, Mexico.

This chapter treats a linearised navigation control law for multi-legged walking robots. The
proposed model is stated in terms of robot’s global acceleration, and formulated as an average
of the Cartesian speeds of n-extremities of k-DOFs each. The state vector is defined as a
general solution scoping three cases of robot’s tangential acceleration: uniform, non-uniform,
and constant speed. Leg’s Cartesian velocities are described by their first order Jacobian,
which result in redundant kinematics systems. As particular cases of study, two different
biological kinematic configurations were analysed in order to be adapted (DOFs reductions) as
potential kinematic functions of the navigation control law. Although, the research interest is
centralised on walking systems, the Praying-Mantis raptorial legs, as well as the Smithi ant’s
legs are analysed. Because of the kinematic redundancy, by using pseudo-inverse numerical
methods, the solution near a singularity region is unstable about these values. It was obtained
the first-order derivative pseudo-inverse Jacobian matrix using two different numerical methods
for multi-joint legs: the right pseudo-inverse, and by singularity properties using the singular

value decomposition approach. Furthermore, Euler-Lagrange motion equations are defined.
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Hyper-static balanced multi-legged walking robots are mechatronic vehicles capable to walk
on multi-joint legs (see figure 12.1). Multi-legged robots with three or more extremities are
statically stable when walking, . However, depending on its gait configuration in use, legs must
correctly be synchronized while developing free-walking over all-terrain. If some legs become
disabled, the robot may still be able to walk, since not all legs might be needed to accomplish
stability. Giving other legs the ability to reach new ground placements. Looking into the
biology literature®,”,'”, one can find an amazingly rich variety of insect’s combination of joint
legs. Arachnids, crickets, ants and so forth, which are invertebrate animals with eight or more
degrees-of-freedom (DOF) in each leg. Much attention has been paid to develop algorithms
for gaits control strategies, research on insects biology discloses interesting information that
may enrich kinematic and dynamic schemes for gaits control for insect-like artificial walking

machines;°. Figure 12.1 depicts kinematic combinations of walking robot’s legs.

Figure 12.1: Quadruped machines with different types of legs. (a) type RRPRRRR ; (b) type PRRRRR; (c)
type RRRRRR.

This chapter is purposed to provide a generalised velocity-based navigation model of redun-
dantly kinematic control law of n-leg and k-joint. Other similar approaches did not consider
redundant Jacobians®,''. The state vector is defined as a function of robot’s tangential acceler-
ation, and leg’s Cartesian velocities are described by their first order Jacobian, which results
in redundant kinematics systems'“. A particular interest of this study is to include into the
general navigation control law Jacobian matrices of different kinematic configurations. The
direct/inverse kinematic analysis for each leg is considered in order to develop an overall po-
sition control model for a robot, as to have an integral functional form of variables about the

control law".
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12.1 Kinematics control law

A combination of synchronized motions of mechanisms, comprised of open-loop serial chains
are configured and coordinated to walk yielding controlled trajectories. The fixed-frame Carte-
sian reference of any walking machine is ideally its centre of mass. Kinematic-based control
is critically important to describe the geometry of motion of a body”, and its kinematics gives
a description of the leg’s configuration spaces. Equation (12.1) is a linearised state model to

control the Cartesian speed,

& =A(t)- £(t) + B(t) - ult) (12.1)

Let us define £(t) = (x,y,0)T as the state vector (Cartesian position and angle orientation)
. The first derivative state vector w.r.t. time is defined by & The matrices A and B are two
transition matrices that connect two different system states, time and Cartesian components,
respectively. The input vector u = (v, w)” is compounded by the linear and angular velocities.
Furthermore, the robot’s global motion direction is given by 0(f). The equation (12.2) is the
robot’s angular velocity, having Cartesian components as first and second orders derivative

functions of time.

L2\ !
w(t) = <1 + @) > (W1 — 1) (%) (12.2)

Therefore, by having a functional form of w(t), the linearised first order derivative control law

is described by expression (12.3),

X %00 x cos 60
v
E=|y| = O%O yv |+ |sin60 (12.3)
, w
¢] 00% 0 01

The model of instantaneous robot’s linear velocity, for any multi-legged walking machine

is expressed by the norm of its legs’ Cartesian component speeds, given by equation (12.4),
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Corollary 12.1.1. The robot’s instantaneous velocity is an averaged value of the n-leg
Cartesian speeds.

v(t) = (12.4)

il .
EZ]i i\ [
=il

Where legs’ first derivative Jacobian J; is involved for each i" leg. The joint angular ve-
locities vector is defined by q; = (¢o, P, ..., dr)T of k rotational joints. Likewise, each leg’s

Cartesian velocity vector is defined by,

pi=J;-d (12.5)

where Cartesian velocity vector p; = (X, ¥,2)7. With no lost of generality, the state vector

&(t) is constrained by three controlled equilibrium conditions given by the function g,

E(t) =g(% %, t) (12.6)

Hence,

Definition 12.1.2 (Equilibrium conditions). The functional form of g(.) poses three equi-

librium conditions:

X0 + Xt — (X) %, a = const
g (X,i, t) = 31X+ %(Xg — 5(1), a= f(t) (12'7)

(x + y(x" —%))t, v=const,a=0

Where x¢ = (x0,¥0,60)" is the robot’s initial position vector.

Thus, from (12.7) in previous theorem, its three constraints are described as,

1. The condition for constant acceleration means the multi-legged machine navigates at open

obstacle-free terrains to keep increased its velocity usually to reach large distances.

2. the condition for varying a(t) to slow down, or speed up when dealing with obstacles (this

condition allows path planning formulation).
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3. The third condition allows keeping a controlled velocity v, with no speed changes under

slopes where gravitational effects take place.

Second and third conditions are nearly linear in the presence of inherent speed perturbations.

Therefore,

Theorem 12.1.3 (Kinematic control law). The linearised kinematic control model is given

by (12.8)

100 cos 60 . _
£=|oto| gt +|singo " ('Q.H%)Z_:j‘i(li'qi“ () (12.8)
+ (5262)) 7" Pk - 2P) - (%7
004 0 1

12.2 Kinematic analysis

An extremity is said to be redundant when its number of DOFs is greater than the dimension
of its task space. For a 3D position task, a leg with more than six joints would be redundant’.
A definition of what is meant by the term redundant requires that it specifies the number
of degrees-of-freedom required to perform a task. Figure 12.2 (b), (d) depict two biological
extremities (Praying-mantis and ant)”. Figure 12.2 (a), (c) are generic drawings of their re-
duced DOFs, tarsus in both legs are not considered because of their passive DOFs given for
supportive stability, rather than significant rotatory movements. The figure 12.2 depicts six
rotative motion variables to represent leg’s contact point (farthest Cartesian position from base
joint). According to figure 12.2, legs’ parameter ¢; and variable d; are links length and prismatic

displacement, respectively. Besides, ¢; are the joint’s rotation angles.

Hereafter, formulation given along this paper are just simplified to shorter mathematical
expressions, adopting next equivalences for trigonometric functions due to limits of paper
space. Let us assume that for instance sin(¢g) is equivalent to sy, and cos(¢y + ¢») is equivalent

to C12.
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groove

b1 b2 ‘;
Y
co)';a
Qi% @/ /"@ - tibia
LA
s ¢'4 ﬁ@ i
¢5 trochanter

\__ tarsus

tarsomeres
(tarsal segments)

e

C) D) tarsal claws

Figure 12.2: Biological limbs and equivalent reduced DOFs. (a) Praying mantis-like leg reduced to six joints
and three links; (b) biological Mantis Leg; (c) Ant-like leg with six rotative joints; (d) biological ant Leg.

12.2.1 Mantis-like leg kinematics

Thus, the forward kinematics calculate the contact point Cartesian instantaneous position for
the Mantis-like leg by p(t) = (Xm,¥m, zm)T in task space. So that, through direct analysis, its

forward kinematics is given by the three equations of components position x,,, ¥y, and z,,,

then,
Xm = 1181 + d3c1380 + dsC13450 + d5C34550 + l6C1345652 (12.9)
Ym = lisy + dzsiz + disSi3s + dssizus + leS13u56 (12.10)
Zm = licy + dscqzey + dacizaco + dscizusco + lsCizaseco (12.11)

Homogenising trigonometric functions in such expressions by substituting identities, factorizing

and algebraically rearranging, equations become further simplified,

1 1 1
Xm = lsy + §d3[3123 —S1_93] + §d4[51234 — S1_934) + §d5[512345 —81_9345] + lsCrzusesy  (12.12)
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Ym = list + d3813 + duS134 + ds5Si3u5 + l6S13456 (12.13)

1 1 1
Zm = licy + §d3[cl—23 + Cio3] + §d4[C17234 + Cio34] + §d5[0172345 + crozus] + leCrzusece  (12.14)

Hence, representing in vector notation form, previous expressions are now given by,

list + 5ds[si05 — 193] + 5du[S1254 — S1-234]

+%d5[512345 — S1-9345] + l6C1345652
Pm(t) = 151 + d3813 + d48134 + ds5S1345 + leS13256 (12.15)

licy + gds[ci_os + Cios] + FdalCi_oss + Cross]

+2ds[ct_oms + C1a3i5] + loC13u56C2
Without loss of generality, the first-order derivative vector p of tangential velocities components
are subsequently described. Firstly, the x,, component given by,

Im = licey <¢1> + édscm <¢1 + o + ¢3> + %d33123 - %d3ci—23 <¢>1 — o + 433) -

1. 1 . . R . 1. 1 . . , .
§d381ﬁ23 + §d401234 <¢1 + ¢ + P35 + ¢4> + §d481234 - §d4c1—234 <¢1 — ¢ + P35 + ¢4> -

1. 1 , R R , R
§d451—234 + §d5C12345 <¢1 + @ + P35+ Ps + ¢5> (12.16)

1. 1 , . . , .
+§d5512345 - §d501—2345 <¢1 — o + b3+ b, + ¢5> -

§d551 —om45 + lsC13456 <¢1 + ¢35 + by + P5 + ¢6> co — lgS1345652 <¢2>

Secondly, the y,, component

I = lics (1) + dscrs (61 -+ 6s) + dasis — ducuss (61 + 65 + 61) + disiaa+ (1247)

dsCi3s5 <¢1 + @5+ Py + ¢5) + dssi35 + lsCizuss <¢1 + @5+ i+ P + ¢56>
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and then, the z,, component,
Zm = —lisy <¢1> - *d351 93 <¢1 G + ¢3> + d3C1 23 — d35123 <¢1 + o + ¢3> + 1d.3C123—
m 2 2
1 1 , ., ., ., 1.
§d4517234 <¢1 Go + P35 + ¢4> + d4C1 234 — 2d481234 <¢1 + ¢o + @3 + ¢4> + §d4C1234—

1 . . . . 1. 1 R . . , .
§d581—2345 <¢1 — Qo+ P35+ Py + ¢5> + §d5C1—2345 - §d5812345 <¢1 + @2 + P35+ Py + ¢5> +

§d5012345 — lss13456 <¢1 + @3+ Py + G5 + 4)6) ¢o — leC1345652 <¢2>
(12.18)

Then, factorizing common terms, the joints angular velocity vector is ¢ = (¢o, d1,...Ps)T, and

by simplifying the forward kinematics model for 3D, the equation (12.19) resulted,

1 1 1 1 1 1
55123 — 5C1-23 551234 — 551-234 5512345 — 5512345

[') =7J- q +d3 S13 +d, S134 + ds S1345 (12.19)
ler oz + 1c le + ke le + le
5C1-23 + 5C123 5C1-234 + 5C1234 5C1-2345 + 5C12345

which is the equation of direct kinematics presented as a first order derivative, which are the

Cartesian velocities of the leg’s contact point.

12.2.2 Ant-like leg kinematics

Figure 12.2-right shows a generic drawing of a leg’s Cartesian framework and its DOFs, in-
spired by the Ant Smithi'’ . It poses nine real DOF, but it was adopted only six DOF because
of the rest of them are tarsus specifically used to keep adapted to ground texture as if they
were passive joints. The first three DOF are embedded in the same joint, so that, the equations

of direct kinematics for the three Cartesian components are as follow,

Xq = sy + l3¢1350 + 14C13480 + I5C134550 + lsC1345652 (12.20)

and

o = lis1 + 13813 + 1iS134 + 1581345 + leSt13456 (12.21)
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as well as

zq = licy + lscq3¢y + 14C134Co + I5Ch345Co + loC13456Co (12.22)
Therefore, in vector form the leg position is given by equation (12.23),

151 + I3¢1380 + 1413489 + I5C134582 + l6C1345652
pa(t) = lisy + 13813 + 118134 + I5S1345 + lgS13456 (12.23)

licy + Izcy3ce + lyeqsuco + I5Ci345C0 + lsCrauseca

In addition, by deriving w.r.t. time, our three first-order derivative Cartesian components,

Xq = licy <¢1> - I3513 (¢1 + ¢3> Sy + I3¢13Co <¢2> — U;s134 (¢1 + s + ¢4> S + l4¢q34C0 <¢2> So—

l581345 (4)1 + s+ Py + ¢5> Co + I5C134582 <¢2> — l6s13456 <¢1 + s+ Gy + s + <756> 8o + lgC13456Co <¢2>
(12.24)

Ya = licy <¢1> + l3¢13 <¢1 + ¢3> + licyz, <¢1 + s + ¢4> + lsCy345 <¢1 + s+ P + ¢5> +

) ) ) ) ) (12.25)
leC13456 <¢1 + ¢35+ ¢4 + @5 + ¢6>

zq = =8 <¢1> — lzs13 <¢1 + ¢>3> Co — I3c1389 <¢2> — sz, <¢1 + ¢s + ¢4> Co — Lie1348p <¢2> -
lsCy34580 <¢2> — 581345 <¢>1 + b5+ ¢y + ¢5> Co — lsS13456 <¢1 + s + b + s + 956) Co — lsC1345682 <¢2>
(12.26)

Therefore, the forward kinematics model is formulated. For the ant-like leg, only rotative joints

were mathematically described, and no prismatic variables are involved.

12.3 Jacobian matrix analysis

Although the general problem of inverse kinematics is not straightforward, it turns out that for
extremities having six joints, with their last three DOF intersecting at a point, it is possible to
decouple the inverse kinematics problem into two simpler problems”. It is known respectively,

as inverse position kinematics, and inverse orientation kinematics. Thus, from the required
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algebraic solution for joint velocities vector,

q=J"p (12.27)

The Jacobian matrix for the Mantis-like extremity in terms of first-order derivative is disclosed

next,

a
asg
as
as
as
ag
by
by
b3
b,
bs
be
C1
Co

C3

, b1
X .
(o)) . '
a1a2a3a.,asae ¢ 58123 — 5C1-23
3 .
Y| = | bibebsbsbsbs | - | . | +ds 813 +
R . .
C1C2C3C4C5Cq . 5C1-23 T 5C123
. ¢s (12.28)
z .
%6
1g 1 1 1
581234 — 551-234 5512345 — 5512345
d, S134 +ds 81345
1 1 1 1
5C1-234 T 5C1234 5C1-2345 + 5C12345

The Jacobian matrix terms are defined next in their functional form by,

= lict + sdscios — 2dsci_os + sdicions — sdici_oss + Sdsciosis — sdsci_osus — leS13us652
= +idscios — sdsci_os + sduCrons — 5duCi_oss + 5d5Ciosss — 5d5Ct_omu5 + l6Cr3456C2

= +idscios — 5dscCi_os + sduCrozs — 5duCi_oss + 5d5Cioss5 — 5d5Ct_03i5 — leS1345652

= +5dsCross — 5d4Crooss + 3d5C1omi5 — 3A5C1 0345 — l6St345652

= +JdsCions — 5dsci_oms — loStsusess

= —l6S1345682

=l + dscy3 + dsCi3s + dsCizus + leCrzuss

=0

= +d3C13 + d4C134 + ds5C1345 + l6C13456

= +d;C134 + ds5C1345 + l6C13456

= +d5C1345 + l6C13456

= +l6C13456

= —lsy — 5dss1_05 — Sdss195 — 2duSt_o3s — sduSto3s — 5d5S1_93s5 — sds5S19345 — leS13u56Ce
= —dssi o5 — Ldssios — Sdusi_oss — $duSioss — sdsst_ozis — 3d5S12345 — loC13u5652

1 1 1 1 1 1
= —5ds81 95 — 5d38193 — 5d481 934 — 5dsS1934 — 5d581 9345 — 55819345 — leS13456C2
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Cy =

1 1
Cs = —§d551_2345 — §d5512345 - 16513456C2
ce = —lgS13456Co

1 1 1 1
—5d481 934 — 5d4S193; — 5d581 9345 — 5d5S19345 — l6S13456C2
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In addition, for the case of the ant-like Jacobian expression of first-order derivative, equation

(12.29) is the analytical solution,

x a1a9aza,asag
Y | = | bibabsbibsbg
z

C1C2C3C4C5Cp

Similarly, with its Jacobian matrix terms given in their functional representations,

ar = licr — 1381380 — 14513489 — I55134550 — l5S1345652

as = +Ilzci3ce — lic135C0 — I5C1345Ce — l6Cr3456C2

as = —I38138) — 14813482 — I58134582 — lgS1345652
a; = —14813480 — I58134552 — l6S1345652

as = —I58134580 — lgS1345652

as = —lpS1345652

b1 = licy + Isc13 + Licizs + IsCimsus + leCzuse

by =0

bz = I3¢13 + lyCy3s + I5C1345 + lsCr3s56

b; = +15¢134 + I5cy3s5 + lgCause

bs = +Is5¢1345 + leC13456

be = +lsC13456

cy = —lisy + I3813¢o + I1S134Co + I581345C0 + l6S13456C2
cy = —I3c138p — 14€13482 — I5C134582 — l6C1345652
c3 = +13813Co + 148134Co + I5S1345Co + l6S13456C2
Cy = +1;8134Co + I5S1345Co + l6S13456C2

c5 = +1581345C2 + leS13456C2

Ce = +16S13456C2

1
s
s
b
s
s

(12.29)
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Nevertheless, when Jacobian is not square, as the case of redundant multi-joint extremities,
the method is numerically solved since for a non-squared matrix there is no determinant and

therefore cannot be directly inverted.

12.3.1 Right pseudoinverse

The inverse kinematic problem is straightforward solved when Jacobian is square with non
zero determinant. Nevertheless, when Jacobian is not square, as is the case for redundant
multi-joint mechanism, the method is numerically solved since for a non-squared matrix there
is no determinant and therefore cannot be inverted. Thus, to deal with the case m < n, we use

the following resilt from linear algebra.

Proposition 12.3.1. For ] ¢ R™*", and rank ] = m, then (JJ)~! exists.

In this case (JJT) € ®™*™ and has rank m. Using this result, we can regroup terms to

obtain,

gyt =1

it follows that,
Jprarn Tt =1

and,

=1

Here, J© = JT(JJT)~! is called a right pseudoinverse of J, since JJ* = I. Note that, J*J € R™*",
and that in general, J*J # i (recall that matrix multiplication is not commutative). Therefore,

the inverse leg’s kinematics model is given for either Mantis-like leg or ant-like leg.

Definition 12.3.2. The ant-like leg inverse kinematic model q is formalised by:

q(t) =770 -7 - Bl) (12.30)
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1 aibicy aibicq
o)) agbocy asbscy )
. a1aoaza;asAg X
o3 asbszcs asbscs
. = : bibybsb,bsbg | - |y (12.31)
o asbscy asbsc, )
. C1C92C3C4CKCq VA
old asbscs asbscs
d6 agbsce asbscs

12.3.2 Singular value decomposition

The inverse solution is complemented alternatively with a second numeric method to find
the inverse kinematics by decomposing the Jacobian singular values, by the eigenvalues A; >
Ay-++ > Am > 0 of square matrix JJ7.

The singular values for the Jacobian matrix J are given by the square roots of the eigenvalues
of JJT through o; = ¥/A;, where U = [uy,uy,...,u,], and V = [vy, vy, ..., v,] that are orthogonal

matrices, and X ¢ R™M*",

The diagonal matrix X,, = diag(dy, 01, ..., 0k) is squared and symmetric.
01
(o))
Yo = (12.32)
Om
It is found the singular values, o; of J that can be used to find the eigenvectors u,...,up
that satisfy JJ” = w; = oju;. Such eigenvectors comprise the matrix U = [uy,uy,--- ,u,,]. The

system is then rewritten as,

JJTu = ux?, (12.33)

Thus, by defining the matrix,
(o]
02
Ym = ' (12.34)

(o]
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Hence, it is defined V,, = JTUX.!. and let V be any orthogonal matrix that satisfies V =
[Vin|Vn-m]. Notice that V is an n x n matrix. Then, constructing the right pseudo-inverse of
J using singular value decomposition, the Jacobian pseudo-inverse J* = VE~'UT. Therefore,
through SVD the ant-like leg inverse kinematics is given by (12.36), in which X} is the inverse

(square) matrix of X,,.

T = ' (12.35)

For the same kinematic example as previous subsection, now the inverse matrix solution is

given by,
b1 aibicy
éo asbocy
b asbzcs
] - |UED el IR
¢, azb,cy
és asbscs
Ps agbsCe
i T (12.36)
a1b101
a2b2C2
a1aoaza,asdg x
a3b303 2 .
bibobsb,bsbg | - U-Z. 1 - |¥
a4b4C4
C1C2C3C4C5Cq
(15b5C5
a6b606

The forward kinematics p(t) and its first derivative p(t) are analytic solutions. However,
their inverse solutions ®(t) and first derivative <i>(t) are numeric ones. Either types of equation
can be used within the general navigation control law &(t), which will only depend on its

navigational algorithmic convenience.
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12.4 Dynamics analysis

323

By means of energies analysis through Euler-Lagrange motion equations, walking tasks are

solely considered over the plane,()two dimensions). The next kinematics equations only

O
A

N

Figure 12.3: Degrees of freedom required for walking in a Mantis-like extremity.

describes the kinematic motion of Mantis-like leg.
x = licos + lacota + dalt)Cotab + leCotabe + laCotabed

and,

y = lisor + laSota + do(t)sotab + leSotabe + laSotabed

Their, first derivative is given by,

d d d d d d
Frad —liso1 <dt¢o + dt¢1> — l4S01a <dt¢0 + a‘bi + a> + adQ(t)COMb

d d d d
—da(t)so1ab <dt¢0 + ad’i ta+ b> — lcSotabe <dt¢0 + &¢1 +a+b+ c>

d d
—lasotabed <dt¢0 + a@ +a+b+c+ d)

(12.37)

(12.38)

(12.39)
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and,

d d d d d d
Frid licot <dt¢0 + dt¢1> + 14Cota <dt¢0 + adﬁ + a> + ad2(t)501ab

d d d d
_dQ(t)COhlb <dt¢0 + a(m +a+ b> + l.Cotabe <dt¢0 + ad)i +a+b+ C>

d d
+1qCotabed <dt¢0 + a(ln +a+b+c+ d>

The kinetic energy for joint O with (potential energy po = 0),

and its linear velocity model,

The kinetic energy for joint 1,

and potential energy p1,

=m 115
p1 = 92 01

The linear velocity model for joint-1 is given by

d d ., \? d d 2 4q
2 _ 12 -~ -~ l2 ~ ~ ~ 2
vy =1 dtd)o + dtd)l + 15 dt% + dt¢1 +a) + dtd2(t)

d d 2 d d d d

2 PR PR PR PR PR PR
+ds(t) <dt¢o+ dt¢1+a+b> + 2llqcq <dt¢o+ dtdn) <dt¢o+ dt(bi +a
d
dt

d d
+25d2(t)llsab <dt¢0 + P

d. d. d
+25d2(f) lasp <dt¢0 + a‘bi +a

d d d d
—2dy(t)lqCopy26y2ab <dt¢0 + a¢1 + a> <dt¢0 + adﬂ +a+b

d

d d d d
~2d2(t)11(:2¢02¢1ab <dt¢0 + dt¢1> <dt¢0 + aqbi +a+ b>
—2—dy(t)ds(t)s g(b + g({) +a+b
q; d2\1)d2(t)s201ab) | GrPo + 41

(12.40)

(12.41)

(12.42)

(12.43)

(12.44)

(12.45)
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Likewise, the kinetic and potential energy models for the second joint po,

1 1 [ 1 do(t
ky —py = 2m2V2 + 12( ¢0) m9§1301 + ng%somb

The linear velocity model for joint-2 is defined by,

d d, \? d d 2 q
2 _ 12 2 2
Vi = 11 <dt¢0 + dt¢1> + la <dt¢o + 7dt¢1 + a> + 7dtd2(t)
2 d d 2
2 —
+dy(t)? < ¢do + t¢1+a+b> +lc<dt¢0+dt¢1+a+b+c>
d d 2 d d
2 <dt¢0 +gbrta+brc d> + 2L lqcq <dt¢0 + dt¢1> < o+ 3 b1 +a

d d
+2ad2(t)115ab < ®o g 1

d d
—2d2(t)l1(32¢02¢1ab <dt¢0 + dt¢1> < d)() + (bi +a+b
d
+2—do(t)?lysp < ¢o + *¢1 +a
d
—2dy(t)1qCopy26,2ab <dt¢o + a‘iﬁ + a> < ¢o + ¢>1 +a+b

d
_QadQ( )da(t)so0tan) < ¢o + ¢1 +a+b

d d d
+2lilcCape <dt¢0 + dt¢1> <dt¢o + ¢1 +a+b+c

d
+25d2( e 5c< ¢0+ ¢1+a+b+c

—¢o + d¢1+a+b+c+d

d d
—2da(t)lcCopya2a2be | 7z P0 + ——P1 +a+b +c <l>
dt dt
P

+2101dcd<c(lit¢0+:iit¢1+a+b+c 0 + ¢1+a+b+c+d

¢0+—¢1+a+b+c+d

¢0+—¢1+a+b+c+d

d d

+2llaCabed <dt¢0 + dt¢1>
d d

+2llachea <dt¢0 + aqbi + a>

+2 dtdg(t)ldscd P + gd)i +a+b+c+d

d

o &la gla &la ala

¢0+—¢1+a+b+c+d

)
)
)
)
)
)
)
+21,lcChe <cclit¢0 + %(l)i + a> <d¢o + ¢1 +a+b+ c>
)
)
)
)
)
)
)

/\/\/\/\/—\/\

d
—2d3(t)14Copy26:2a2bcd <dt¢o + a(in +a+ b> ur

325

(12.46)

(12.47)
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finally, the kinetic energy of the extremity with load w,

1 o 1 ,d
kW = Qmwvw + EIW(a(b()) (1248)
The potential energy model,
Pw = mgAyse, (12.49)

Then according to Euler-Lagrange equations, and by partially deriving, the force equations are,

d2
=Ilh— 12.50
To = lo g7 0 ( )
1 d? ly
T = §m1a1 + 1 7df2 ¢0 — ngSm (12-51)
1 d? Iy 1 dolt)
Ty = §m2(12 + IQ@(PO - m95501 - émgTSOMb (12.52)
T —lma +Id—2¢ mgA,,s (12.53)
w = ) wlw Wdtg 0 JAwSw .

Furthermore, by developing the same systematic derivation and algebraic process, now on
we state the set of dynamic equations for the ant-like extremities for a process of walking

kinematic configuration.

P
A

Figure 12.4: Degrees of freedom required for walking of an ant-like extremity.
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327

Then, the walking kinematic configuration is given by next equations of planar positions

(x, )7,

x = licor + lgCota + 13€01a3 + lbCo1a3b + lcCotazbe

and

¥y = lisor + laSota + 13501a3 + lbSo1a3p + lcSotasbe

Thus, the first order derivative for the X component

d d d d d
FTle —liso1 <dt¢0 + dt¢1> — 145014 <dt¢0 + a‘i’i + a>
d d d d d d
—13501a3 <dt¢0 + a¢1 +a+ dt¢3> — IySo1a3p <dt¢0 + a¢1 +a+ a% + b>

d d d
—1cS01a3be <dt¢0 + ad’i +a+ a(ﬁs +b+ C>

likewise, the first order derivative for the ¥ component

d d d d d
= licos <dt¢o + dt¢1> + laCota <dt¢0 + ad’i + a>

d d d d d d

lscotas | — — — lbCot1a — — — b
+13¢01a3 <dt¢0 + dt¢1 +a+ dt¢3> + lbCotasb <dt¢0 + dt¢1 +a+ dt¢3 + >
d d d

+leCotasbe <dt¢0 + adﬁ +a+ a% +b+ C>

the kinetic energy for the active joint O,

1

k0=§

d
In(— 2
of at $o)
The model for linear velocity of active joint 1,

d d \?
vi =1} <dt¢0 + dt¢1>

The kinetic and potential energy models for active joint 1,

1 1 .d
ky = émwf + éll(a¢0)2

(12.54)

(12.55)

(12.56)

(12.57)

(12.58)

(12.59)

(12.60)
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and

l
pi = mg§1501 (12.61)

Likewise,

2

d,. d. .\ d, . d dy 4+ 9 ds)’
- d d o [d d o (4 a hal
v =1 <dtqb0 + dt¢1> + 1 <dt¢0 + 5% +a> + 13 <dt¢0 b tat dt¢3>

d d d d d
+2lI3¢43 <dt¢0 + d’[¢1> <dt¢0 + &d’i +a+ dt¢3>

d 4 d d (12.62)
+2l1a¢q <d,[¢0 + dt¢1> <d,[¢0 + a(m + a>
d d d d d
+2lal5c3 <dt¢0 gt a> <dt¢° b rat dt¢3>
The kinetic and potential energy models for active joint 2,
1 1 ,d
ky = Qmw% + EIQ(E%)Q (12.63)
and
L 1 I3
p2 = mgso1 + 5MJ 5 S01a3 (12.64)

2 2 2
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Thus, the model for the linear speed,

) _, (d d \? p(d d > 2 2
vy =l a¢o+a¢1 +la a¢o+a¢1+a + 13 ¢0+ ¢1+a+ t¢3

N

d d d 2 d d d
2 [ 4 a a 2 (¢ a g
+1; <dt¢0+ dt¢1+a+ dt¢3+b> + IZ <dt¢0+ dt¢1+a+ ¢3+b+c>
d d d d
+2lIscq3 <dt¢0 + dt¢1> <dt¢0 + ¢1 ta+ o
+2l1 g<i> +g¢> d) + d) +
1laCq at 0 at 1 0 1+ a
d d d d
+2lql5c3 <dt¢0 + adn + a) <dt¢0 + ¢1 tat o b3
d d d d
+2U Ipcasp <dt¢0 + dt¢1> <dt¢0 + ¢1 +a+ ¢3 +b
d d d d
+2lg lpcap <dt¢0 + adn + a> <dt¢0 + <f>1 +a+ ¢>3 +b
d d d d
+2l5lycp <dt¢0 + adﬁ +a+ dt¢3> <¢0 + ¢1 +a+ *053 +b
d d d
+2lpl.cc a<l>0+a¢>1+a+—<1>3+b ¢0+ ¢1+a+—¢3+b+c
+21110Ca3bc < (l)O +

¢0+ 1+a+ 3+b+c

d
+21a l.C3pc < dt

i) [
e o)
)

< q50+—1+a+ 3+b+c

d
+2l3l.che < o + ¢1 +a+ E

The models for the kinetic and potential energies,

1 1
kw=2mwv + I( d)o)

and

pW = mgAWs¢w

The rotational joints angular moments are described by

d2
To = log o
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(12.65)

(12.66)

(12.67)

(12.68)
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1 d? ly
T = §m1a1 + 11@(1)0 — mg§So1 (1269)
1 d? L 1 I3
Ty = §m2a2 + IQ@(#O — ngSm - §mg§So1a3 (12'70)
and
T —ima +Id—2¢) mgAys (12.711)
w = 5 Mwlw v 32 0 JAwSw .

12.5 Simulation results

Figure 12.5 depicts work spaces of both extremities Mantis-like (12.5-(a)), and ant-like (12.5-(b))
legs. The coordinate (0,0)T correspond to each leg’s first joint dubbed ¢g. A transversal cut
of either plots represent an approximation of a single leg step. The workspace is a Cartesian
plot showing the set of possible 3D locations a leg is able to reach in terms of its kinematic
restrictions. The vector models first derivative p,, and p, are the Mantis-like and ant-like
forward kinematic equations respectively. For the case of first order legs kinematics p(t),

Mantis ANT

"mxyz.dat" =+ "hxyz.dat"  +

Z(cm) Z(em)

Figure 12.5: (a) Mantis-like walking-step space; (b) Ant-like 3D walking-step space.

the figure 12.6 illustrates the Cartesian speeds x, ¥, Z evolution in reference to a single leg-
step trajectory, figure 12.6-(a) for Mantis-like leg step, and 12.6-(c) for ant-like leg step. Their
magnitudes in velocity given by the norm ||py| and |pq| are depicted by figure 12.6-(b)(d),
respectively. For these results, a step given by a Mantis-like leg, the joints ¢y, ¢3, and ¢5 were
controlled, according to empirical observations of the insect’s walking movements.

In addition, for the ant-like leg, a step trajectory was emulated by controlling the joints
®1, ¢o, and ¢, only, according to insects empirical observations. The small differences of

speed magnitudes between Mantis and ant, resulted because of links lengths configuration
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Figure 12.6: Robot's one step Cartesian velocities. (a) Mantis-like leg; (b) Mantis-like magnitude; (c) Ant-like
leg; (d) ant-like leg magnitude.

were arbitrary taken considering insects’ size rates. The presented formulation in this work

stated that the joints may be adjusted and configured in accordance to the expression |J - ®|,

which is the equation (12.4) that allow to configure numerous gaits patterns.

(5] (m)

t Es)

Figure 12.7: Robot's position given by the accelerative restrictions g(x, X, X).

The general acceleration restrictions given by function g(x, %, X) as the motion state vector

in the navigation control law is illustrated by figure 12.7. It depicts the instantaneous robot’s

tangential velocity evolution, according to equation (12.7). At constant acceleration 0.25ms~2 for

the first equation condition. However, for second restriction, despite is a linear function of time,
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its behaviour is prone to slope changes affecting displacements. It is because the instantaneous
acceleration gives such slope value. The acceleration depends on differences in time of two
successive instantaneous velocities. The third acceleration restriction was set at a constant
reference velocity of v"¢/ = 0.25m/s, and gamma (attenuation factor) y = 0.25. Although a = 0,
its behaviour in time is gradually increased or decreased (if the case) because it is velocity
controlled equation at constant speed change overtime gives stability of rate displacement. The
linearised state equation determines the global robot’s motion behaviour, and it was based
on observable conditions that depend on any of the acceleration condition states: uniform,
non-uniform and magnitude zero. The navigation control relies upon an averaged Cartesian
norm of legs’ speed components. It allows to adjust and configure the walking gaits since
the control law’s input vector is defined in terms of the norm of Jacobians | Y3I'J; - &,
where n is the number of legs, and joints vector @ is explicitly defined in accordance to a
given walking gait. Instead, a first order derivative analysis of kinematic equations system was
stated. Two different bio-inspired six-DOF extremities with redundant kinematics were studied
and analysed through simulation results; the Praying-Mantis, and the Ant Smithi. Redundant
kinematic extremities were inversely solved by two solutions: the right pseudo-inverse, and

decomposition the Jacobian’s singular values through SVD.
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Chapter 13

UNDER-ACTUATED JANSEN-BASED

ROBOT CONTROL

Jaime Candelaria Solis and Edgar A. Martinez Garcia

Laboratorio de Robdtica, Institute of Engineering and Technology
Universidad Auténoma de Ciudad Judrez, Mexico.

Latest advances in science and technology have incredibly imposed robotic walkers, which
is becoming a very important aspect in human society. A few examples of this role are robots
employed in industrial, space fields, all-terrain exploration, rehabilitation, and even entertain-
ment . As these kind of robotic systems technologically grow, they require more sensors
and devices in order to make them behave in a more realistic manner. Therefore, achieving
a better interaction with their environment. Wheeled mobile robots are characterized by their
simplicity, but high performance to travel on even surfaces. Nevertheless their movement
over complex terrains becomes limited. Unlike wheeled robots, the robots with extremities
capable to walk over all types of grounds, and they consume less energy than wheeled robots.
All these advantages make these systems to depend on the number of actuators to travel and
complete tasks, since they regularly require one independent variable to be controlled per
joint. As a consequence, they gain more weight, use more energy and computational com-
plexity gets incremented. As a result, the systems known as under-actuated ones have been

developed, and represent a reduction in their driven joints to perform dynamic walking em-
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ploying more efficiently potential and kinetic energies®. As this reduction may constraint the
robot’s movement, but it provides the benefit of reducing the number of actuators needed for
working. This chapter presents the design and kinematic control of an octapod walking robot
with foundations on the study of the under-actuated Theo Jansen mechanism’. The analysis
departs from a study of all passive joints present in Jansen linkage. The position equations of
Jansen-based limbs’ interacting as an octapod are analysed, involving mathematical modelling
of both walking patterns: for one limb, and for the eight limbs. The Jansen’s mechanism is
a planar mechanical linkage that consists of a frame, a crankshaft, and 11 links; shown in
figure 13.1-a). The mechanism is based on the next idea: if the crankshaft’s rotary movement

is controlled, all mechanism’s linkages are also easily controlled.

13.1 Passive joints analysis

In this section, an algebraic analysis of the Jansen mechanism of figure 13.1-a) is discussed.
The main strategy of this chapter is to gain understanding of the mechanism’s behaviour by
mathematically treat partial closed chains of links (figures 13.1-b)-f). The solution of the kine-
matic system is provided by analysing all rotational variables (passive joints) that are controlled
through the driven input, namely crankshaft angle (denoted by link I,) (see chapter 1.1). The
kinematic analysis of the limb, is by following a way of interconnected links from the end of I,
or node ]_I; until node 1_;1 (figure 13.1-a)). Any linkage relationship may correctly be used to ob-
tain a solution about the planar position of the limb’s contact (node m) Therefore, considering

the rigid links L; and passive angles 0;, the following position equations are stated,

Axiom 13.1.1 (Closed link kinematic equations). A formal statement of two equations to solve

a planar four links closed chain is postulated. Thus, equation for the component X,
LycosO + LscosOs = Ly cos By + L, cosB, (13.1)
and for the component Y,

Lysin® + Lzsin@; = Ly sin6; + L, sin 6, (13.2)
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Figure 13.1: a)Jansen links. Closed chain of links: b) linkage L, b, s, 1,; c) linkage L, 17,1s; d) linkage
11,12,15, lﬁ; e) Iinkage la,lg,lg, 110; and f) Iinkage 110;1111112.

In this case, the input angle 0 is the only independent driven variable known, as well as the
angle of passive joint 6; = 0 for motion of link L. In order to simplify equations, the value of

6, is algebraically substituted from the previous equations:

LycosO + Lzcos0s = Ly + L, cos0, (13.3)

and
Losin® + Lz sin6s = L, sin 6, (13.4)

Thus, a known angle is obtained temporally called 6, and two unknowns 65 and 6,. Hence, the

last expression is rearranged as

LzcosOs = Ly + L,cosB, — LycosB (13.5)

and
Lzsin@s = L, sin@, — Ly sin O (13.6)
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Then, the two equations are squared in both sides of equality, and algebraically and simplified,

(Lscos 65)% = (Ly + L, cos 0, — Ly cos0)? (13.7)
as well as
L%cos® 05 = L? + 2Ly1L, cos 6, + L} cos® 0, — 2(Ly + L;cos 6,)(Lycos ) + L2 cos® 0 (13.8)
It follow that,
(Ls sin 05)* = (L, sin 0, — Ly sin 0)? (13.9)
and
L% sin® 05 = L,% sin® 6, — 2(L, sin 0,)(Ly sin ) + L% sin” 0 (13.10)

by adding (L3 cos 65)% with (L5 sin 65)%, we have:
L2 = L% + L% + Lz +2L1L;cos0, —2L1Ly cos 0 — 2Ly L, (cos O cos 0, + sin O sin 6,) (13.11)
Algebraically rearranging
(2L1 L, — 2LyL; cos ) cos 6, — (2LyL; sin0) sin 6, + (L + L — L% + L2 — 2L1Lycos0) = 0 (13.12)

Thus, the double-angle formulas are then used according to the following manner,

1 — tan(%
cos 6, = an2< 92) (13.13)
1 +tan™(%)
and .
2 tan(%
sin 6, — le (13.14)
1 +tan*(3)

Hence, the following expression is obtained,

A<1Ht2> +B<it> +C=0 (13.15)

1+ t2
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Where the following terms are defined as,

A =2L1L; — 2LsL;cos (13.16)
B = —2LyL,sin6 (13.17)
C=L}+L;—L%+L2-2L1Lycosh (13.18)
and
t= tan(%) (13.19)

From previous equation (13.15), the following process is developed,

A — At? + 2Bt

o tC=0 (13.20)

A — At? + 2Bt + C + Ct? _

ey 0 (13.21)
A-At2 +2Bt+C+Ct? =0 (13.22)

thus,
(C-A)F+2Bt+(A+C)=0 (13.23)

It is observed that (13.23) is a quadratic equation of the general quadratic form ax?+bx +c¢ = 0.

Thereby, a second degree equation is solved by the general form,

_ —2B-/4B?-4C-A)A+C) -B-VB>-C>+A?

t 5[C_A) = C_A (13.24)
Thus, let us consider that t = tan(%), and 0; is drop-off,
0, = 2tan"(t) (13.25)
Since 0, is already known, Lz sin 05 is divided by Lz cos 05 to obtain a solution for 65
tan 8 = ( L;sin6, — Lyosin 6 ) (15.26)

Ly + LscosB;, — Lycosf



340 CHAPTER 13. UNDER-ACTUATED JANSEN-BASED ROBOT CONTROL

and subsequently,
L;sin@, — Lysinf

_ -1
05 = tan (L1 + L;cos0;, — LycosB

(13.27)

It follows to solve for the a second linkage formed by L,, L7, Lg that is depicted in figure

13.1-¢). Thus, the following kinematic equations of position are stated, for the X component,
L,cos0, + Lycos0; = Lgcos 0y (13.28)
and then for the Y component,
L;sin@, + L7 sin 67 = Lg sin Og (13.29)

It is worth noting that an analytic solution for 6, has already been obtained, and it will be used

as a known variable to solve for the next chain of links where angles 8; and 8g are involved.
L7cos6; = LgcosOg — L, cos 0, (13.30)

and

L7 sin 97 = Lg sin 98 — L4 sin 94 (13.31)

Similarly, both equations are squared and algebraically simplified to obtain
(L7 cos 67) = (Lgcos g — Ly cos 6,)? (13.32)
and developing square binomial,
L% cos? By = Lg cos? 63 — 2L,Lg cos 0, cos O3 + L,% cos’ 6, (13.33)
applying same algebraic procedure to the Y component,
(L7 sin 6;)? = (Lg sin 6g — L, sin 6,)? (13.34)
and expanding the squared binomial,

L?sin® 6; = LZsin® 65 — 2L, Lg sin 0, sin s + L2 sin” 6, (13.35)
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Adding (L7 cos 67)% and (L7 sin 6;)? in both sides of equation to reduce by substituting trigono-

metric identities, it results in
L? = L% — 2L, Lg(cos 0, cos Bg + sin 6, sin 6g) + L2 (13.36)
In addition, by rearranging
— (2L, Lg cos 0;) cos O3 — (2L, Lg sin 0,) sin 6 + (LZ — L% + L2) = 0 (13.37)

And by substituting next trigonometric identities,

1 —tan*(%
cos B = 67%(92) (13.38)
1+ tan*(%)
as well as .
2tan(%
sin Og = an(22 ()9 (13.39)
1 +tan™(F)
As early stated, similarly to equation (13.15), the following expressions are established,
A = —-2L,Lgcos 0y, (13.40)
B = —2L,Lgsin8,, (13.41)
C=L%-12+L? (13.42)
and
0O
t= tan(E) (13.43)

As in equation (13.15), a similar algebraic process is developed and the quadratic equation is

solved by the a general form
-B-VB?% - (C? + A2
= 13.44%
t C_A (13.44)

Let us recall that t = tan(%), and we solve for 6g,

g = 2tan"(t) (13.45)
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hence,

a 0 1 2L,Lgsin 0, — \/(—2L4L8 sin 94)2 - (Lg - Lg, + LE)Q + (—2L4L8 Ccos 94)2 6
= 2tan” 13.4
8= 2lan (L2 — L2 + L) — (—2L,Lg cos 6,) (13.46)

Once 65 is known, L7 sin 07 is divided by L7 cos 87 to obtain 6;

Lg sin 98 — L4 sin 94

tan 6; = 13.47
! (Lg cosOg — L, cos b, ( )
_ Lg sin 98 - L4 sin 94
6; = tan~! 13.48
4 (Lg cosOg — L, cosb, ( )
. -1 2L,Lgsin 6, -—\/(——QLz,Lg sin 94)2 -—(L%——L?, +LZ)Q+(-—2L4L8 cos 91,)2 .
o — tan- Lg sin(2tan™"( 10+ 1) (LT cos 63 )) — L, sin 6,
), =
—1,2L;Lgsin6, —\/(—QLz,Lg sin 6,)? —(L%—LQ +L,%)2+(—2L4L3 cos 0;)2

Lgcos(2tan™( (Lg—L?,+L§)—(—2L4L37cos o )) — L cos 6,

(13.49)

Furthermore, as depicted in figure 13.1-d) the third linkage to be analysed is formed by the
rigid links L4, Lo, Ls, Lg, which form a closed kinematic chain. Thus, the following equations
are stated,

LycosO + Lscos 05 = Ly cos 0y + Lgcos g (13.50)

and

Losin@ + Lgsin 65 = Ly sin 6y + Lg sin 65 (13.51)

In this case, the angle 0 is known a priori from the link L;, and where 6; = 0. Thus, the set of

equations are simplified due to the value of 6;,

LycosO + LscosBOs = Ly + Lgcos 0 (13.52)

and

Lysin + Lssin 05 = Lg sin O (13.53)

Rearranging previous expressions,

L5cosBOs = Ly + LgcosOs — Ly cos O (13.54)
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and

LssinOs = Lgsin O — Lo sin O (13.55)

and both equations are squared, and algebraically simplified,
(Ls cos 65)> = (Ly + Lg cos 6 — Ly cos 6)? (13.56)
developing the squared binomial,
LZcos? 65 = L? + 2Ly Lg cos s + L2 cos® 05 — 2(Ly + Lecos B)(Lycos ) + Licos’6  (13.57)
the following expressions are obtained
(Ls sin 65)? = (Lg sin B — Ly sin )? (13.58)

LZsin® 65 = LZsin® 65 — 2LyLe sin O sin 6 + L sin® 6 (13.59)

Adding (Ls cos 65)? and (Ls sin 65)%, next expression results
LZ =L} + L+ L2 + 2L1Lgcos 65 — 2Ly Ly cos O — 2LyLg(cos Hcos B + sinfsinfs)  (13.60)
and algebraically rearranging,
(2L1Lg — 2LyLe cos 0) cos B — (2LyLe sin 0) sin s + (L + L + L2 — L2 — 2L1Lycos6) = 0 (13.61)

substituting next trigonometric identities to reduce previous expression,

1 - tan*(%
cos B = an2(92‘) (13.62)
1 +tan™(3)
and .
2tan(3
sin 0 = —on(s) (13.63)
1 +tan”(3)

Because the process does not change, an equation like (13.15) is obtained, with factors as:

A =2L1Le —2LyLgcos O (13.64)
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B = —2LyLssin@ (13.65)
C=L}+L2+L5-L%—-2L1LycosH (13.66)
t = tan( ) (13.67)

The following process is similar as previously stated from equation (13.15), by arranging as a

quadratic general form,

- 2 _C2 + A2
‘o B+ é%_AC +A (13.68)

Let us recall that t = tan(%“), to solve for G, thus

0 = 2tan1(t) (13.69)

Once 65 is already solved, then Lssin 05 is divided by Ls cos 85 in order to solve for 0Os,

Lesin B — Ly sin 6
tan 65 = 13.70
an®s <L1+L600596—L2c059> ( )
and subsequently,
_ Lgsin0g — Ly sin 6
05 = tan~* 13.71
5= fan <L1+L600506—L2c059> ( )

The following linkage to solve for, is comprised by the rigid links Lg, Lg, Lg, L1y arranged
as a closed kinematic chain, as depicted in figure 13.1-e). Hence, the following the position

equations are stated for the X component

Lgcos g + Lgcos Oy = Lgcos 0 + Ligcos 6,0 (13.72)

and for the Y component,

Lg sin O + Lg sin Oy = Lg sin 05 + L1 sin 6,0 (13.73)

At this stage, it is assumed that the angles 65 and 05 are already known through a functional
form. Thus, in the analysis of actual kinematic chain, the unknown variables are the angles 6y

and 6;9. Therefore, arranging as in the next expressions,

LgcosBy = Lgcos O + Ligcos 619 — Lg cos Og (13.74)
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and

Lgsin Oy = Lg sin 65 + Lo sin 019 — Lg sin 03

They are squared, and algebraically simplified,
(Lo cos B)* = (Lg cos 0 + Lo cos 019 — Lg cos 6g)?

Lg cos® 0y = L% cos® 0 + 2LgL1o cos 05 cos O
+L%O cos” O1g — 2(Lg cos B + Lo cos 010)(Lg cos 6g) + L?; cos? s

hence,

(Lg sin 99)2 = (L6 sin 96 + Lypsin 910 — Lg sin 08)2
and

Lg sin® 0y = Lg sin® O + 2LgL1o sin O sin Oy + L%O sin® 09

—-2(L6 sin 96 + Lqg sin 910)<L8 sin 98) + L% sin2 98
Adding (Lg cos 6y)% and (Lg sin 6)?, and algebraically rearranging,

(2L6L10 cos s — 2LgLyp cos 98) cos by + (2L6L10 sin g — 2LgL4o sin 98) sin 649+

(L2 + L2, + L3 — L2 — 2LgLg(cos 65 cos B + sin B, sin Bs) = 0

Once again, trigonometric identities are used for further simplification,

cos By =
7 + tanQ(%)
and .
2tan(=
sin Oyp = (229
1 + tan™(74)

We define the following expressions

A= 2L6L10 cos 96 - 2L8L10 cos 98'

B = 2L6L10 sin 95 — 2L8L10 sin 98:

345

(13.75)

(13.76)

(13.77)

(13.78)

(13.79)

(13.80)

(13.81)

(13.82)

(13.83)

(13.84)
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C=L:+ L} + L - L& — 2LgLs(cos 65 cos B + sin O sin ), (13.85)

and

0
t= tan(g) (13.86)
hence, solving by using a general quadratic form, the result becomes,

—B—-VB2 —-C24+ A2
t = — * (13.87)

and considering that f = tan(%), hence we solve for 0y in the following manner,

B10 = 2tan"1(t) (13.88)

Likewise, with 68y already known, Lg sin 0y is divided by Lg cos 6y to obtain the solution for 8y,

Lg sin 96 + Ly sin 910 - Lg sin 98
tan 6y = 13.89
an® < Le cos s + Ligcos 09 — Lg cos Og ( )
and subsequently,
_ L6 sin 96 + L10 sin 91() — Lg sin 98
By = tan~! 13.90
o= an < Lg cos 0 + Lygcos 019 — Lg cos Og > ( )

Finally, an analysis for the next linkage comprised of the kinematic chain Lig, L1, L1o is

provided (figure 13.1-f)). The following kinematic equations are stated, for the X component,

Ligcos B9 + L1y cos Oy = Ligcos Oy (13.91)

and for the Y component,

Ly sin 910 + Lqq sin 011 = Lyp sin 912 (13.92)

Since the passive angle 0,y has already been analytically solved, it is involved as the input angle
for the next linkage. So far this stage, only two passive angles 011 and 6y, still remain unknown.

Thus, arranging as in the following expressions,

LM cos 911 = L12 CcOSs 912 — L10 Ccos 910 (1393)
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and

LM sin 911 = L12 sin 912 - L10 sin 910 (13.94)

Then, the expression is squared, and algebraically simplified,
(L11 cos 011)% = (Lyg cos O1g — Lo cos ) (13.95)
then, the squared binomial is expanded,
L%i cos® 0y = Lfg cos® 019 — 2L1oL1o cos Oy cos Byg + L%O cos® O (13.96)
similarly for the ¥ component,
(L1 sin 0y4)% = (Lyg sin Oy — Lyg sin Oy9)? (13.97)

and

L%i sin” 0y = L%Q sin® Oy9 — 2L10L1o sin Oy sin Oy + Lfo sin® Oy (13.98)

In addition, for algebraic reduction, we add the terms (Lq; cos 911)2 and (L4q sin 911)2, resulting

the next expression,
L}, = L}, — 2L1oL1a(cos 819 cos 15 + sin Oy sin Oy9) + L%, (13.99)
and by algebraically rearranging,
— (2L1oL12 cos B10) cos B19 — (2L1oLyo sin Byg) sin Oyg + (LY, — L2, + L2,) = 0 (13.100)
Substituting the next trigonometric identities,

1 — tan®(%2)

cos Oy = (13.101)

as well as

(13.102)
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Therefore, the following factors are defined,
A= —2L10L12 cos 910,

B = —2L10L12 sin 910,

and

C=1L13 -1} + 13,

612
t = tan [ 22
an<2>

and

Solving by using the quadratic general form, it leads to the next solution,

~B-VB?-C? + A2

t= C-A

%), and we solve for the passive joint 69

Considering that t = tan(
010 = 2tan"1(t)

Substituting a = L%, — L}, + L%,

(2L10L1 sin 019) — \/(—2L1oL1o sin 019)2a? + (—2L1o Lo cos Oyo)?

f1 = 2tan "
12 an < a + 2L1gL1s cos by

Once 64 is known, then Ly4 sin 044 is divided by L4 cos 641 to obtain 0y4:

L12 sin 912 — L10 sin 91()

tan(0y1) =
an(6u) L13 cos 01 — Lyg cos b
and
0y = _1 [ Ligsin 19 — Lyg sin O4¢
1 = tan
Lis cos 019 — Lyg cos by

13.1.1 Passive joints simulation

)

(13.103)

(13.104)

(13.105)

(13.106)

(13.107)

(13.108)

(13.100)

(13.110)

(13.111)

Previous analytical solutions were directly coded in C++ programming language, resulting

with a very fast computing performance. Likewise, plots were produced with GNUplot. There-
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fore, by summarising the set of equations modelling the passive joints in terms of the angles

of the Jansen mechanism limb, the following expressions are analytic solutions.

For the next angles 05 and 0,, let us define Lz, = L2+LZ—L2+L?%, €. = 2L;1Lycos6, & = 2LyL, sin 6,

as well as ¢, = 2L,L, cos 0, such that

: -1 [ b=V/(=6P (L5 € P+(2Li L, —C,)* :
L; sin <2’[an < (RPN )y ) >>—Lgsm€

05 = tan " : (13.112)
— 2L L/, sin 0) — —@S— L547€C 2 2L1L4*€Z 2
Ly + L cos <2tan ! <( 2 )(LX_ZC)_E2L1L4_)€$< ) >> —Lycos
and \/
- fs - (_ES)Q - (L34 - €0)2 + (2L1L4 - ez)Q
6, = 2tan™" 13113
Lo < (Lsi = &) — (2LiLs = ) 15.119

For the cases of 05 and 65, we firstly define the expressions Lsg = L? + L% + L — L2 —2L; Ly cos 6,

and 856 = 2L1L6 — 2L2L6 cos 6.

Lsg—¥s6

. 1 [ 2LyLg sin0++/(2LyLg sin 6)2 — L& + € .
L sin <2tan 1< il (2LaLo sin 0 ~Lgs + s — Lysin®

05 = tan™' . . (13.114)
Ly + Lgcos <2tan“1 <2L2L6 sin 0+ (Lisz_lé‘;:mw _L56+[56>> —Lycosf
and
[ 2LoLosin® + \/(~2LoLssin0)2 — L; + &,
05 = 2tan F— (13.115)
and
. —1 2L,Lg Sin94—\/(—2L4L8 sin 94)2—(L§—L2,+L%)2+(—2L4L3 C0594)2 .
b tan- Lg sin(2tan™"( 17+ 1) (~oliTs cos 61 )) — Lssin6,
=
] 2L/,Lgsin64f\/(f2L/,Lgsin94)27(L§7L?,+L,%)2+(72L/,L80050/,)2
Lgcos(2tan™( L2 1) —(2LeTs cos ) )) — Lscos 6,
0 ot 1 2L4L8 sin 94 - \/(—2L4L8 sin 94)2 - (Lg - L% + LE)Q + (—2L4L8 Ccos 94)2
s = an

(L§ — L2+ L,%) — (-2L,Lgcos6,)
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0 tan‘i < Le sin 96 + L10 sin 910 - Lg sin 98 >
g =

Lgcos s + Ligcos 619 — Lgcos Og

For the case of 0y let us define the expression Ly = L2 + L%, + L% — L2 — 2LgLg(cos s cos 05 +

sin 96 sin 98): €e = 2L6L10 COSs 96 — 2L8L10 COSs 98: and €d = 2L6L10 sin 96 — 2L3L10 sin 98

LB -LE e
010 = 2tan (13.116)

LG - &

Defining Li1 = 2L19L49 sin 01y for 044

. —1 [ Ly—/—L2 —(L% L% +L2,)2+(~2L1o Ly cos fo)? .
Lyopsin [ 2tan™ L e e — Lypsin 6
12 (2L +L2y)—(—2L1oLz cos fyo) 10 10

0y = tan? Na e : (13.117)
—1 Ly — -L% -—(L‘ —L%, +L5. ) +(-2L10L12 005910)
L1z cos <2161’1 < (L%iotll%iiiL%Qi)i“(“i;LioLu cos B19) > > ~ Liocos b
Likewise, for 0y, let us substitute Ly; too,
Ly — \/"L%i — (Lfy — Lf; + L3,)? + (—2L1oL12 cos 619)?
B1p = 2tan! (13.118)

(Lfy — L + Liy) — (—2L1oLi2 cos Byo)

Previous summary of passive joints formulae are validated by producing numerical simulations
of the entire system. Figure 13.2 shows resulting tracks for each joint in two legs of robot’s
lateral side. The simulation considered suitable inertial frames transformation, while the two
limbs are synchronised. The numerical simulation validates the algebraic approach proposed

in this chapter. Each track may be compared with figure 13.1, and with angles 6y-0;» formulae.

13.2 Robot’s global passive movement

This section is mainly focused on the analysis of the mechanical structure end-joint, or contact
point with surface. The contact point describes the kinematics of the robot’s walking gait,
either in terms of planar Cartesian positions, or in terms of velocities. The proposed robotic
structure is an octapod, which is depicted in figure 13.3. It consists of four legs per side
(lateral), where two actuators drive 6 and ¢ as differential control for the two crankshafts. It's

important to note that between the first and second pair of legs exist 120° offset in between
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Mechanical StrUCtUTe s
Fi inkages se—
Second set of linkages
Third set of linkages s
Fourth set of linkages s
Fifth Set of linkages e |

/N

stem)
5

-60 -40 -20 0 20 40 60
s(cm)

Figure 13.2: Joints track simulation yielded by the linkage kinematic models 6y-0y5.

the crankshafts.

This section contains a formal analysis of the contact point position equations as functions of
the driven angles 6 and ¢. Then, the study is organised in a section discussion front legs related
position kinematics (those using index 1), and a section discussing the rear legs (those using
index 2). Variables using index r refer to the right-sided limbs; while those using [ refer to the

left-sided limbs.

13.2.1 Front legs kinematic position

Lets define and substitute the terms Ry = 4L} L}, sin(2tan™'(D))? + 4L},L?, cos(2tan~*(D))? and

—_ 712 2 2

2L1oL1s sin(2tan~' (D)) — /Ry — L2
2L1oL1s cos(2tan~ (D)) + L

Xy, = Ligcos <2tan"1 < >> + Lgcos(A) + Ly (13.119)

and

2L10L12 sin(2 tan"i(D)) -\ R1 — Lg)
2L1gL1s cos(2tan~ (D)) + L)

X, = —Ligcos <2tan—1 <( >> — Lgcos(A) — Ly  (13.120)
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XYl XYk

Xr2, Y12
Xri,¥Yr

Figure 13.3: Octapod-type walking robot design, with legs’ contact point position.

Likewise, Y., = ¥, hence

. -1 _ — 92
Y, = Lipsin [ 2tan-! [ 2Liol1zsin@tan (D_)i VR = L3 ) | 1 singa) (13.121)
2L1oL1o cos(2tan™" (D)) + Lg

The velocity models are described by their first order derivative,

X, = df;;i (13.122)
X, = di‘i (13.123)
and
. . Y \Y
v, —v, =94 5 - % (13.124)

Hence by substituting the following expressions Ly = L2 — L2 + L3 + L2, and Las = 2LyLg sin(6),

\/L/Q-\s + (2L1Le — 2LyLg cos(0))? — (—2L1 Ly cos(8) + La)? + Las
A=2tan"! (13.125)
2LyLg cos(0) — 2Ly Ly cos(0) — 2Ly Le + La
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likewise, by substituting Lg = Lf - L% + L% + Lf, and Lgs = 2Ly L, sin(6),

LBs - \/L% + (2L1L4 - 2L2L4 COS(Q))Q - (—2L1L2 COS(Q) + LB)2
B =2tan"! > (13.126)
2L2L4 COS(Q) - 2L1 L2 COS(Q) - 2L1L4 + LB

following with substitutions Le = LZ — L% + L?

2L;Lgsin(B) — \/4LZL§ sin(B)? + 4L2L2 cos(B)2 — L%
C =2tan! (13.127)
2L4Lg COS(B) + LC
and defining the term Lp = L3 + L% + L% + L2, the following expression is stated,
D~ —V/d + 2L1gLg sin(C) — 2L1oLg sin(A) (13.198)
~ —2LgLg(sin(A) sin(C) + cos(A) cos(C)) + 2L1gLg cos(C) — 2LygLg cos(A) — Lp )
Where d = —(—2LgLg(sin(A) sin(C) + cos(A) cos(C)) — Lp)? + (2LyoLg sin(A) — 2L19Lg sin(C))? +

(2L10L6 COS(A) — 2L10L8 COS(C))Q

13.2.2 Rear legs kinematic position

Let us define the expressions Ly, = 2LioLyp sin(2tan"'(D), and Lys = Lf, — L?, + L},

2tan" <Lr2 - \/L§2 + 41212, cos(2tan™!(D))2 — Lgs>
+ Lgcos(A) + Ly

Xp, = L1gcos —
2L10L1g COS(Q tan (D)) + Log

(13.129)

and

2tan™! <Lr2 — /L%, + 4L3) L}, cos(2 tan 4 (D))? — L§S>
— Lgcos(A) — Ly

X1, = —Liacos

2L1oL1s cos(2tan™ (D)) + Los

(13.130)

and since Y, = Y},

2tan™! <Lp2 — /L%, + 4L3 L}, cos(2 tan 4 (D))? — L§s>

Yir, = Ligsin + Lgsin(A) (13.131)

2L1oL1s cos(2tan~ (D)) + Los
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It follows that the Cartesian speeds obtained from firs order derivatives w.r.t. time are stated

by

. dX
Xp, = o2 13.132
and
. dX;
X, = 2 13.133
lp dt ( )
as well as
oo dvy,, B dvyy,
Y, =V, = 3 dr (13.134)

Therefore, by substituting next expressions, L1 = L% - L% + L% + L2, Lqg = 2LyLg sin(0 + 112;3)6’ ),

and Lqs = 2LyLe cos(0 + 127,

La3 - 2L1L2 COS(G + 112&;1) 2L1L6 + Lai

V/ L% + (2LiL — Las)? — (~2Li Ly cos(0 + 295) + La)? + Lay
A =2tan! (13.135)
Likewise, substituting Lyy = L7 — L2 + L% + L?, Lpy = 2LoL; sin(0 + 27), and Lys = 2LyL, cos(6 +

12071)
180

(Las — 2L1Lo cos(0 + 127) — 2L L, + L)

ners \/Lb2 + (2Lt Ly — Las)? — (~2Ly Ly cos(0 + 27) + Ly,)?)
B = 2tan (13.136)
180

For the case of factor C, it is defined as

2L;Lgsin(B) — \/4L2L§ sin(B)? + 4L2L2 cos(B)? — (L — L% + L2)?
C = 2tan™" — (13.137)
and for D let us define Ly = L& + LZ + L2 + L2,
_ 2 . _ . A
D vd + 2L1oLg sin(C) — 2L1oLg sin(A) (13.438)

—2LgLg(sin(A) sin(C) + cos(A) cos(C)) + 2L19Ls cos(C) — 2L19Lg cos(A) — Lqy

where d = —(—2LgLg(sin(A) sin(C) + cos(A) cos(C)) — Lq1)? + (2L1oLg sin(A) — 2L4oLg sin(C))? +
(2L10L6 COS(A) — 2L10L8 COS(C))2.



13.3. ROBOT ANALYSIS WITH DRIVEN ANGLE ¢ 355

13.3 Robot analysis with driven angle ¢

13.3.1 Front limbs

The equations for planar Cartesian positions for the front limbs are stated. Thus, let us
define the following terms R, = LfQ - L%i + L%O, Sy = 2LyLigsin(2tan (D)), and T, =
2L19L45 cos(2 tan~! (D)),

(Sr1 — \/ Sy + T — RYy)
X, = Ligcos [ 2tan™? + Lgcos(A) + Ly (13.139)

(Tri + Rri)

and,

(Sm1 — \/531 + 4L L, cos(2tan ™! (D))? - RY,)

Xy, = —Lyo cos(2tan™!( —
(2L1gL1o cos(2tan™ (D)) + Ryy)

)) — Lecos(A) — Ly (13.140)

and since Y,, = ¥, then

S P VR + 4L} L%, cos(2tan™ (D)2 — (Ry1)?)
r = 1
! 2 (2L1oL1o cos(2tan™1 (D)) + Ry1)

)) +Lgsin(A) (13.141)

It follows that the Cartesian speeds are described by the first order derivative w.r.t. time,

dX,,

Xy, = i (13.142)

and
Xy, = dfftl? (13.143)

and
U, =0, = dj;"g = d:t‘Z (13.144)

Thus, by defining the following expressions that were used previously. Let us re-define the

terms €, = 2L1Ls — 2LyLg cos(¢), and Ty = L2 — L2 + L3 + L?

B \/4L§L§ sin()2 + (£,)2 — (—2L1 Ly cos(p) + 1a)2 + 2Ly Lg sin(¢)
A = 2tan OLyLg cos(d) — 2L1 Ly cos(¢) — 2L1Ls + Ta (13145)
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Likewise, by defining the following expressions that were used previously. Let us re-define the

terms £, = 2Ly L, — 2LyL, cos(¢), and 15 = L7 — L2 + L3 + L},

OLyL,sin(¢) — \/4L5L7 Sin(@)2 + & — (~2Ly Ly cos(d) + )2
B=2tan! (13.146)
2L5L, COS(d)) —2L41Ly COS(¢) —2L4L, + TB

by defining the following expressions that were used previously. Let us re-define the term

e =L - L2+ L}

9L, Ls sin(B) — \/4L7L3 sin(BJ2 + 4L}L3 cos(BJ? — (rc)?
C =2tan! (13.147)
2L;Lgcos(B) + t¢
and by defining the term tp = L2 + LZ + L% + L},
D —Vd + 2L1oLg sin(C) — 2LyoLg sin(A) (13.148)

- —2LgLg(sin(A) sin(C) + cos(A) cos(C)) + 2Ly9Lg cos(C) — 2L1oLg cos(A) — 1p

where d = —(—2LgLg(sin(A) sin(C) + cos(A) cos(C)) — 1p)? + (2L19Lg sin(A) — 2LygLg sin(C))? +
(2L10L6 COS(A) - 2L10L3 COS(C))Q.

13.3.2 Rear limbs

The equations for planar Cartesian positions for the front limbs are stated. Thus, let us use

the terms previously defined R,1, S;1 and T}y,

B S Si + Thy — Ry
Xp, = Ligcos | 2tan + Lgcos(A) + Ly (13.149)

Trl + er

Likewise, following with the same substitution terms R;, S;1, and T,

(Sr1 — \/ Sk + Ty — RY)
Xy, = —Lygcos [ 2tan! — Lgcos(A) — Ly (13.150)

B (Tri + Rri)

2

and

S —\/Sh + Th — (Ruy)?
V,, =V, = Ligsin | 2tan! TR + Lg sin(A) (13.151)
ri ri
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In addition, let us define the Cartesian speed of the rear limbs’ contact point,

. dX
Kr, = dtm
and
. dX
Xy dtlz
as well as,
. . dvy dvy
Y, = ¥, = dtm N dtlg

By substituting the factors used in previous equations, the expressions for A, B, C, and
D are defined. In addition, let us redefine & = 2LyLg cos(¢ + 222), & = 2LiLy cos(p + 127,

b5 = 2LyLgsin(¢p + 227, and Ly = LZ + L + L?

e \Q/eg + (2LtLg — €)% — (—ly + L2 — La)2 + s 13459
- clan (€ — 6 + L2 — 2Ly Lg — Ly) '

and defining L = L4 - L3 + L2 + L? and ¢, = 2LyL, sin(¢ + 112§5’)

0 - \/e + 2Ly Ly — 2LoLy cos(d + 22))2 — (—fy + Lyy)2
B =2tan™" o (13.153)
2LyL, COS((i) + 18(?) — 0y —2L41L, + Ly
Similarly,
OL,Ls sin(B) — /4L7L3 sin(BJ? + 4LJL cos(BJ? — (L — L + L})?
C=2tan™’ ——— (13.154)
2L Lgcos(B) + Lg — L5 + L}
Finally, by defining the term Lyg = L3 + LZ + L% + L%,
b —V/d + 2L1gLg sin(C) — 2L1oLg sin(A) (13.455)

—2LgLg(sin(A) sin(C) + cos(A) cos(C)) + 2L19Lg cos(C) — 2LjgLe cos(A) — Lig

where d = —(—2LgLg(sin(A) sin(C) + cos(A) cos(C)) — L1g)? + (2L19Lg sin(A) — 2L1oLg sin(C))? +
(2L10L6 COS(A) - 2L10L8 COS(C))Q.
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13.4 Robot's motion control

On studying how the mechanisms walking evolve, results of critical importance to provide the
robot with the ability of self-balancing. Synchronised contact of the eight legs with ground may
grant suitable stability for the global robot's manoeuvrability. Figure 13.4 depicts a top view of
the octapod, as well as hash-tag symbols plus a number indicating the synchronization order
of the limbs during walking. The step’s displacements magnitude were set arbitrary for both:
for the purpose of simulation, and for an hoe-made experimental prototype robot. In addition,

this order of walking is a preamble for any type of controller design.

L1 L2 D2 D1

% ¥
1] [ea BE

ﬁﬁ #4] |#1
D

D1 D2 L2 L1

Figure 13.4: Octapod’s top view. The hashtag symbols plus a number indicate the synchronising order for
the limbs during walking.

Such as depicted in figure 13.4 (XZ-plane), an eight-leg walking pattern is indicated. Where
the big black dot located at the robot’s centre determines the robotic structure’s centroid, while
the smaller black dots represent each limb’s contact point (i.e. L1, L2, D1, and D2). Further,

the gait sequence follows the next order:
1. The front left-sided leg (L) steps first.
2. Second, the rear right-sided leg (D) steps.

3. Third, the front right-sided leg (D;) steps next.

N~

. Finally the rear left-sided leg (Ls) moves.

5. Repeats again from 1.
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From previous walking sequence, and kinematic analysis, figure 13.5 illustrates a side view
(XY plane) of the gait patterns, and the walking behaviour for the set of three limbs during
a normal walking task. Two front-side limbs (black color for the right-sided, and red color
for the left-sided limbs), and one rear-side limb (blue color). The walking pattern yielded by
the two actuators 8 and ¢ is cyclic and records the same type of gait as any other limb does,

although with constant angular offsets.

Left path s
Right path

R2 ——
22—
n—

\

=

\

\
\
\
\

\\

0\
N

stcm)
5
|

o
1
o

Y
0 AN

G
iy
Bl

'//,’o,'u;.o

s(cm)

Figure 13.5: Walking patterns simulation of three limbs.

In addition, the robot’s global displacement along the X-axis is contributed by the eight limbs
moving in coordination. Thus, the robot’s displacement was characterised by setting arbitrary
link sizes preserving same rate even when lengths are changed. The robot displacement is
numerically expressed by the following limbs’ contribution, where such linear displacement
will depend on the limbs touching the ground in turn. At least two limbs synchronised that

simultaneously are producing the same displacement.

24.2cm, Ap,
19cm, Ap,
Ap = S (13.156)
24.2cm, Ap,
19cm, Ay,
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The robot’s trajectory control is one of the main issues of this chapter. In terms of the robot’s
global kinematic control, the instantaneous input vector u; € R? is defined. Its components are
the instantaneous velocity vy, and the instantaneous angular velocity wy,
us = v
(]
On formulating v, the robot’s absolute velocity represents an averaged displacement of the
eight legs along the longitudinal X-axis. The eight legs averaged displacements arise from
their first order derivatives w.r.t. time Atf. Therefore, a formulation that approaches v; is

defined by

Postulate 13.4.1 (Octapod’s instantaneous absolute velocity). The absolute velocity is an aver-

age speed value of the eight limbs’ contact point.

Ut = 8 (X(;R1 + Xor, + Xor, + Xor, + X¢R1 + X¢R2 + X¢L1 + X¢>L2> (13.157)

The indexes 0 and ¢ denote the lateral side of the actuators positions Besides the robot’s
lateral control is related to the instantaneous angular velocity. Therefore, when the difference
of sides speed yields an angular velocity that gradually changes the robot’s direction. Thus, any
change in lateral velocities will produce a speed component projected along the transversal axis,
also known the normal component that impulses the robots to spin. Therefore, the definition
of wy is provided next,

Dicos(a)

W = (13.158)
r

Where parameters and variables are depicted in figure 13.6. The differential velocity basically

is the speed difference between both robot’s sides as defined by the next expressions,
O =2XpVr - 2LV, (13.159)

Such previous expression is known as the instantaneous differential velocity, and is equivalent

to the sum of all limbs’ velocity. The right-sides velocities are considered positives (counter-
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Figure 13.6: Robot's top view with kinematic configuration.

clockwise), while the left-sided velocities are assumed negative as they turn clockwise direction.

cos(a) = a (13.160)

po v (%)QJ, <g>2 (13.161)

Being r the average distance of contact points with the ground of each one of the legs w.r.t.
the robot’s centroid. Likewise, a and b are constants and represent the lateral and longitudinal

distances respectively among the limbs’ contact point. Finally,

(vr = vi)(57)

wf = —— (13.162)
a®+b?
A
thus, algebraically arranging,
(UREUL)G
— r
W = = (13.163)
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reorganizing division terms,
_ (or —v)(@)(2)

13.164
orvaZ + b2 ( )

by reducing terms,

Postulate 13.4.2 (Octapod’s instantaneous yaw velocity model). The octapod’s yaw speed is

postulated in terms of its kinematic structure, and difference between lateral velocities.

o = 2o ) (13.165)

rvaZ + b2

The instantaneous w; physical units are given in rad/s. When there exists a difference
in the subtraction of lateral velocities, a numeric change for w¢ exists and w; # 0, which is
consequently produced by any change in 8 and/or ¢. In addition, when v; = v;_4, then there
will not be any difference in velocities vy = XV — XV, = 0, and w; = 0. For any instant ¥
the projection upon the transversal axis is what determines the angular velocity. Mathematical
analysis of this structure led to obtain a control vector of the octapod structure based on Theo
Jansen’s mechanism. The study of angles in all linkages allowed to gain better understanding

on how the system behaves and evolves solely with two driven angles.
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Chapter 14

RECONFIGURABLE GAIT PATTERNS OF

A KLANN-BASED ROBOT

Jaichandar K. Sheba'?, Rajesh E. Mohan?, Edgar A. Martinez Garcia®, Le Tan-Phuc!

!Singapore Polytechnic, Singapore.

2Singapore University of Technology and Design, Singapore.

5Laboratorio de Robética, Institute of Engineering and Technology, Universidad Auténoma de Ciudad
Judrez, Mexico.

Legged robots are well suited to walk over abrupt terrains and they are effective in using iso-
lated footholds which optimize support and traction. Design based on one degree-of-freedom
planar linkages can be energy efficient however their locomotion is limited by the range of gaits
produced. In this chapter, novel reconfigurable mechanism based upon Klann linkage to gen-
erate wide range of gait cycles has been investigated, opening new possibilities for innovative
applications. A robot that has a fixed structure of movement mechanism faces issues related
to constrained set of gaits that it can produce. Numerous research efforts have been dedicated
to this end involving varied design strategies. However, such an approach results in increas-
ing difficulty in control algorithm when more and more units are connected with each other.
Another design approach in the literature achieves gait variations via parametric changes of
leg structure '—°. Our aim in this research is to design a robot using Klann mechanism which

can change its linkage configurations to adapt their gait according to changes of surround-
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ing environment. In this chapter, Klann based reconfigurable design and implementation is
presented, where a robot changes its structure morphology by changing its components and
sub-assemblies parameters to adapt to multi-terrain and multi-task. The leg linkage length ratio
of the robot platform has been modified to create a large number of gait patterns which can
be selectively used by the robots to explore, test and apply to get real feedback. The proposed
reconfigurable mechanism approach can be extended from two symmetry legged assembly
to four or more legged assembly. This design supports multiple legged robots with adaptive
changes when one leg fails or to use a leg as a tool to perform functions other than locomotion.

This design can be applied to both homogeneous and heterogeneous legged platform.

14.1 Klann mechanism position analysis

The Klann linkage (“Klann leg” can be used as term in this chapter) named after its inventor is
a one degree of freedom planar mechanism which is formed by six bars connected with each
other by revolute joints®. This linkage was designed to emulate a smooth walking motion with
only one actuator. The limitation of this mechanism is that it can produce only one walking gait
for one specific design of linkages. It can be observed that the foot trajectory of the standard
Klann leg is similar to a specific animal walking gait”’. The main challenge in identifying
foot trajectory for further reconfigurable design is to create efficient approaches to solve the
position analysis problem of the Klann leg. A common method is to solve a system of non
linear equation with the number of equation equal to number of unknown variable”. However,
the elimination process will give out a large number of solutions caused by trigonometric parts
and tangent half-angle problem. Using bilateration method solution can be found for this type

of problem'.

The bilateration problem consists in finding feasible locations of a point P., given its dis-
tances to two other points, say P, and P, whose locations are known. Then, according to

figure 14.1-b), the solution to this problem can be expressed in matrix form as:

Pac = a,b,c Pa,b (14-1)
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Pec

Figure 14.1: a) Photo of an experimental Klann-based prototype limb. b) Geometric foundation of the
bilateration problem. c) Klann linkage kinematics.

—
Where pqp = PPy and,

1 Sa,b t+ Sa,c — Sb,e —4Aq e

Za,b,c = (142)

Qsa‘b 4Aa,b,c Sa,b T Sa,c — Sb,e

is called a bilateration matrix, with s, p = dg,b = ||Pq 112 the squared distance between P, and

Py, and

Aa,b,c = i%\/(sa,b + Sa,c + sb,c)2 - 2(5(21,b + 3121,0 + s%,e) (143)

The oriented area of AP,P,P. which is defined as positive if P, is to the left of vector p_az,
and vice versa. The interested reader can refer to the work" for a derivation of equation.
By using bilateration matrices, the position analysis problem of linkages such as Klann leg is
greatly simplified. Next, we apply the bilateration method on Klann leg for solving the position
analysis problem of the end point of the leg.

Figure 14.2 shows a Klann leg with 5 links, they are P; Py, PzP,, Ps5Pg, PoPzP;, PgP;Pg. This

one-degree-of-freedom planar linkage consists of the frame (AP;P,Ps), one crank (P;Py), two
grounded rockers (segments PsP,, PsPg), and two couplers (AP,PsP;, APgP;Pg) all connected
by revolute joints. These links and frame’s dimensions including links length dj o, do3, dz4,
dse, d37, dg7 and dy g, fixed angle € and w of two couplers are all known with an angle 0 for
the input link. The Cartesian coordinate plane Oy, with original point was placed on joint Py
together with axis directions as shown. The position analysis problem for Klann leg is then

calculating all possible Cartesian locations of end point Ps.
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Figure 14.2: Bilateration method applied to red-highlighted chain of links.
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In this case, squared distances and bilateration matrix are used to compute the corresponding
location of end point Pg based on angle 6. First, let us locate the position of Py based on the

input angle 6 and the origin P; through a simple cosine equation as following:

—s cosf
PPy =dyp (14.4)
sin 6
Figure 14.2-a) shows the corresponding link for the calculation of equation (2). Figure 14.2-b)

shows the next step of the process, the position of Ps is located by computing ps 3 from 6 and

the position of previous calculated joints P, and P, using equation (1).

P25 = Z234P2,4 (14.5)
it follows that,
— 1 So4 + So3 — S —4A —
B,D, = = 2,4 2,3 4,3 2,43 B,D, (14.6)
52,4 4A9, So4 + 823 — 843
with
— s s = x; —dyocos6
P,P, =P, — Py = (14.7)
Vs — d1,2 sin 6
and
1 2 2 2 2
Agus = 7 (so4 + 805 + 543)" — 2(s042 + 5932 + 54,3%) (14.8)
—
Ps is to the left of vector P, P, in this case; and,
—_— 2 2 . 2
So,4 = ||p2p4|| = (I4 — dLQCOSQ ) + (;W, - d1,2511’19 ) (14.9)

— — —_ =
After getting P, P5, we can calculate P; = PyP3s + P,. Next, we locate Py based on P, and P3 as
shown in figure 14.2-c):

Py7 = Zy 571023 (14.10)

therefore,

1 S93+ So7 — S —4A
m _ 2,3 2,7 3,7 2,37 52—?3 (14.11)

253 4Ag37 Sp3 + Sp7 — S37
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with

So7 = 839 + S37 — 2d3,2d3,7 COS((—Z),

and

1
Aoz7 = Z\Z/(Sm + so7 + 837)% — 2(33,3 + 5%,7 + 5%,7)

given that Py is to the left of vector PyP3 in this case. thus,
— el —
P; = DyP; + Py
Then, from known position of P; and Ps, Ps is located (figure 14.2-d),

Ps6 = Z5,7,6P5,7

hence,

— 1 s57+ 856 —S76  —4A576 —
DsDg = 5 DsDy
55,7 4As576 S5,7 + 856 — S5,6

—
with s57 = ||P5P7||2,

1
As76 = Z\Q/ (s57 + S5,6 + 57,6)% — 2(5%,7 + s%,ﬁ + S%@)
—
where Pj is to the left of vector PsP; in this case.

— —
P@ = P5P6 + P5

(14.12)

(14.13)

(14.14)

(14.15)

(14.16)

(14.17)

(14.18)

and finally, we locate the end point Pg of the linkage based on previous calculated joints Ps and

P;. From figure 14.2-e, we have:

Pe;s = Z6,7,3P6,7

Therefore,

— 1 Se7+ 868 —S78  —4Ass —
DPs D7
4A673 S6,7 + S68 — 57,8

with

S68 = 57,6 + 57,8 — 2d7,6d7,8 cOS(w)

(14.19)

(14.20)

(14.21)
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and

1
Ag78 = ~7 // (S6,7 + Se.8 + S7.8)2 — 2(sE 7 + SEg + 5%4) (14.22)

where Pg is to the right of vector PgP; in this case. Then
— —_ —
Ps = PsPg + Py (1423)

From equations (18), (20), position of points Py, Pg, is located respectively. Equation (14.23)
defines the position of point Pg, the foot of Klann leg, which depends on the set of link di-
mensions (L) including fixed angle w and ¢, input angle (0), the location of Py, P,, Ps and the
oriented areas Ag;3, Ao37, As76 and Agyg. To this end, instead of using independent loop-
closure equations with joint angles, for a specific set of link dimensions (S) and input angle
0 of Klann leg, a unique position of point end point Pg is located using bilateration method

mentioned above.

14.2 Foot traces generation beyond Klann linkage

Our aim is to generate useful gait pattern based on novel reconfigurable Klann mechanism yet
maintaining the efficiency and simplicity of the actuation. As this research is an initial step for
design of a complete reconfigurable platform using Klann linkage, we chose one leg for the
analysis presented in this work. We compute position of every point using a series of equations
presented in previous section. By connecting all calculated points, we are able to trace the gait
pattern. With a different set of link dimensions, we can acquire a distinct foot trajectory for
each set. Hence, if the Klann leg can change the link dimensions itself, the linkage will generate
a numerous new and different coupler curves. With this basic principle in mind, our objective
in this study is to identify whether by performing small variations in the lengths of the links of
a standard Klann leg, novel foot trajectories of interest for a walking platform can be obtained.
Hence, a simple exploratory method is conducted in which we change the standard dimensions
of every links of the Klann leg within a limit of except the crank dy o, the leg d7 s and the frame
Py, P,, Ps. Then, all the foot resulting coupler curves are computed using the above method for
each change of link dimensions. To be classified as reconfigurable at least one of the following

features should vary a) the effective number of links and/or joints, b) the kinematic type i.e.,
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=200
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Figure 14.3: Traced foot trajectory of standard Klann leg with trajectory direction.

the contact constraint of some joints, c) the adjacency and incidence of links and joints, and d)
the relative arrangement between joints. By reallocating the joint position new and different
coupler curves can be generated. By changing the link lengths, five distinctive gait patterns
that extend the original Klann linkage has been presented in table 14.1 achieved through four

links, five links and six links transformations.

Digitigrade Locomotion The standard foot trajectory of a Klann leg is similar to a kind of
spider’s locomotion with a long stride. On the other hand, digitigrades walk on their digits or
toes. Due to the short floor touch of the foot of digitigrades, these kinds of animal perform
less friction and use less energy than others. This interest makes digitigrade locomotion of

great interest for the development of walking platforms.

Jam avoidance (Walking on soft, sticky terrain) When walking on soft or sticky terrains
such as semi-wet mud, walkers could easily get jam because of the soil conditions. Usually, a
change in walker’s gait pattern has to be made where the stride become shorter and touch-

down as well as lift-up leg angle is increased nearly to overcome such situation.

Step climbing One of the advantages of a standard Klann leg is that it has a relative high

foot step at 350 (units) with highest point at —200 (units), which can handle with uneven terrain
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or non-significant obstacles such as gravel or small stone. However, the difficulty is increased
when the leg faces with higher step level (above —200 units) or obstacles higher than its limit

(350 units).

Hammering motion Beside those walking-related foot patterns that we have presented above,
in the process of analysing foot trajectories for reconfigurable design, we have found this po-
tential pattern whose shape is similar to a hammering motion. The hammering action provides

a repeated short, rapid impact to an object with high force on a small area.

Digging motion For those kinds of legged animal such as dog or cat, legs are used not only
for walking or running but also for others functions, pawing, clawing or digging, etc.

As shown in figure 14.1-a) a fully function reconfigurable Klann leg has been designed with
two DC servos and five linear servos, suitable for performing the transformation previously
discussed. Transformations are achieved by changing link length variable. To facilitate up
down movement during reconfigurable process the base link is designed with ball screw with
a ball screw and a slider joint. The base link is designed to allow the up and down movement
of the reconfigurable Klan leg during transformation process. The base system and extendable

links are the principal components of the proposed design of reconfigurable klann leg.

14.3 Experimental result

The first experiment consisted in comparing the simulated and experimental leg trajectories for
the different gait patterns®. The linear servos represent link dimensions of the reconfigurable
Klann leg, and were set according to the number of active links, together with five cycles
of input crank. A percent error of less than 25% is obtained for all cases. The origin of
such errors is principally due to the non-conformity of link lengths and the presence of joint
clearances in the prototype. Both error sources are almost inherent to the fabrication of
mechanical designs and are the typical elements that affect the performance of linkages and
mechanisms. The highest error in the digging motion pattern, 24.9% in height, is caused by
the dramatically change in moment generated by the mechanism. It can be easily shown by
simulation that the farthest center of mass point, respect to the base link, is achieved in such

pattern, as a consequence, the joint clearance (backlash effect) affects more this pattern than



374 CHAPTER 14. RECONFIGURABLE GAIT PATTERNS OF A KLANN-BASED ROBOT
Patterns 4 links 5 links 6 links

Digitigrade
locomotion

Jam
avoidance

-100

—300

w31t by 0 T !
300 400 500 60 700 800 900 30 400 500 600 700 800 900

Step
climbing

Table 14.1: Foot trajectory patterns for reconfiguration application.

the others. The second type of experiment consisted in verifying the transformation process
between patterns. To this end, the transformation from jam avoidance locomotion to digging
motion was tested. The results verify that the transformation is carried out without undesired
floor contacts.

All experimental results of leg trajectories are obtained by getting data of five cycles of input
joint and calculating their median value with seven implemented actuators. This design which
has the ability to transform its links to produce five different gait patterns is still considered
as a one degree of freedom linkage when operating in normal cycle. A simple but effective
method to solve the position analysis problem for Klann linkage based on bilateration matrix
has been introduced together with leg transformation technique. Five potential gait patterns
of reconfigurable design have been classified and evaluated beside a transformation method
to swap among those gaits. These typical gait patterns have shown that this simple but orig-
inal Klann linkage can produce foot trajectories not only used for walking purposes but also
behaved as a tool with other functions. A real prototype of Klann leg is built based on the

preliminary design to test output trajectories.
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Figure 14.4:

steps.

Simulation of the leg transformation from jam avoidance to digging motion through several
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Chapter 15

ANALVSIS AND MODELLING OF A

HOEKENS-JANSEN BIPED

Julio Reyes Muiioz and Edgar Alonso Martinez Garcia

Laboratorio de Robdtica, Institute of Engineering and Technology
Universidad Auténoma de Ciudad Judrez, Mexico.

In this chapter a detailed kinematic analysis of walking trajectory for an experimental biped
robot comprised of hybrid limbs Hoekens-Jansen is presented. Mathematical and numerical
modelling of the Hoekens and Jansen mechanisms are discussed separately. Subsequently, a
novel hybrid mechanical limb Hoekens-Jansen is described. The both mechanisms are dis-
cussed in terms of their planar motion . In addition, the Jansen mechanism is a mechanical
linkage that was taken as a foundation for the development of the proposed mechanical design.
The Jansen mechanism has one active independent control variable, similarly to the Hoekens
linkage. However, the Jansen type poses more passive joints that the Hoekens. Therefore,
the whole limb’s movement is transmitted by only one rotatory actuator, and the hybrid limb’s

theoretical trajectory geometry is validated with its experimental trajectory motion.
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15.1 Kinematic analysis of the Hoekens mechanism

The Hoekens mechanism is one of the mechanical linkages used for the basis of the proposed
limb design. The Hoekens mechanism (figure 15.1) is built with two Cartesian variables of
the workspace that describe the geometry of motion (two degrees of freedom) of the final
link l)’'s xy components. The Hoekens mechanism is comprised of a closed 3-link kinematic
chain [y + I3 (rotation radius and link 3), l;(chassis), and link l,. In addition, one independent
active variable controls the rotation motion of [y, which is the motion that inputs the first link
Is. Likewise, the end point of the link 1, moves along a non linear trajectory, which is defined
according to the numerical geometric parameters of the mechanism. The motion track of I, is
developed regardless of the actuators speed. Because of the the geometrical relation between
the links of the mechanism, the output trajectory is traditionally described by a semi-elliptic

curve that is closed by a straight line .

Figure 15.1: Hoekens mechanism’s rigid links(left). Angles of interest for premier analysis (right).

Figure 15.1 shows all Hoekens mechanism’s points of interest. Where a is the control
variable or rotatory actuation. b is a fixed passive joint with no translation over time. ¢ and
d are passive joints. e is the point describing the output trajectory. In addition, the metric
relation for each link’s length is depicted and provided next, where the link [; is the starting

length parameter to establish the relation for the rest of the links:

ly = 2lp; lo = =lo; Iz =
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The active angular joint 6, is the only angle measured over time, while the other angles are

inferred and described through the mechanism’s kinematics model.

Figure 15.2: Kinematic chains to arrive to point d.

According to figure 15.2, in order to infer until joint d, the following model is established:

Axiom 15.1.1 (Closed kinematic chain). Point d position in planar coordinates is formulated
by

lpcosBy + Iscos By =1y + lypcosby (15.1)

and

lo sin 9() ol l3 sin 91 = 12 sin 92 (152)

Hence, having a system of two equations 6; and 6, are unknown. Thus, dropping off the

following terms in each equation,
lpcosBy = lpcosBy + lIscos B — Iy (15.3)

and

12 sin 92 = l() sin 90 + l3 sin 91 (154)

Both equations are squared, and by substituting the trigonometric identities for sine and cosine

(see chapter 1.1),

l% cos® 0y = lf + lg cos® Oy + l% cos? 0y + 2lpls cos Oy cos 0 — 2oly cos By — 21415 cos 6y
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and

13 sin” B, = 2 sin® B + 12 sin® 6y + 2lpl5 sin 6 sin 6;

Thus, by simplifying equations,
13 =12+ 12+ 12 + 2yl cos 6y cos By — 2lgly cos By — 21415 cos B + 2lgls sin 6 sin 6
By rearranging equations,
(2lols cos By — 2l415) cos By + (2ols sin Bp) sin Oy + (12 + 12 + 12 — 12 — 2lgly cos ) =0 (15.5)

By using the following trigonometric identities:

1 — tan?(g
cosfO = an (g)
1 + tan?(3)
as well as, .
2tan(z
sinf = (3)9
1 +tan™(5)

Equation (15.5) is simplified and rewritten to provide the following expression

Postulate 15.1.2 (Quadratic general equation). The quadratic general equation as a function

of tan(0y/2) is postulated by
i = 2t
A<1+t2> +B<1+12> rCc=0

Where, for simplicity the next notation is used,
)
t = tan <21> (15.6)

Thus,
A= 21013 Ccos 90 - 211 13
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and
B = 21013 sin 00

and

C=L+LE+15-15—-2llicosby

therefore, by rewriting the next equation
(C-A)t2+2B)t+(A+C)=0 (15.7)

and by solving the quadratic equation by using the general form,

[ -B-VA2 1+ B2 -C2
B C-A

The solution for 6; from equation (15.6) is obtained,

Corollary 15.1.3 (Passive joint 6;). The equation that models the passive joint 6,

(15.8)

_ A2 2 _ (2
61 =2arctan< il ® >

CcC-A

Likewise, a solution for 6, is provided when dividing equation (15.4) by equation (15.3),

lpsin 6y + I5sin 6;
lpcosBy + lzcos0; — 1y

tan(6,) =

Thus, by solving for 8, the next corollary has been proved,

Corollary 15.1.4 (Passive joint 6,). The equation that models the passive joint 0,,

(15.9)

< lp sin 00 + I3 sin 6, >
6, = arctan

lpcos By + Iscos 6 — I
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Therefore, a kinematic analysis of the kinematic closed chain will be obtained until the final
point e. The vector of position (15.10) is stated by

x lp cos(6y) + (Is + 1) cos(O
pe [ Xe) = (T (60) + (Is + 1z) cos(6y) (15.10)

Ve lo sin(6g) + (I3 + 1) sin(6;)

The Cartesian trajectories of each point in the mechanism are depicted in figure 15.3. The

position vector a starts with Cartesian components

Xq 0
Pa = =
Ya 0
likewise, the position vector of point b:
Xbp ly
Py = =
Yb 0
the position vector of point ¢
Xe lo cos(6p)
Pc = = .
Ve lo sin(6p)
and the position vector of point d
Xq lo cos(6y) + I3 cos(6;)
Pd = =
Yd lo Sil’l(@o) + I3 Sil’l(01)

Eventually, in order to plot the trajectory of point e, the position model was previously pro-
vided by the expression (15.10). It is worth noting that the trajectories plotted in figure 15.3
correspond to a complete cycle of the link [y denoted by the control angle 6, ranging from 0 to
27t radians. The lengths for each link were established according to the following parameters

(given in mm): ly = 50; I; = 100; I, = 125; I35 = 125; and 1, = 125.

The advantage on using this mechanism is its simplicity, because only four links are needed
to describe a semi-elliptic trajectories. Furthermore, despite this mechanical simplicity, it is

possible to modify the output trajectory by solely changing the Cartesian position of the fixed
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Figure 15.3: Trajectories described by each point of the Hoekens mechanism.

passive joints, and/or by numerically changing the links lengths. As a matter of fact, the low
number of links makes a light mechanism, which is suitable to manage as required the ending

section of the proposed design.

15.2 Kinematic analysis of the Jansen mechanism

The Jansen mechanism is another of the mechanical linkages taken as foundation for the
development of the proposed limb design. Similarly as the Hoekens mechanism, the Jansen
mechanism is actuated by deploying one rotatory joint. Nevertheless, the Jansen mechanism
posses even more links (eleven), and passive joints than the Hoekens mechanism. Using similar
notation as previous sections, the Jansen actuation is transmitted by only one rotatory control
variable the inputs link [.

Figure 15.4 shows the Jansen mechanism with all its joints and links. a is the driven joint.
b and i are fixed passive joints at fixed positions. c, d, e, f, and g are the passive joints. Finally,
h is the point describing the output trajectory. Likewise, the mechanism has a special metric

ratio of the links w.r.t. Iy (driven by the actuated joint): I; = 0.52ly, I, = 2.53ly, I3 = 3.33l,
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l, = 413y, Is = 2.76ly, ls = 3.72ly, l; = 2.67ly, I3 = 2.62ly, lg = 2.63ly, lig = 2.45ly, lj1 = 3.271,
lig = 4.38ly.

Figure 15.4: The Jansen mechanism’s links (left). Angles of each link w.r.t. the horizontal (right).

In order to obtain the kinematic model of the Jansen linkage, the whole set of angular values
of the passive joints are required to be expressed with a mathematical functional form”°. The
kinematic analysis is very similar to one previously described for the Hoekens mechanism. The
mathematical expression is stated w.r.t. the driven angle 6, and the links lengths associated.
Thus, by developing a similar method as the previous section, the equation (15.7) was established

and solved by using the next quadratic formula,

Postulate 15.2.1 (Quadratic solution for tan(6;/2)). For the set of closed kinematic chains, the

general quadratic solution for passive angles is

—B; + /A% + B2 - C?
i = (15.11)

Ci - A

Where A, B, and C are expressions, which depend on the known driven angle and its links
lengths. The index i identifies a closed set of kinematic chains. Thus, in order to obtain an
analytical solution for the unknown angles 65 and 85, the kinematic chains are shown in figure

15.5. The following system of equations is obtained:
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Axiom 15.2.2 (Kinematic chain b). The kinematic chain model to solve position of point b,
I5cos0s + Iy = lpcosby + I3 cos 05 (15.12)

and

l5 sin 95 - 11 = lo sin 90 ar l3 sin 93 (1513)

And, by firstly isolating a term of each equation containing one of the unknown variables,
I5c0s05 = lI5c0s05 — lgcos By + Iy (15.14)

likewise,

13 sin 93 = l5 sin 95 — lo sin 9() - 11 (15.15)

The expression are subsequently squared
12 cos® 05 = 12 cos® Os + 12 cos? By + 15 — 2lpls cos O cos s — 2lly cos By + 2llscos b5 (15.16)
as well as
12 sin® 05 = 12 sin® B5 + 12 sin® B + 12 — 2lpl5 sin 6 sin 65 + 2lyly sin Oy — 21415 sin B5 (15.17)
and algebraically simplifying the equations
=12+ +13+ 12 - 2lsco,co, — 2olocy, + 2olsce, — 2lolssg,se, + 2lolisg, — 2l lsse,  (15.18)
and
(2lols — 2lplsce,)co, + (—2l1ls — 2olssg,)se, + (12 + 12 + 12 + 12 — 12 — 2lglocq, + 2plysg,) = 0 (15.19)
and by obtaining the expressions A, B and C for this pair of closed kinematic chains:

A1 = 21215 - 21015 COS 00 (1520)
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B1 = —21115 - 21015 sin 9() (1521)

and

Ci=B+12+15+12—1%-2llycos by + 2loly sin 6y (15.22)

hereafter, from equation (15.11), it provides an analytical solution

-B; —\/A? + B} - C?
t) =

C1 - Ay

t; = tan <925>
" —Bi—\/A%+B%—012
65 = 2tan (15.23)

and considering that

Thus, the solution for 65:

C1 - A

In addition, dividing equation (15.15) by expression (15.14):

15Si1’195 — lo sin 90 — li

tan 65 =
anvs IscosB5 —lpcos By + Iy
hence, the solution for 65:
_ I5 sin 95 - lo sin 00 — l1
65 = tan~' | > 15.24
s = fan < IscosBs — lpcos By + Iy ( )

In order to obtain the next pair of angles, the kinematic chains shown in figure 15.5 were

algebraically analysed. Thus, the kinematic path from the point b to the point e is stated

Is cos 05 + lg cos O = l7 cos 07 (15.25)

as well as

I5 sin 05 + lg sin O = 17 sin 6, (15.26)
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Figure 15.5:  a) Kinematic chain of links until joint d. b) Kinematic chain of links until joint g. ¢) Kinematic
chain of links until joint f. d) Kinematic chain of links until joint e. e) Kinematic chain of links until joint h.

and the resulting equations are subsequently squared,

l? cos® 0; = l% cos® 65 + lg cos® 0 + 2l5l cos 5 cos B (15.27)

and

12 sin” 6; = I2 sin® 65 + 12 sin® B + 2lsl; sin 65 sin 65 (15.28)

by algebraically simplifying the expressions,

12 = 12 + 12 + 2I5l5 cos 65 cos B + 2Isle sin O5 sin g (15.29)

and

(21515 cos B5) cos B + (2l5ls sin O5) sin 05 + (l% + lg -)=0 (15.30)
after simplifying previous expressions, A, B and C are obtained and the related pair of closed
kinematic chains are solved

AQ = 21516 COS 95
BQ = 21516 sin 95

and

Co=B+1-12
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Hence, by using equation (15.11) and solving for 6

—By + /A3 + B - C
05 = 2tan~! ( i (15.31)

Cy - Ay

Likewise, solving for 6; equation (15.26) is divided by equation (15.25):

0, = tan_l < l5 sin B5 + lg sin 65 > (1532)

I5 cos 05 + lg cos B

In order to obtain the unknown angles 6, and 6g, the kinematic path from point a until point
f is modelled by

lgcosbg + Iy = lycos by + I, cos b, (15.33)

and

lg sin 93 - l1 = lo sin 90 + 14 sin 94 (1534)

Thus, by isolating the terms containing the variables of interest
l,cos6, =lgcosbs —lpcosby + Iy (15.35)

as well as

lz, sin 94 = lg sin 93 - lo sin 90 — l1 (1536)

In addition, equations are squared to algebraically re-arrange,
l,% cos? 6, = l§ cos’ Og + 1(2) cos? 6y + lg — 2lylg cos Oy cos g — 2lply cos By + 2lslg cos O

and

12 sin” 0, = I2 sin® 6 + I2sin” By + 17 — 2lylg sin O sin Og + 2lply sin By — 2141g sin 63

by defining € = 12 + I2 + I3 + IZ,and algebraically simplifying equations:

ll% ={— 21018C90C98 - 21012090 + 212[8098 - 21018590593 + 21011590 - 21118598 (15.37)
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and
(21218 - 21018(390)(398 + (_21118 - 21018390)508 + (f - lg - QIQIQCQO + 2[0115@0) =0 (1538)

The solution for expressions A, B and C are obtained for the actual pair of closed kinematic
chains:

A3 = 21218 - 21018 cos 90
B3 = —211 18 — 21018 sin 9()

and

Cs =1 +12+15+12—17 —2llycos by + 2lgly sin 6y

likewise, by using equation (15.11) to solve 63

—Bs + /A% + B - C?
05 = 2tan~! ( S (15.39)

C3 —As

In addition, equation (15.36) is divided by (15.35) to solve for 6,

(15.40)

0, = tan‘i lg sin 08 - lo sin 00 -1
‘T [scos O —lpcosBy + Iy

It follows that in order to solve for the unknown angles 8y and 6yy, the kinematic path from

point b to point g is stated next:
l7cos 07 + lgcos Oy = Igcos Og + 1o cos Oy (15.41)

and

l7 sin 97 + lg sin 99 = 18 sin 98 + 11() sin 91() (1542)

Isolating the terms containing variables of interest in both expression,
ligcos 019 = l7cos 07 + lgcos By — lg cos O3 (15.43)

and

110 sin 910 = l7 sin 97 + 19 sin 99 - lg sin 98 (15.44)
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Squaring both sides of the expression to subsequently arrange algebraically,

[foch,, = l2c + l5ch, + 155, + 2lrlocq,co, — 2lrlsco oy — 2sloc,co, (15.45)
and
195, = sh, + I3sg, + 1&s5, + 2l7lose,se, — 2lylsse,56, — 2lslose,Sa, (15.46)

The term ¢ = [2 + [Z + 13 is defined, and by algebraically simplifying
l%o = { + 2l7lgce,co, — 2l7lgce,coy — 2lslyce,cOy + 2l7l9sg, 50, — 2171350750, — 2lsl9S0,S0, (15.47)
and
(2l7lgcy, — 2lglgcy,)co, + (2l7lgse, — 2lglosg,)se, + (€ — l%o — 2lylscg,co, — 2l7lgsg,se,) =0 (15.48)

hence, solving for expressions A, B and C of the actual closed kinematic chains,

A4 = 21719 CcOs 97 — 21819 CcOs 98 (15.49)
B4 = 21719 sin 97 - 21819 sin 08 (1550)

and
Cp =12+ 12 +12 13 — 2l7lg cos B; cos O3 — 2l;lg sin B, sin O (15.51)

solving 6y through equation (15.11)

—B, +/A% + B} - C7
g = 2tan" ( . (15.52)

C,—A,

Similarly, equation (15.44) is divided by expression (15.43) to solve for 0;9

0 tan-" < l7 sin 07 + lg sin By — lg sin O )
o =

15.53
l7cos 67 + lgcos By — lgcos Og ( )

Similarly, in order to obtain the unknown angles 6;; and 85, the kinematic path from point f

to point h is developed next,
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lip cos O19 + l1o cos B9 = 111 cos Oy (15.54)

and

110 sin 910 + Lo sin 912 = ly1 sin 611 (1555)

further, both sides of equations are squared and algebraically arranged,
l% cos® Oyq = l%o cos® Oy + lfz cos? Oy + 2liplyg cos By cos Oo (15.56)

and

l‘?i sin® 0y = lfo sin® 0y + lfQ sin® Oy9 + 2lyolyg sin By sin Oy (15.57)

by simplifying the expressions
lfi = l%o + l%z + 2lyolio cos O1g cos 19 + 2liolyo sin 619 sin Oy (15.58)

and

(2l0l49 cos B10) cos Brg + (2lyglyg sin By0) sin Oyp + (I + 12, —13,) = 0 (15.59)

solving expressions A, B and C:

A5 = 2110112 cos 910
B5 = 2110112 sin 91()

and

Cs = l%o + 1%2 - 1%1

Eventually, expression (15.11) is used to solve 6o

Corollary 15.2.3 (Solution of passive joint 6;5). the model solution for the passive joint 0y

—-Bs + /A% + B - C2
19 = 2tan! (15.60)

Cs — As
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Likewise, equation (15.55) is divided by expression (15.54) to solve for 6,4,

Corollary 15.2.4 (Solution of passive joint 6;1). the model solution for the passive joint 6y is
described by
(15.61)

9“ _ tan*i < l1o sin 910 + ljp sin 912 >

110 CcOos 91() + 112 Ccos 912

Hereafter, the analytical solutions for each Jansen mechanism’s passive joints have been
found, hence it is possible to state the position vector model that corresponds to the mech-
anism’s contact point h and the ground. Following a kinematic chains starting from point a
(origin of the mechanism) to the point h through the links Iy, I, and ly;, the vector of position

(15.62) is obtained.

Theorem 15.2.5 (Jansen limb'’s contact point position). The Jansen limb’s contact point position
in planar coordinates is stated by the next vector:

x lo cos(By) + 15 cos(6;) + 114 cos(O
= h) _ 0 (60) + Lu (64) + 11y (611) (15.62)

Yh lo sin(Qo) + l4 Sil’l(94) + 111 sin(GM)

Validation of the solution model is provided through numerical simulations depicted in figure
15.6. Each mechanism’s link produced a kinematic trajectory from corresponding position

vectors in the mechanism that will be summarised next. Thus, the position vector for point a

is stated,
X 0
pa=| "= (15.63)
Ya 0
likewise, the position vector of point b,
Xp lQ
Py = - (15.64)

Yo -l
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the position vector of point c:

x| lo cos(6g) (15.65)

Ye lo sin(6p)

Pc

the position vector of point d:

Dy = ( xd> _ ( locos(6) + I3 cos(93)> (15.66)
Ya lo sin(6y) + I3 sin(63)

the position vector of point e:

Xe I + l;cosH
pe = = 2T (15.67)
Ye =l + lysin 6y
the position vector of point f:
x lo + lgcos B
pr=| = P (15.68)
V¢ —Il; + lgsin By

Finally, the position vector model for the point g is defined by

x lo + lgcosBs + ljpcos B
Py = g) _ 2+ lg s + Lo 10 (15.60)
Vg =l + ljp sin 910
The trajectory of the point h is governed by the position vector (15.62), and plotted in figure
15.6 (Punto H). All trajectories behave as a result of a complete turn of the driven angle 6,
from 0 to 2s;r radians. For this numerical simulations the parameters of each link were the

following (in mm): [p = 50, l; = 126.65, I, = 26, I3 = 166.67, I, = 206.35, Is = 138.30, ls = 186,
l; =133.71, lIg = 131, lg = 131.33, ljp = 122.33, l1; = 163.41, lip = 219.06.

The advantage on using this type of planar mechanism in the proposed limbs design is be-
cause its high stiffness, and it is able to describe gait trajectories suitable for walking machines.
Furthermore, the forces involved during a gait are not transmitted from the contact point to
the actuator, rather the stiffness of the ensemble of links only allows to transmit movement

from the actuator towards the contact point.
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Figure 15.6: Trajectories described by each point of the Jansen mechanism.

Thus, it makes a non-back drivable system that would function analogously to biological

organisms.

15.3 Kinematic analysis of a hybrid limb

In this section we detail the kinematics of a hybrid mechanical design that mixes the Jansen
with the Hoekens mechanism to work as a single limb. The main purpose is to control the
trajectory of the Jansen mechanism in combination with the Hoekens motion to generate
although complex, but a stable and flexible output trajectory. The proposed extremity design
provides some advantages since both mechanisms abilities are exploited'~“.  The Jansen
mechanism provided a good stiffness to the design, making it non-back drivable. At the same
time, the incorporation of the Hoekens linkage supplied the flexibility for achieving a more
complex output trajectory. The hybrid mechanism has fourteen links with only an actuated
joint 6y. Figure 15.3 shows the proposed mechanism with all its joints of interest.

Where a is the actuated joint; b and i are passive joints fixed to the chassis. ¢, d, e, f, g, h, j,

and k are passive joints analysed in previous sections of this chapter. [ is a point describing
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a) b)

Figure 15.7: a) Points of interest and links of the proposed limb. b) Angles of each link w.r.t. the horizontal.

the output trajectory or the limb’s contact point. The links’ length ratio is keep the same
as previously explained in other sections (Hoekens and Jansen). Likewise, the relationship
between the Hoekens and the Jansen mechanism was preserved by 1 : 1, its ratio is Iy = l;3.
This analysis carried out in this section for the hybrid version is very similar to analysis
discussed previously. However, minimal modifications have been carried out according to the

new design features.

Firstly, to obtain the hybrid limb design kinematic model, the passive joint angles must
analytically be solved, in accordance to the links chain as depicted in figure 15.8. Each passive
angle directly depends on the actuator’s position, and the links length. The final trajectory will
depend on the position of point i w.r.t. the axis of rotation of the link l;3 in close relation to the
point a, which is the axis of rotation of ly. Likewise, it will depends on the angle B (not depicted
in figure 15.8), which is the angular phase difference of the link Iy w.r.t. the actual angle of
13 mechanically connected by a crossed chain. The first part of the analysis focuses on the
Jansen mechanism. Although, the kinematic analysis is developed similar to previous sections,
but now a virtual link [, and angle 6, is included to preserve the equations homogeneity. The
virtual link equals the polar representation of a vector describing the position of the point b

w.rt. a. In order to solve for the unknown angles 65 and 65, the kinematic chains involved
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are depicted in figure 15.8 from where our analysis is developed. The first path taken goes
from the point a to the point d. Thus, in order to obtain the unknown angles, a system of two
equations previously stated must be solved. for this case, there are six closed link trajectories,

with angles solution obtained through equation (15.11).

d

3 b)

Figure 15.8: Kinematic chains to arrive to point d .

Thus, let us start our analysis by stating the following axiom:

Axiom 15.3.1 (Hybrid limb initial kinematic chain). The initial set of kinematic equations for

the hybrid limb starting from the actuated angle is stated by

locos6,; + I5c0s8605 = [pcos By + I3 cos O

and

l, sinf, + l5sin 05 = [y sin By + I3 sin O
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It follows, that by isolating a term of each equation containing one of the variables of interest,

I3c0503 = I, cos 0, + lscos 05 — Iy cos B (15.70)

and

[3sin 03 = I, sin 6, + Issin 65 — [y sin By (15.71)

Similarly, again the resulting equations are now squared for a subsequent algebraic arrange-

ment,

lich, = Lcj, + 1ach, + licg, + 2lalsco,co, — 2lolacg,co, — 2lolscg,co; (15.72)
and

Zsp, = sy + 12sh + l5sg + 2lals80, 50, — 2lolase,Se, — 2lolsSe,Ses (15.73)

Thus, defining ¢, = I2 + l% + l% by simplifying the two expression
l% = by + 2lgls5cq,co, — 2lplaco,co, — 2lolsch,co, + 2lalsse,se, — 2lolase,Se, — 2lolsse,Sas (15.74)
similarly,
(2lglscy, — 2lolscy,)co, + (2lglsse, — 2lolssg,)ses + (€n — l% — 2lplycq,co, — 2lplysg,s0,) =0 (15.75)

Obtaining the solution for expressions A, B and C,

Ay = 2l,l5cos 60, — 2lyls5 cos 6, (15.76)
B1 = 21(1 l5 sin Qa — 21015 sin 9() (15.77)

and
Ci =12 +12+12 - 13 -2yl cos Oy cos O, — 2lpl, sin 6 sin O, (15.78)

Hence, by using equation (15.11) to solve for 6s,

—B; —\/A? + B} - C}
05 = 2tan! (15.79)

Ci — Ay
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and equation (15.71) is divided by equation (15.70) to solve for 65,

(15.80)

0 — tan-! < l, sin 6, + l5sin 85 — Iy sin O >
=

l,cos B, + Iscosbs — Iy cos b

It follows that in order to obtain the unknown angles 65 and 6;, the kinematic chains of the

path between the point b and the point e is described by
I5cosO5 + lgcos O = I7 cos Oy (15.81)

and

I5 sin 05 + lg sin 65 = 17 sin 67 (15.82)

Thus, squaring in both sides of the equations
lg cos® O = 152) cos® 05 + lg cos® 0 + 2l5l5 cos B5 cos O (15.83)

and

12 sin® 6; = 12 sin® 65 + 12 sin” 5 + 2l51; sin 65 sin 6. (15.84)

Algebraically simplifying the following is obtained:
12 = 12 + 12 + 2lsls cos 05 cos s + 2lslg sin 65 sin O (15.85)

and

(215lg cos B5) cos B + (2lsls sin B5) sin O + (12 + 12 —12) = 0 (15.86)

Now stating the solution of expressions A, B and C
A2 = 21516 COSs 95

BQ = 21516 sin 95 (1587)

and

Co=B+1E-1 (15.88)
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Likewise, by using equation (15.11) to solve for 64

By —\JAZ 1+ B - C?
05 = 2tan~! ( P2 (15.89)

Cy — Ay

and equation (15.82) is divided by equation (15.81) to solve for 67,

0, - tan“i < I5 sin B5 + lg sin G5 > (1590)

I5 cos 05 + lg cos B

Following to solve for the next kinematic chain of links, to obtain the unknown angles 0,

and 65, the kinematic chains from point a to point f are stated next.
l, cos Oy + lgcosOg = lgcos By + I, cos O, (15.91)

and

l,sin0, + lgsinfs = lpsin Oy + 1, sin 0, (15.92)

Dropping off the terms containing the unknown variables of interest in both equations
l,cos0, =1, cos0, + lgcosOg — lycos Oy (15.93)

and

l,sin6, = 1, sin 6, + lgsinb6g — l sin By (15.94)

It follows to square both sides of the equations

l,% cos? 6, = 13 cos? 0, +l§ cos? 93+l(2) cos? 0y +2l, g cos 0, cos 05 —2lyl, cos By cos B, —21yls cos By cos s
and

12 sin” 0, = 12 sin” B, + I3 sin® Bg + 12 sin” 6 + 21,13 sin B, sin O — 2lyl, sin B sin O, — 2lylg sin Oy sin O
By defining ¢ = 2 + I2 + I2 Algebraically simplifying,

[} = & + 2lalsco,co, — 2olaca,co, — 2lolsCa,Ca, + 2lalsse, 50, — 2lolasa,s0, — 2lolssg,se,  (15.95)
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and
(2l,lgcq, — 2lolscy,)co, + (2lalsse, — 2lolsse,)se, + (& — 12 — 2lglaco,cq, — 2lolasg,se,) =0  (15.96)
Obtaining a solution for expressions A, B and C,
Az = 2l,lgcos 6, — 2lylg cos Oy

B3 = 21(1 lg sin Qa — 21018 sin 9()

and

Cs =12 +12+1%—12 — 2lyl, cos 6y cos B, — 2lpl, sin By sin 6,

Through equation (15.11) we solve for 63,

T <—33 —\/AZ + B2 —c§)
s —

C3 — Az

As well as equation (15.94) divided by equation (15.93) for solving 0;,

0, = tan~! l, sin 6, + lgsinBg — ly sin By
‘T [, cos6, + IgcosBs — lycos b

Similarly, it follows that to obtain the next unknown angles 6y and 6, the kinematic chains

form the path from the point b to the point g modelled by
l7cos 67 + lgcos Oy = Igcos O + lypcos Oy

and

7 sin 67 + lg sin Oy = lg sin O + 1o sin 6;9

Isolating the terms having the variables of interest in both equations,

lipcos 019 = l7cos 07 + lgcos Oy — lg cos Og (15.97)



15.3. KINEMATIC ANALYSIS OF A HYBRID LIMB 403
and

lip sin By = l7sin 67 + lg sin Oy — lg sin Og (1598)

and squaring in both sides of equations
lfo cos® Byp = l% cos? 97+l§ cos® 99+l§ cos? O3+2l7lg cos 67 cos Oy —2l15 cos 07 cos Os —2lsly cos Os cos Oy
and
12, sin” By = 12 sin® 6; + 12 sin” B + 12 sin” B + 2171 sin 6, sin By — 2115 sin 6; sin O3 — 2lgly sin B sin By
Algebraically simplifying with definition ¢, = [ + I3 + 13
l%o = {y + 2lylgcg,co, — 2l7lgce, oy — 2lglocg o, + 2l7lose, S0, — 2l7ls89,50, — 2lglyse,sa, (15.99)

and

(2l7lgce, — 2lsloc,)ca, + (2l7lose, — 2lslosg,)se, + (€y — 12y — 2l7lgce,co, — 2l7lgsg,sq,) = 0 (15.100)

Thus, obtaining the solution of expressions A, B and C,

A4 = 21719 COSs 97 — 21819 COSs 98 (15.101)
B4 = 21719 sin 07 — 21819 sin 98 (15.102)

and
Cp=1+13+1% 12 — 2lylgcos 6; cos B3 — 2l;lg sin 6 sin O (15.103)

Using expression (15.11) to solve 6y,

B, — /A2 + B? - C?
6o = 2tan"" ( Pt (15.104)

C, - Ay
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and equation (15.98) is divided by equation (15.97) to solve 6y,

l7 sin 67 + lg sin 6y — Is sin 65 ) (15.105)

010 = tan™?
10 an <l7 cos b7 + lgcos by — Ig cos O3

In order to obtain an analytical solution for the unknown angles 8y, and 6,5, the kinematic

path from the point f to the point h is developed next,
l1p cos O1p + l1o cos By = 111 cos Oy (15.106)

and

l1p sin 010 + ljp sin 912 = ly1 sin 911 (15.107)

squaring in both sides of the resulting equations,
lfi cos? Oy = lfo cos® Oy + lfz cos? B1g + 2lyolio cos By cos Oyo (15.108)

and

12, sin” Byy = 12, sin® By + 13, sin” Byg + 2l1ol4o sin By sin Oyy (15.109)

simplifying expressions,
12, = I3, + I2, + 2lyoly5 cos B39 cos By + 2lyolyo sin Byg sin Oy (15.110)

and

(2110112 CcOos 910) CcOSs 912 + (2110112 sin 910) sin 912 + (lfo + 1%2 — 1%1) =0

hence the solutions for expressions A, B and C are obtained,
A5 = 2110112 COS 910

B5 = 2110112 sin 910

and

2 2 2
Cs = lip + Uiy — iy
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By using equation (15.11), 8y, is solved,

Bs—\/AZ+ B - C2
Cs — As

O1p =2 tan~!

likewise, with an algebraic division of expressions (15.107) and (15.106) 6,4 is solved,

01y = tan_i < lip sin By + lyo sin O1o >

lipcos O1g + 1o cos Oy

In order to find a functional form to solve for the angle 0y3, which describes the angular
motion on point i, the input angle 6, was involved with motion transmission of 1:1 relation,

with inverse sense of rotation and angular offset 8
lo
O3 =(——6p - B (15.111)
l13

From the provided formulation, it follows to include the Hoekens mechanism model, where
for the hybrid case the point h is actually not fixed, depending only on the output trajectory of
the Jansen linkage. There is assumed an imaginary link l;,, represented by a vector position

on the point h w.r.t. the point i. such vector components are

Limx = hy — ix (15.112)

and

limy = hy — iy (15.113)

In addition, the connection between the two mechanisms is in principle by obtaining a solution
for the unknown angles 6y, and 6;6. The kinematic path from the point i to the point k is
defined by

limX + ll6 cos 916 = 113 cos 913 + 114 cos 914 (151 14)

and

limy + 116 sin 916 = 113 sin 913 + 114 sin 914 (15115)

Similarly as in previous methodology by isolating the terms having the unknown variables of

interest at this stage
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116 cos 916 = 113 COSs 913 + 114 CcOs 914 — limX (15.1 16)

and

116 sin 016 = 113 sin 913 + 114 sin 914 — limy (15117)

The resulting equations are squared in both sides of the expressions

1%6 cos® 016 = 1%3 cos® 013 +lf4 cos® O14+ l?mx +2l43l4, cos 013 cos O14 —2113limx €08 013 —21141limx cos Oy,
and

12, sin® Oy = 125 sin” Oy5 + 12, sin? By, + 12,y + 233144 5in By5 5in Oy — 2y5limy sin Oy3 — 2044 limy sin Oy,
simplifying algebraically the expressions substituting &, = l3s + 5, + I2, + 2,y

9
lig = lm + 2li3lisc0,5¢0, — 2lislimxco,, + 2311450550, — 2lslimyse, — 2l3limxcay; — 2li3limySse;

(15.118)
(2lisliaco, — 2lalimx)co, + (2lisliase, — 2liulimy)se, + m — s — 2lslimxco; — 2lslimyse,,) = 0
(15.119)

Hence, it follows to obtain the expressions A, B and C,
A6 = 2[13[14 CcOos 913 — 2114limX (15120)
BG = 2[13114 sin 913 - 2[14limy (15121)

and

Co =15+ 12, + 2 + 2y — I3 — 2lislimx €08 013 — 2lyslimy sin 643 (15.122)

By using equation (15.11) to solve 6;,, The passive joint angle 0y, is modelled by

—Bs — /A2 + B2 — C2
0y, = 2tan~" 6o v (15.123)

Cs — As

Likewise, (15.117) is divided by (15.116) to solve 0y,
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Corollary 15.3.2. The passive joint angle 6,4 is modelled by

(15.124)

916 — tan—i < 113 sin 013 + 114 sin 914 = limy >

113 CcOs 913 + 114 Ccos 914 - limX

To obtain the position vector of the contact point with the ground [, the kinematic chain formed

by the links ly, I, 111, lis and ;5 was used to state (15.125).

Theorem 15.3.3 (Limb’s contact point position). The limb’s contact point kinematic position

is defined by the next vector:

x lpcos By + I, cos 0, + 111 cos By1 + ljgcos b1 + ly5 cos O
pz=< 1) _ ( 0 o + L4 L+ 11 + s 16 + 15 15) (15.125)

Vi lp sin 90 + [, sin 94 + Iy sin 911 + ljg sin 916 + U5 sin 915

To validate the position model, numerous numerical simulations were produced as the ones
depicted in figure 15.9. The trajectories plotted basically complete a revolution by the driven
joint 6y from O to 2sr radians, with links length in mm: Il = 50, [, = 129.29, I = 166.67,
I, = 206.35, Is = 138.30, ls = 186, l; = 133.71, lIg = 131, lg = 131.33, lip = 122.33, l}; = 163.41,
lip = 219.06, l43 = 50, 4 = 125, li5 = 125, lig = 125, lj7 = —25, l1g = —175. Simulation results
are produced by the summarised set of links’ vector models. The position vector of the point

a is provided next,

P = - (15.126)

x lqcos b
L I (15.127)
Vb l, sin 6,
The position vector of the point c,

X lp cos 6y
Pe = = (15.128)
Ve lp sin By

The position vector of the point b,

Il

Pb
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The position vector of the point d,

X locos by + lzcos O
pa=| )= T T (15.129)
YVd lp sin By + 5 sin O
The position vector of the point e,

x lpcos By + I35 cos b5 + I cos 6
po = ( e) _ ( 0 b + (3 5 + Lo 6) (15.130)

lpsin 6y + I3 sin 65 + lg sin O

The position vector of the point f,

x lpcosBy + 1, cos 6.
pr=| =TT (15.131)
Vi l() sin 90 + 14 sin 94
The position vector of the point g,
x lpcos by + I, cos B, + ljpcos O
Py = g\ _ 0 o + U4 4+ Lo 10 (15.132)
Yg lo sin 90 + l;sin 6, + 110 sin 910

the position vector of the point h,

x lpcos By + I, cosB; + ljpcosByg + lipcosO
= h) 0 o + U4 .+ Lo 10 + U2 12 (15.133)
lpsin 6y + I, sin 6, + 1o sin B19 + L1 sin Oy

Xi -1
pi = - (15.134)
Vi —lis
The position vector of the point j,

Xi lizcos 015 — 1
p=| =TT (15.135)
Y li38in 013 — lig
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The position vector of the point k,

x li3cos 013 + 11, cos 0y, — 1
pr = LA 13 13 + L4 14 — 17 (15.136)

Yk li38in 013 + 114 sin 014 — lig

For plotting the trajectory of the point 1, the position vector (15.125) was numerically valued.

100 |

100 b

Yium) -200

300 |

100 e
[ — e
o Sl
Xm) 190 o=l g 1
w0 w0 ) = o + % o 300 ~~<. g g
o - T = ™ A S e 7} Z (um)

Figure 15.9: Trajectories described by each point of the hybrid limb (left). Walking gait simulation (centre).
3D biped’s limbs simulation (right).

Alternative to gait validation by numerical simulations (figure 15.9), numerous experimental
measurements of the gait trajectory tracking were carried out (figure 15.10-a)). A home-
made experimental prototype robot was built in our Robotics Lab shown in figure 15.10-c), and
its real gait shape was compared with numerical models obtaining accurate and satisfactory
results. Each experiment consisted of capturing the set of images while the limbs walked.
By deploying only one actuator per limb, the mechanism movement generation alternated
movements between the two parallel limbs imitating a bipedal gait. An artificial visual landmark
was laterally placed on the Limb’s contact point [ as a manner to track it by an external computer
vision system, as shown by figure 15.10-a). Therefore, by using the real kinematic parameters
of the walker robot, the corresponding numerical gait simulation (theoretical) was matched
with the mechanism plot in Cartesian space (observation), finding a minimal error due to

several factors: manufacturing inaccuracies, gravitational and inertial effects.
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Figure 15.10: a) Experimental robot's gait tracking by a computer vision system. b) Comparative plot between
a theoretical gait and the empirical observation. c) A photo of the experimental biped prototype.

Comparative results between the mathematical theoretical model, and the empirical ob-
servation through the tracking vision system are depicted in figure 15.10-b). Therefore, it
is concluded that the experimental robot prototype emulating bipedal gaits, acted closely as
predicted by the kinematic model. Both trajectories had similar kinematic behaviour, and
such results validated the theoretical analysis provided in this chapter. In addition, in order
to achieve under-actuated walking gaits, there exist the need to deploy actuators with optimal
torque. Likewise, actuators velocity control systems are required to accomplish synchroniza-
tion between the two parallel extremities, achieving gait coordination as expected according to

the kinematic formulation.
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MODELLING A HEXAPOD-TVPE

AMPHIBIOUS ROBOT

Angel A. Maldonado Ramirez?, Edgar A. Martinez Garcia' and L. Abril Torres Méndez>

! Laboratorio de Robética, Institute of Engineering and Technology, Universidad Auténoma de Ciudad
Judrez, Mexico.

2Robotics and Advanced Manufacturing Group, CINVESTAV Campus Saltillo, Coahuila, Mexico.

Mathematical modelling of physical systems is one of the major foundations to develop
applied control systems, and process design. The mathematical model of a system is derived
either from physical laws or experimental data. In this chapter, the main focus is on modelling
a complete amphibious robotic system comprised of six propulsive paddles. This analysis
starts from the experimental modelling of the actuators (DC-motors), and rotatory sensors
(encoders), until reaching an Euler-Lagrange formulation of the full robotic platform. Experi-
mental results are presented to show the application of the model for controlling the actuators.
Systems modelling is an important process in all fields of science and engineering. It provides
a deeper understanding of the behaviour of any system. Particularly, when specifically it is
desired to control such a system. Thus, by taking into account its full mathematical dynamic
model, more sophisticated is the system design, and hence more robust results are obtained.
Nevertheless, obtaining an analytical solution of a model is not always an easy task specially

when there exist numerous unknown perturbation phenomena that are difficult to define. The
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mathematical model of a system can be derived either from physical laws as analytical so-
lutions, or experimental data through numerical solutions. In some works, a mathematical
model is obtained and then through experimentation the values of certain parameters are cal-
culated . Another approach for modelling a system is the Euler-Lagrange formulation, which
is based on the energy of the system as a function of the generalized coordinates. As long as,
we know how to relate the generalized coordinates with the energy of the system, we can use
the Lagrangian approach. This approach is widely used in the robotics field, some example of
applications has been reported . In the last part of this work, we will focus on the modelling

of the entire underwater robotic platform by using an Euler-Lagrange formulation.

16.1 Actuator’s experimental-theoretical model

In the first part of this chapter, the actuators angular velocity of an amphibious robotic system
is modelled by using a measuring experimental approach to subsequently state the control of
the paddles angular speed. This approach approximates a full model that scopes the present
uncertainties within the actuator’s empirical model. The empirical model is obtained by de-
ploying simple rotatory encoder devices. The encoders are sensors that measure the angular
position of an actuator device (i.e. a DC-motor). The angular position is obtained by the num-
ber of pulses, and the relationship between the pulses and the angular position is given by

o = Zon,, (16.1)

renc

where rqp. is the resolution of the encoder and n; is the instantaneous number of pulses. In
order to infer the angular speed, we obtain the numerical derivative (see section 1.7) of the

angular position with respect to time, as provided by the following expression:

2mn; 27Tn; 4

3 r T r 27 <ni —nj4 >
- enc enc — . 162
(bl ti —tiq Penc \ fi —tiq 162)

By providing the numerical derivative w.r.t. time of the angular velocity, the angular accelera-

tion is obtained by
27 ni—ni1 _ 27 ni1—nj_o

(:i). _ (l)l B d)l*i _ Tenc ti—tiy Fene ti1—tio
P = =
ti — iz ti —ticq

’

Assuming constant sampling times At = t; — t;_4, the next equation is also obtained,
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- e (163)
Penc At Penc At

Therefore, the following postulate is hereafter the actuator’s observation, which feedbacks the

rate of change of the angular position w.r.t. time.

Postulate 16.1.1 (angle observation model). The actuator’s averaged value of k measure-

ments (i) is the derivative of the angular position w.r.t. to t.

g 1, kL ow /n—n
o) ==Y b =Y (t_t;> (16.4)
i1 i i—

r
i_q | enc

Bl

As a part to control the actuators, it is important to establish the mathematical model of the
actuator’s variables, which are of interest as the control input and output of the robot system.
For instance, it is fundamental to find the mathematical relationship between the digital control,
and the motor’s tangential and/or angular speeds. Since the models for the actuator and for
the inherent perturbations are unknown, the empirical model is obtained experimentally.

In our particular case, we are able model the relation between a digital control command and
the speed of the motor. All the possible control commands were applied to two motors and
their average speed response were registered (16.4). The motor type, encoders, and mechanical

structure are identical. The collected data are shown by figure 16.1.

Speed vs Command (Motor 1) Speed vs Command (Motor 2)

Decrea:\fgg“mmmmdss»w
Ingreusifig command ——

Speed [rad/s]
o
T

Speed [rad/s]
o

Figure 16.1: Angular speed as a function of a digital control (two physical motors).
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Although both motors were under the same conditions, the sets of collected data were different.
Also, it is seen in figure 16.1 that there is a region where no motors’ response was performed
regardless the digital control commands (i.e. regions A and B). These regions lack of angular
speeds due to the shaft frictions and mechanical loads applied to the motors (also frictions
due to shaft misalignments). We obtained approximated theoretical models for each motor by
using a non-linear regression applied to the empirical model. A residual error (r;) between
the empirical data and a theoretical model (¢,) was defined. A third degree polynomial as a

theoretical model was proposed to fit well the speed behaviour.

ri=(z)i_(i)*,

ri = (Z)i — (ao + a1di + agdiQ + agd?), (165)

where d; is the digital control command. Then, we define the sum of the quadratic errors (see
section 1.6.3),
n n

S=Y"r? =3[ — (a0 + ard; + asd? + asd?)*. (16.6)

Furthermore, to define a separate model for each coefficient of interest, the partial derivatives

of S w.r.t. each parameter ay, ai, as and as are developed to set an approximation S = 0.

%&; = 2; ((i), —ag — a1d; —ozgdi2 —agd?> (c—-1),

oS ~L .

B 2; <¢i —ag —aid; —asd? — a3d?> (=di), (16.7)

dS Sy

s zl; <¢i ~ o — ayd; — apd? — a3d?) (~d?),

5 _ Qi <<z>. —ag — ard; — asd? — a3d.3) (—d%)

6(13 — L t i i i
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Setting each derivative to zero,
n
0=2% (i —ao — ard; — axd? — asd?)(-1),
i=1
n
0=2) (¢ —ao - ard; — axd? - asd})(~d;), (16.8)
i=1
n
0= QZ((bi —ao —a1d; — agd? - a3di3)<_di2)'
i=1
n
0= QZ(d)i —ap —ayd; — azdiQ - a3d?)(—d?),
i=1
then, by performing the products and rearranging the terms, the following is obtained
n n n n n
D b= a0+ ) jardi+) jaxdf + ) asd’,
i=1 i=1 i=1 i=1 i=1
n n n n n
S didi =Y laodi + Y ard? + Y and? + Y asdf, (16.9)
i=1 i=1 i=1 i=1 i=1
n n n n n
Y bid? =Y aod? + ) Jaid? + ) axdf + ) asd?,
i=1 i=1 i=1 i=1 i=1
n n n n n
Y did? = aod? + Y Jaidf + ) axdy + ) | asdy.
i=1 i=1 i=1 i=1 i=1

Thus, arranging the equations (16.9) in the matrix form,

Yt ¢ no YL diY,diY, df o
Yy ¢idi Y di Y AP AP df aq (16.10)
Yoy ¢id? YL AL Y A df a
Ybdd)  \mdyr, ayn, diydt) \as
Hence, the compact form of (16.10) may be expressed as a linear form,
x=A-A (16.11)

Since, A is a positive-definite matrix, then it always has an inverse. Thus, by solving for A (see

section 1.2.3),
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x=A-2,
r=A"".x (16.12)

Thus, it follows the next proposition of the actuators theoretical model],

Proposition 16.1.2 (actuator theoretical model). The parameters ag, a;, as, and as fits
the real angular velocity behaviour through the theoretical model ¢;(d;) as a polynomial

function of the digital control d;,

& = ap + ayd; + asd? + asd?. (16.13)

By applying the above process to the empirical data, and obtaining the next values for the

parameters,

ap ai as as

@1 (-) 144229 | 1.91041 | -0.0275454 | 0.000129814
@ (+) | -0.758746 | 1.36245 | 0.0227922 | 0.000117595
@0 (+) | -13.4632 | 1.90241 | -0.0283169 | 0.000136413
@9 (-) -5.88016 | 0568018 | 0.0111437 | 0.0000645076

Table 16.1: Actuators third degree polynomial coefficients found.

In applied control it is required to know the inverse solution of (16.13) in order to calculate d,

given that ¢(d) is known, then to find one real roots of direct form,
0 =ag — ¢(d) + ard + asd? + azd® = p(d), (16.14)

Nevertheless, in order to find a close-form solution to this problem, it became a complex alge-
braic process. Instead, an iterative numerical method was used to solve it, the Newton-Raphson

method (see section 1.4). Therefore, as a first mathematical step, a first order derivative poly-
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Speed vs Command (Motor 1) Speed vs Command (Motor 2)

Speed [rad/s]
Speed [rad/s]

-100 -50 0 50 100
Command (d) Command (d)

Figure 16.2: Two motors’ empirical velocities approximated with third degree polynomials.

nomial is approached through the Maclaurin and Taylor series of p(d) (see section 1.3)

_ p(do) N p'(do)(d — do) N p'(do)(d — do)? N

pld) = =, 11 21 (16:15)
Then, p(d) = 0, and let us ignore the high order terms to obtain
0 = p(do) + P'(do)(d — dy). (16.16)
Solving for d, we have
p(do)
d=dy—- . 16.17
" pld) Ho4n

An approximated solution for (16.14) is obtained. By doing this process iteratively, we can find

the desired d. Expressing this process with equation (16.18).

Corollary 16.1.3. (actuator’s inverse solution) The inverse solution d(¢) is stated from

previous proposition about the theoretical model ¢(d).

ap — d)d + a1dk + agdi + a3d2
a; + 2a2dk ar 3a3d1%

dp+1 =dp — s (16.18)

where € = p(dg) and € is a small value that defines the precision of the result. We will use

(16.18) iteratively until € < €.
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The model is used to directly control the actuators desired speed ¢(d), and by using the

Newton-Raphson method it is obtained the digital command d to control the motor.

16.2 2"d_order paddle control

The actuator’s physical model is critical to propose a control law for approaching the angular
oscillations of robot’s paddles. Based on different tests and analysis, a 2"?-order angular position

resulted reliable and feasible for implementation.

16.2.1 Proportional velocity control

First, we propose a control law for the angular speed of the motor.

bi = i1 + Oé(d)ref - &’z) (16.19)

where ¢;, ¢;_1 are the values for controlling speed in the current and previous instant. ¢; is
used in (16.18) to obtain the digital control input. The second term of the sum is the difference
between the desired speed <Z)re,« and the observed speed (})l all this weighted by a factor a. By

substituting equation (16.2) in equation (16.19) the following recursive approach is postulated

Postulate 16.2.1 (recursive ¢ control). Having a reference model (Z)ref, the angular speed

¢ is recursively controlled by feedback of its proportional observation error.

(.bi = (Z)i—l +Q <§.bref - 21

renc

n; —nj
i —tiy

> (16.20)

with .
(X*, .re - .i 2 1
a= o of = ¢ | , (16.21)
1 _a*'l¢ref - ¢1I < 1

and

a* e (0,1)
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Experimental tests were carried out by using expression (16.20) to control the paddle angular
velocity. Figure 16.3 shows the results obtained. It can be seen that the constant reference

velocity is reached with considerable reliability.

Speed control (Motor 1) Speed control (Motor 2)

Obs. Speed ——— ! ! ! ! ! Obs. Speed ——
Obs. Speed Obs. Speed

Speed [rad/s]
G
£

Speed [rad/s]
)

Time [s] Time [s]

Figure 16.3: Actuators controlled angular velocity with constant reference models.

Additionally, other experiments were performed adjusting for different values of a. Such
results are depicted in figure 16.4. It can be seen that the smaller the value of a the faster the

motor reaches the desired speed.

16.2.2 Acceleration control

When slow or unstable controlled speeds are yielded, control of the acceleration may outper-
form the results instead. And an acceleration control may be preferred in such cases. We

propose the next control law:

S = it + KlBrer — b, (16.22)
with o
oo { ol il 21 (16.23)
1 =K% [pres — G| <1
and
k* € (0,1),

where ¢;, ¢;_1 are the values for controlling acceleration, in the current and previous instant.
&)pe]‘ is the desired acceleration and ¢1 the observed acceleration, all of them weighted by a

factor k. By substituting equation (16.3) in equation (16.22), the following expresson is proposed,
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Speed control

Speed [rad/s]

Time [s]

Figure 16.4: Actuator's controlled angular velocity behaviours with different convergence factors a.

Proposition 16.2.2. (controlled ¢) The actuator angular acceleration is recursively con-

trolled by feedback of its error observation of the angular rate of change.

bi = i1 + K (16.24)

d.)ref -

27t [n; —2n;_1 + n;_o
At ’

renc

From equation (16.24) in previous proposition, it follows to establish an inverse solution for the
digital control variable. To achieve that, we use the trapezoidal rule of the numerical integration
methods (see section 1.7) to integrate the acceleration into speed. The obtained speed can be
converted into digital control command.

i

) PR
b = didt = o + Z (G tjﬁl)(;)] hi ¢’~1)- (16.25)
0

j=1
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A recursive expression is derived to perform numerical integration

¢°+Z ti—1 ¢1+¢1 ) (16.26)
then, factorizing the term i from the sum,

i—1

+

l f-1) ¢,+¢, )} (i~ti—1)<2<'f>i+<7>i—1>, (1627)

j=1

and by considering ¢;_1 = ¢o + Y3, [7(t"_t"’1)(2$1+$"’1)],

b = it + (t — fi—i)(;f)i + (.ﬁi—i). (16.28)

Substituting ¢; by ¢q4 in (16.28), and then in (16.18), we obtain the equation that provide the

digital command, given a known acceleration ¢;.

Corollary 16.2.3 (inverse of ¢). The digital control d solution is recursively provided as

a function of observations ¢ and ¢.

ap — (bi—i - % + Clidk + agd}% + a3d2
ay + 2aqdy + 3(13d£

dpq =dg — |f<¢ (16.29)

The experimental controlled acceleration results obtained are depicted in figure 16.5. The
desired acceleration values for this experiment was set to if),ef = 0.1. Being the motor’s speed
a straight line with slope m = 0.1, which was confirmed by setting another straight line with
same slope 0.1, but different translation parameter. It is important to highlight that the motor
was intentionally subjected to perturbations during the experiment. It was concluded that the

acceleration control compensated quite well under the influence of existing perturbations.
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Acceleration control

Speed [rad/s]

0 20 40 60 80 100 120 140 160
Time [s]

Figure 16.5: Actuator’s behaviour with reference model a(t) = ag + a;t, and two different values for ay.

16.2.3 Acceleration model reference

Plamondon” described a function that relates the oscillation of a paddle submerged in water

and the force generated by it. The geometry and shape of the paddle is shown in figure 16.6.

Amplitude

¥ Center of oscillation

Z Rotation axis o
a) b) Flexible

Figure 16.6: a) Centre of oscillation of one paddle (front/back side). b) Paddle’s shape (top side).

The movement of the paddle is provided by the following definition:
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Definition 16.2.4 (reference oscillation model). The paddle oscillation movement is estab-

lished as a reference movement by the sinusoidal function:

o(t) = gsen <2;Tt + 6> + A (16.30)

where A is the oscillation amplitude; P is the oscillation period; & is the phase, and A is the
centre of oscillation. The relationship between the paddle movement and the force generated

is described by the following postulation.

Postulate 16.2.5 (paddle propulsion force). The experimental propulsion force as a func-

tion of the paddle’s oscillatory motion is produced according to the next model,

2
(Wi + 2wo)P A 4554 (16.31)

fp = 01963 5

where wy; and wy are the dimensions of the paddle with wy < wy. [ is the length (all the
dimensions in meters) and p the density of the water in %. The direction of the force is
determined by the angle A. We calculate the second derivative w.r.t. time of the equation
(16.30) to obtain the acceleration which will be used as the reference value in the equation
(16.24).

, 2Am? 27
¢ref(t) = —?SGH <pt + 6) . (1632)

Therefore, by substituting (16.32) in (16.24), the following corollary is stated,

Corollary 16.2.6. [model reference based ¢] The paddle angular velocity control is given

as a recursive tracking function of the non linear reference model.

2An® (9 om [ni—%ni i +ni
S sen <gtl-+5> - <" SV 2” (16.33)

b =i +K
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An underwater robot with oscillating paddles was emulated by deploying two motors and con-
trolling their acceleration through equation (16.33). The results obtained whit varying amplitude

of oscillations are shown in figure 16.7.

Visual Control

T .
Acceleration +——
Desired Acceleration +——

Acceleration [rad/s?]

0 10 20 30 40 50 60
Time [s]

Figure 16.7: Robot’s two-paddle controlled oscillations tied to the network transmission delays.

16.3 Robot's dynamical analysis

In two previous sections the modelling and control of the actuators were described. Now, this
section describes the robot’'s general movement with an approach to the Newton-Euler equa-
tions to model the tangential forces generated by the rotatory actuators. Further information
on the underwater robot in discussion may be found”™'. The forces generated by the paddle
are decomposed into their components along the X and Y axes. Each force has a magnitude

of fp, and a direction of A;. Therefore, the following equations are stated,

fr; = fp; cOS A}, (16.34)
fy;, = fp, sinA;. (16.35)

J
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Top view Free body diagram
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Figure 16.8: Robot's free body diagram of forces and torques with effects on the Y-axis (Yaw).
By substituting (16.31) in the last two equations, we obtain
+2wy)l> A
fo) = <O.1963(MTW2)pF’ - 0.1554> cos 6, (16.36)
j
2wo)l2 A;
fy, = <0.1963Mp§’ - 0.1554> sen;, (16.37)
J

where A; and P; are the parameters of oscillation of the paddle j. Then, by using the free body

diagram of the robot on each of its planes, we can obtain the torques around X, Y and Z axes.

In order to obtain the moment in Yaw, we sum all the moments generated by each paddle

force

Tyaw = da(faq + fxs —fxz, _fxﬁ) + dmbQ —fx5): (1638)

Likewise, the angular moments for Roll and Pitch are obtained

Troll = da(fy, + fys — for = fys) + dblfys — fs), (16.39)
Tpitch = dc(fm + fy, = fus —fyﬁ)- (16.40)
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Figure 16.9: Robot's free body diagram of forces and torques with effects on the Z axis (Pitch).
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Figure 16.10: Robot's free body diagram of forces and torques with effects on the X axis (Roll).
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Equations (16.38), (16.39) and (16.40) are expressed in the matrix form by

Troll da(fyz, + fye _fy1 _fys) + db(fy5 _fyg)
Tyaw = da(faq + fx3 _fxz, —fxe) + db(fxg _fxs) ’
Tpitch dc(fm + fo. = fys —f.YG)

and factorising the forces,

Troll 000 O 0 0 ——da ——db~dadadb da
Tyaw | = | dadpdq—dq—dp—dq 0 O 0 00 O
Tpitch 000 0 O O do 0 —-d.d.0—d,

fri
fro
frs
fr
fs
fxo
Fon
foo
fos
fo.
fos
fys

431

(16.41)

(16.42)

By simplifying the expression (16.42) iin terms of the resultant forces (Fyqw, Fpitch, Fron), and

the resultant distances (dyqw, dpitch, dron) as shown in the free body diagrams. The simplified

expressions are

Troll = Froll : droll:
Tpitch = Fpitch : dpitchr

Tyaw = Fyaw : dyaw-

(16.43)
(16.44)
(16.45)
(16.46)

With the torques around each robot’s axis, the orientation is obtained. The angle af and torque

around X axis are related by

.. R
cha = Troll

(16.47)
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where I, is the moment of inertia w.r.t. the X axis, and it is known that

R
&R = ddit, (16.48)

then, by rearranging the terms, and integrating, we obtain
aidt = da®

by completing the differentials with their respective integrals in both sides of the equation,

ti (X’Rf .
/ aldt = / daR
tiq afty

i

solving the defined integrals

SRyt _ < RyAQ
a t[ti—i =a aR

a recursive equation is obtained,
..R . R ‘R
at(t —ti) = & — &2y

or

alAt = alt —al (16.49)

Since equation (16.49) was provided in terms of «, then it now is deduced in terms of a. The

angular velocity is the angle rate increment w.r.t. time as the next equation,

R _ doR
dt

by separating the differentials in both sides of the equation,
aRdt = da®

then, completing the differentials with their respective integrals,

ti (X!B
/ aRdt = / da®
tiq aiR—i
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by solving for the defined integrals,

R
<Reti  _ RI%
a t|t.»_1 =a" |k

a recursive model is obtained,

dR(fi — ti—i) = alR - (XlR_i

or

alAt = a? —alt,

the next equation provides the actual angular velocity as the recursive angular positions,

R R
R _ & — 0y

g —— - 16.50
lod Y, ( )

Therefore, by substituting equation (16.50) in equation (16.49), a more complete recursive func-

tional form of the angular acceleration is obtained,

R _ R
.. aQ; —Q;_ .
afAt = L it Atl L_al,

algebraically rearranging At,

a(At)? = al —alty —al At

the recursive angle equation is obtained,

al = aR(A)? + el At + ol (16.51)

4

Finally, by substituting the equation (16.47) in equation (16.51), the following is stated,

Proposition 16.3.1 (amphibious angular movement). The general recursive model a;_; and

A&;_4 is given as a function of angular and forsional moment I, and T respectively:

af = TI”” (Af)? + aRi_ At +af,, (16.52)

cX
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Therefore, by using the model of previous proposition for the three Euler axes, and by substi-
tuting the functional form of the torques in terms of tangential forces as provided by equation

(16.39), the roll, pitch and yaw are stated consecutively,

Corollary 16.3.2 (recursive roll motion model). The recursive model for the roll motion «q;

in terms of a;_1, &;_1, and as a function of the angular moment I.,, and involved forces is

ol = dafy, + fyo = fo = fys) + do(fys _fy">(A1)2 +aR;_ At + al, (16.53)

! ICI

Similarly, he angles SR (yaw) and R (pitch) are obtained respectively.

Corollary 16.3.3 (recursive yaw motion model). The recursive model for the yaw motion pB;

in terms of B;_1, Bi_1, and as a function of the angular moment I.,, and involved forces is

R _ da(faq +fx3 _fxz, _fxg) + db(fxg _fxs)

B (At)? + BR;_ At + B (16.54)

Ly

and

Corollary 16.3.4 (recursive pitch motion model). The recursive model for the pitch motion

v; in terms of v;_1, ¥%;_1, and as a function of the angular moment I.,, and involved forces is

d. ~for —fon :
71[2 _ (fy1 + fy; fys er) (At)2 + 7Ri71At + 751 (16.55)

Hereafter, the models (16.53)-(16.55) stated in previous corollaries provide the relationships
between the forces produced by the paddles, and the robot’s orientations a®, g%, and yR.
16.4 Euler-Lagrange analysis

The underwater robot is considered as a rigid body (non deformable), with six degrees of

freedom. Thus, the robot’s dynamic model is algebraically developed by using the Euler-
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Lagrange formulation. Some foundations about the application of the Euler-Lagrange equations
on robotics has been reported”. It is necessary to define the generalized coordinates by the

vector

q=(xy.zaB7" (16.56)

where x, y y z represent the position of the center of mass of the robot. a, 8y ¥ represent the
orientation of the robot with respect to the fixed frame in the roll-pitch-yaw parametrization.
The angular speed (&R, BR and #R) of the robot are expressed in the robot's frame. To convert
those speeds into the fixed frame (world frame) we use the rotation matrix that relates the

robot frame with the fixed one.

cos y—siny0 cos B 0sinf 1 0 0
Ry =R = | siny cosy0 010 Ocos a—sina | »
0 0 1 —sinB0cos 8 Osina cosa
cosy cos f3cos y sin Bsina — siny cosacos y sinfBcosa + siny sina
= | sinycosfBsinysinBsina + cosy cosasinysinBcosa — cosysina (16.57)

—sinf cosfBsina cosfBcosa

Then, the relation between the translational velocities in the robot frame with the ones in the

fixed frame is:

Vx X
v | =R |y (16.58)
Vz

Thus, to convert the angular speed in the robot frame into the fixed one, we use the following

property of the rotation matrices,

0 —w; wy
RR = | w, 0w (1659)

—wy we O
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By performing the product in the left side of the expression, we obtain:

0 sinB& — ¥ siny cos & + cos 3 0 -w) o)
—sinBa + ¥ 0 —cosycosBa+sinyB| =] w¥ 0 —wV
— siny cos B& — cos yPcos y cos f& — sin yf 0 —wl 0¥ 0
therefore, the angular speed is
wl cosy cos & — sin yf cos y cos B— sin y0 o
wy | = [ sinycospéa +cosyB | = | sinycosp cosy 0| |B (16.60)
wl —sinBa + ¥ —sinf 0 1
By defining the matrix G as
cos y cos B— sin y0
G = | sinycosB cosy O | . (16.61)

—sinf 0 1

Rotation matrix R converts a vector from the robot frame to the fixed one, then we have the

following equation:

wl aR
oV [ =R[BR]|,
wy” ¥R
then substituting (16.60)
R

¥ ¥R
and algebraically arranging
& al
R"-G-|p|=|pR (16.62)
R
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The transition matrix RTG relates the angular speeds in fixed frame with the robot’s frame.

1 0 —sinf
R"-G=|0cosa sinacosp | - (16.63)

0—sinacosacosf

Now, with all this information at hand, we can calculate the kinetic energy required by the

robotic platform for its roto-translational movements,

K= %mvTv + %lecw, (16.64)

and by substituting v and w by (16.58) and (16.62),

x &
K=%m<5gyz>~R~RT- % +%<a37>GT~R~Ic-RT~G- B
z 4

Considering that the robot has three planes of symmetry, then 1. can be simplified as a diagonal

matrix diag (I, Iy, I,;). Expand the last equation the following expression is produced

1 1 .
K = Em(icz +¥2+ 2+ Q[Ixx(éc — 9sin)? + Ly(Bcosa + ¥ sinacos fB)?

+I,(—Bsina + ¥ cos acos B)?] (16.65)
The potential energy of the robot is associated with its height, that is
P = —mgy (16.66)
Once having the kinetic and potential energy models, the Lagrangian L = K — P is stated,

L= %m(a’cz +392+2%) + %[Iu((’x — ¥sinP)? + Ly(Bcosa + ¥ sinacos fB)?

+1,(—Bsina + ¥ cosacos B)?] + mgy (16.67)
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Then, by using the Euler-Lagrange equation on each generalized coordinate:

d oL\ or _
dt \odi) oq

and by applying (16.68) for q; = x,

dt \ ax ox
mix = 1.

d <6L> oL
- — =T

and for q; = y,

d foL) oL
dt \ oy oy 2

my —mg = To.

finally, for q; = z

L
a

> = L (& — 9B cosB — & sin )

= Ixr(d - 75inﬁ)

d (oL oL _
dt\oz) ez "
mz = 1s.
Thus, for q; = a,
d (oL
dt \ da
oL . Lo - .
P wy(Bcosa + ¥ sinacosB)(—Lsina + ¥ cosacosf) +

L,(—Bsina +  cos acos B)(—B cosa — ¥ sina cos B)

Therefore,

d foL) oL
dt \oa)  da  *

(16.68)

(16.69)

(16.70)

(16.71)
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Lx(& — B cosB — asinP) — (I, — I,,)(Bcosa + ¥ sinacos f)

(=Bsina + ycosacosP) = 1,

Now, solving for q; = B

oL
p

= Ly(Bcosa + ¥sinacosf)(cosa) + I,,(—Bsina + ¥ cosacosB)(—sina) =

IWB cos® a + L,Bsin’ a + (Iyy — I,)¥ sinacos acos BB

% <(Zg> = I, (Bcos® a — 2afsinacos a) + I,,(Bsin® a + 2aB sin a cos a)
+(Iyy — I;)(@sinacosacosB + ay cos? acos B — @y sin® acos B — B sin Bsina cos a)
% = Lo (& — ¥ sinB) (=¥ cos B) + I, (Bcosa + ¢ sin a cos B)(—% sin a sin B) +

I,(-Bsina + ¢ cos a cos B)(—4 cos asin )

And, by arranging terms,
d oLy oL
dt \ag) B

hence,

Ly(Bcos® a — 2aBsinacos a) + I,,(Bsin® a + 2af sin a cos a)

2

+(Iyy — I;)(@sinacosacosB + aycos” acosf — ay sin® a cos B — B sin Bsin a cos a)

2

—~ILy(—&y cosB + ¥?sinBcosB) — Iyy(—Bj/cosasinasinB — 4% sin® accos Bsin B) —

2

L,(B¥ cosasinasin B — 4> cos® asinBcosB) = 15

439

(16.72)

(16.73)

(16.74)
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Now, for gq; = 7, and we obtain

% = L. (¥sin? B — asinB) + I,y (Bsinacosacosf + ¥ sin® acos® )
+1,,(—BsinacosacosB + ¥ cos® acos? B)
% <Z§> = I (a&sin®B + 2¥Bsin Beos B — & sin B — afB cosB) +

L, (7 sin” a cos® B + 2a¥ sin a cos a cos? B — 237 cos B sin Bsin® a)
+1,,(% cos® acos® B — 2a cos asin a cos? B — 237 cos B sin B cos® a)

+(Iyy — L,)(Bsin acos acos B + af cos’ acos B — afisin® acos B — % sin Bsina cos a)
oL
— =0
oy
and
d oLy oL
dt\oy) oy %
L. (& sin® B + 29Bsin Bcos B — ésinB — @B cos B) + Ly (% sin? a cos® B + 2a+ sin a cos a cos? B
—2B% cos Bsin B sin’ @) + L,(¥ cos® acos? B — 2ay cos asin a cos® B — 2B% cos Bsin B cos® a)
+(Iyy — I,)(BsinacosacosB + af cos>acosf — aBsin?acospB — B2sinBsinacosa) = Tg
(16.75)
Equations (16.69)-(16.75) represent the dynamics of the underwater robot. By factorising the

second order derivatives of the generalized coordinates system in the dynamic equations, the

inertia matrix is obtained by

H; 05,
Hiq) = | = >° (16.76)
03,3 Hp
with
mO0 0
Hi=|0moO (16.77)

00m
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likewise

- 0 —IL.xsinf

Hy = 0 Iy cos®a + I, sin® (Iyy — I,,) sinacos acos B

2acos’f

(16.78)

—Ly sinB(lyy — I,,) sina cos a cos Blry sin® B+ Ly sin® a cos? B+ 1,,cos

Thus, factorising the first derivatives of the generalized coordinates to obtain the Coriolis or

centripetal matrix,

03,303,
c@ = N, (16.79)
03,3 Cq
with
0 cipcrs
Cl = | C21 0 Ceco3 | v (1680)
csicszy 0
and

2

cio = ¥[—Lx cos B + (Iy + I,,)(sin® a — cos® a) cos B] +

Bllyy + I,7) cosasina

ci3 = —9(lyy + I,,) sina cos a cos’ a

2

co1 = Bl(—2sinacosa + cos® acosB)(Iyy — I,)] + (Ix cos B — sin acos f)

2

Cos = ysinBcos Bl + Iyy sin® « + I, cos a)

2 2

cs1 = B[—Lx cosB + (I, — I,,) cos Blcos® a — sin® a)] + 29(I,, — I,,) sina cos acos’ B

3o = ¥[2sinBcos Bl — Ly sin a — I, cos® a)] — B(Iyy — I,,) sina cos a sin B.
Finally, the gravity vector has the following form
g(q) = (0, -mg,0,0,0,0)" (16.81)

Obtained matrices H(q), C(q, q), vector g(q), and vector fs, which represent diverse dissipative
forces (out of this work’s scope), then the robot’s general dynamics equation is be expressed
by

Hlqlq +C(q.q)q +g(q) —fa = T (16.82)
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Chapter 17

HOVER CRAFT DYNAMIC MODELLING

Marco Elizalde Ceballos and Edgar A. Martinez Garcia

Laboratorio de Robética, Institute of Engineering and Technology
Universidad Auténoma de Ciudad Judrez, Mexico.

This chapter discusses the analysis of a mathematical framework describing the dynamical
motion of a hover craft. This work is a preliminary study of a first approach for future for-
mulation of trajectory state estimation. The present chapter presents the formulation to model
the vehicle’s mobility with foundations on the interacting forces that provide the propulsive
displacements. Two main aspects are analysed and modelled: the Euler speeds that are deter-
mined in terms of the propulsive devices on the aircraft, which provide the geometry of linear
motion; and the angular motions around the roll, pitch and yaw axes usually associated to the
aircraft instability. The direct and inverse dynamic equations of motion are disclosed based on

the hovercraft physical design.

17.1 Translation velocities vector model

Based on the aerodynamic design of the aircraft (figure 17.1), there are some forces that
influence the hover Cartesian motion. One force is produced by the air stream of the main
fan propulsive system, which is located at the very back of the hovercraft. This propulsion
produces the thrusting force fy, that is able to move the aircraft forward (depicted in figure

17.1). The angle of direction of the force f, is called 6y, and is controlled by the main rudder
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mechanism ' .

y (yaw) ‘f

Figure 17.1: Hover craft diagram of local Euler axes, and main propulsive air streams direction.

In addition, the lifting force fs applies underneath the hovercraft yielded by the air stream
flowing from the inner craft’s structure. This mass of air produces the air cushion to lift the
vehicle from the ground surface. The sustenance or lifting force of the air cushion is described

by fs and modelled by the following expression,
fs = psa (17.1)

where p, is the pressure within the air cushion chamber and a the effective cushion area.

This type of hovercraft integrates two auxiliary ailerons, left-back and right-back. These
ailerons assist for steering, and for yielding braking effects (17.2). The forces f,, and fq
represent the forces generated by the right and left ailerons’ air stream, respectively —“. The
thrust force is generated towards the opposite direction of the main air stream. The propulsion
force generated by the air stream depends entirely on the fluid dynamics in the ducted fan.
Thus, it is possible to describe the function of the hovercraft mobility by taking into account the
four forces acting on the vehicle. By applying the Newton’s second law of motion, we describe

the acceleration & along the X-axis by the next expression

X = % (fth c0s(6¢n) + far c0S(Bar) + far c0s(0ar)) (17.2)
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far fal
g

L (]
— =

Figure 17.2: Top view of air streams and ailerons force direction.

Where 64, 0, v 041 are the respective angles of each force on the plane XZ. The acceleration

can be represented as a differential of the linear velocity over time in accordance with

dx 1
—— = — (ftn cos(0tn) + far c08(0ur) + fa1 €08(6ar)) (17.3)
dt m
The differential can be represented by its discrete form. By assuming a change in time At, we
can define

—— 1
il R (fth c0S Oth + far €OS Oqr + fa1 COS Oq1) (17.4)
At m

By solving for X we have,

. . 1
Xt — Xt = - (fth cOS Oty + far €OS Ogr + fq1 COS Oyp) At (17.5)
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Definition 17.1.1 (instantaneous absolute velocity). The recursive model of the instanta-

neous absolute velocity as a function of the propulsive forces is defined by

1
Xt = a (fth CcOoSs Gth + fa,« CcOoSs Gar' + fal CcOSs Gal) At + Xf_q (176)

From previous definition, the equation (17.6) states a model for the linear instantaneous velocity
xX¢ in function of the main forces interacting over the hovercraft. In order to define the linear

velocity along Y-axis, we need to take in account the lifting force fs in accordance with
fo=Ffs =W (17.7)

were W is the net weight of the vehicle. By applying Newton’s second law of motion and

solving for y; we have that

my) = fs(t) - W (17.8)

as well as,

1
Y = — (fst — W) (17.9)

The linear acceleration can be represented in its differential form. Then, by solving for §; we

have that
dy; 1
ar = st = W) (17.10)
and
Yo = Y-y 1.
—Af " m (fs — W) (17.11)
, , 1
Ve —¥i1 = — (fs — W) At (17.12)
m
. 1 )
Yi=— (fst — W) At + 914 (17.13)

Equation (17.13) describes the linear velocity of the vehicle along the Y-axis in terms of the
lifting force fs and the weight of the vehicle. Finally, a similar analysis can be performed to

define the forces that interact on the vehicle along the Z-axis.
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Thus, in terms of the second order derivative,

1
Zy = -y (ftn sin Ot + far Sin Oqp + fa1 5in Oqp) (17.14)

or in terms of the first order derivative,

dz;

O 2 i sinlO) + far sin(Bar) + for sin(6r) (17.45)

thus, by stating the recursive form, which originally arose from the defined integrals,

Zt — Zt 4

1
~ "o (ftn sin(B¢n) + far Sin(Bgr) + far sin(Ba1)) (17.16)

and by arranging the time algebraically,

2~ 2o = (o sin0) + far Sin0ar) + for sin(ur) Al (17.47)
hence, the recursive form of the instantaneous z;,

2= (i Sin00n) + o SI0(0ar) + for sinf0at) AT + 2 (17.18)

By arranging equations (17.6), (17.13) and (17.18), the direct solution for the linear velocities of

the hovercraft is described by the following postulate,

Postulate 17.1.2 (velocity vector). The recursive velocity vector model is postulated as a

function of the interacting propulsive forces.

) ftn )
Xt c0s B, c0s(0,;,)c0s(641)0 ; Xty
At ar
Ve | = m 0 0 0 1 ; + | $¢q (17.19)
z sin(6sn) sin(Bqr) sin(6q;) 0 “ Ztq
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17.1.1 Inverse solution

Let & = (%,¥,2)7 be the velocity vector and, let u; = (fin, far, fai, fs—w)T be the input vector
comprised of the propulsive forces. Thus, the equation (17.19) is now expressed in the matrix

form by
& = (ﬁf) Q-u+& (17.20)

Likewise, let us represent the transition matrix Q by

c08(0¢n)c08(04p)c08(641)0
Q= 0 0 0 1 (17.21)

sin(0¢y,) sin(0,,) sin(6,;) 0

The equation (17.20) computes the linear velocities of the vehicle by controlling the forces
interacting with it. For instance, by controlling the engine’s acceleration throttle that speeds
up/down the ducted fan, then it will generate propulsive forces surface-tangent over the vehicle.
Those forces can be controlled by the rudder and the ailerons of the hovercraft to change the
vehicle trajectory, Furthermore, to define the inverse solution to obtain the forces vector u; as

a function of the Cartesian velocities, by solving the equation (17.20),

Corollary 17.1.3 (vector of propulsive forces). The instantaneous vector of propulsive forces

is deduced as a function of the recursive velocity vectors.

w = A%Q—i(ét — &) (17.22)

The proposed solution is fully completed by the equation (17.22), where it is necessary to firstly
solve for the inverse closed form of Q. It is achieved by using the Moore-Penrose pseudo

inverse method (see section 1.2.5). Then, Q~! can be defined as

Q' =(Q'Q"Q’ (17.23)
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then solving the equation,

Q'Q = (17.24)

Hereafter, for readability purposes time indexes were omitted and cos and sin will be repre-

sented by ¢ and s respectively. Then, we can define the determinant k = det(QT Q) as
k = 2¢(0n — 6,)c(0n — 1) (6, — 6;) — *(On — 6,) — (O — 6) — *(6, — 6)) + 1 (17.25)

We can solve a matrix P = (Q"Q)~! using the determinant method as

CQ(Grk*QI) C(Grh*Qr)*C(QtIZ —01)c(0,—61) C(Gm*@)*C(GrZ*@r)C(@r —6
C(Gth~9r)~0(9r£ —01)c(6, ~6) CQ(thk~91) c(6r —91)~C(9u};9r)0(9r~91)
P=QQ" - ClO, 00l =0,c(6: =) ¢10,—00)~cl0n—0,)ct0:0) (om0, 0 (17:26)
0 0 0 1

Finally, the pseudo-inverse Q' can be defined as

dgh0 c(6tn)0s(6¢n)
Q*1 _ PQT _ geil ) c(6,) 0s(6,) (17.27)
hifo0 c(6r) 0 s(6y)

0001 010

and by developing the matrix operation the following matrix is obtained

c(Own)d + c(6,)g + c(6)h0s(6sn)d + s(6,)g + s(6)h
| c(Bmlg +c(Br)e +c(6))i05(6m)g + s(6r)e + s(6)) (17.28)
c(Om)h + c(6,)i + c(6)f 0 s(Om)h + s(6,)i + s(6)f '

0 1 0

-1
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where the matrix elements are defined separately,
c?(6, — 6)) (0 — 6))

d=—D"p— e=— %

_ c(6n — 6p) — c(Bsn — O)c(6, — O))
-k

c(Omn — 6;) — c(Bn — 6,)c(6, — 6y)
-k

C(Qr — 91) — C(ch — Qr-)C(QP — 9[)
-k

17.2 Angular motion model

It is assumed that the angular velocities and perturbation (internals and externals) forces are
closely related to each other. One example is the strong air stream hitting the lateral sides
of the hovercraft. This air stream causes a set of oscillating turns over time to the vehicle’s
trajectory. Another example is the side inclination caused be the gravitational forces when
the vehicle’s swift effects occur. These types of motion affect the sensor readings that cause
preventing the precise estimation of the vehicle displacements. In order to model the angular
velocities of the vehicle we need to consider multiple factors that may cause a turn around al
three axis of the hovercraft. Let assume that the sum of the perturbation forces will equal one
perturbation force on each plane of a hovercraft. For example, we can define a sum force f4
on the XZ plane as shown in figure 17.3. This force will turn the vehicle a long a center of
rotation generating an angular momentum or torque. Analysing the XZ plane we can define

a torque T as

. (17.29)

Were [ is the moment of inertia of the mass of the vehicle and ¥ is the angular acceleration.

We can express the inertial momentum as I = [ r’dm and rewrite equation (17.29) as

T = / r’dm# (17.30)



17.2. ANGULAR MOTION MODEL 453

Disturbance Force
f d f dx

w - Angular Velocity

Figure 17.3: Free body diagram of perturbing forces fq4.

where r is the turn radius. In accordance with 17.3, we can also represent the torque as T = rf,

and define an equality as

rf, = ] r’dm#y (17.31)
Solving for ¥ we have
. rfq
- 17.32
Y= o dm (17.52)
and
y = Ja (17.53)
rm

Both, the perturbation force f; and turn radius r vary over time. Hence, we represent equation

(17.33) as
1
= — <ﬁ> (17.34)



454 CHAPTER 17. HOVER CRAFT DYNAMIC MODELLING

Expressing ¥ in terms of the angular velocity, the following is defined,

dye 1 [fa,

By establishing a constant time increment Aft, the differential in the equation (17.35) is in

discrete form as

Yt — Yt 1 /fa,
— = — = 17.36
At m <rt > ( )
Solving for ¥ we have
NN
LA B, <l”t> (17.37)
or
. At [fa, .
=— (= _ 7.
Vit m(rf>+%1 (17.38)

Equation (17.38) defines the angular velocity 4 in terms of a perturbation force fy. And extend-
ing the analysis to XY and YZ planes, in order to develop a model for the angular velocities

of the vehicle:

Yt n¢/pt Yt

, At ,

B | = o kelqe | + | Be-t (17.39)
a 6¢lry Ay

were 1y, k¢t and & are the result perturbation forces in XZ, XY y YZ planes respectively; and

pt, q¢+ ¥ r¢ the turn radius generated by those forces. The inverse solution of (17.39) can be

defined as
ult pt(¥t — ¥t-1)
m .
ke [ = A7 | atBr = Br) (17.40)
St re(a — 1)

Equation (17.40) is used to compute de perturbation forces acting on the hovercraft with the
angular velocities as inputs. The angular velocities can be measure by an inertial sensor in

order to describe the perturbation forces acting on the vehicle.
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Modern robotic systems are tided to operate
autonomously in real-world environments
performing a variety of complex tasks. Autonomous
robots must rely on fundamental capabilities such
as locomotion, trajectory tracking control, multi-
sensor fusion, task/path planning, navigation, and
real-time perception. Combining this knowledge is
essential to design rolling, walking, aquatic, and
hovering robots that sense and self-control.

This book contains a mathematical modelling
framework to support the learning of modern
robotics and mechatronics, aimed at advanced
undergraduates or first-year PhD students, as well
as researchers and practitioners. The volume
exposes a solid understanding of mathematical
methods as a common modelling framework to
properly interpret advanced robotic systems.
Including numerical approximations, solution of
linear and non-linear systems of equations, curves
fitting, differentiation and integration of functions.
The book is suitable for courses on robotics,
mechatronics, sensing models, vehicles design and
control, modelling, simulation, and mechanisms
analysis. It is organised with 17 chapters divided in
five parts that conceptualise classical mechanics to
model a wide variety of applied robotics. It
comprehends a hover-craft, an amphibious
hexapod, self-reconfiguration and under-actuation
of rolling and passive walking robots with Hoekens,
Klann, and Jansen limbs for bipedal, quadruped,
and octapod robots.
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