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5
Preface

In this book the author presents an approach on numerical and analytical mathematical modelsto control and formally represent robotic engineering systems. Most of the chapters contentswere simulated and experimentally tested in the laboratory of the author’s institution. Appliedcomputational mathematics has mainly been focused on describing sensing and control algo-rithms, and the formal models of both aspects combined for robotic research. Robot designand its applications presented scope the three control modalities: wheeled and walking, aerial,and underwater robots. Throughout this book, the author presents academic material onrobotic applications divided into 17 chapters organised in five sections: Robot Sensing Models,Robot Navigation, Trajectory Control, Modelling Walking Robots, and 3D Robot Modelling. Itscontents makes particular highlight on establishing deterministic mathematical formulationsand solutions. Although, a diversity of computational algorithms were developed to obtain theexperimental and simulation results that support the book, those algorithms are not explicitlyanalysed because the approach of the book regards only the deterministic numerical models.Each chapter material is the result of academic final projects and teachings discussed in theclassroom regarding computational mathematics applied to experimental mobile robotics. Theresearch material explained has been produced by deploying home-made robotic platformsbuilt in our Robotics Laboratory. The computer programs that support the theory behind thechapters were developed under C++ language, Open Source libraries, and our set of codedlibraries KatanaLibs, which run in our Linux-based robotic OS (SAMURAI) developed duringseveral years by our research group. The purpose of applying deterministic mathematicalmodelling is to find analytical and numerical solutions of diverse robotics engineering prob-lems. The algebraic and integrate-differential equations are mathematical models that allowthe engineer to develop computer algorithms for controlling the robot’s sensors and actuators,and execute sophisticated intelligent missions in real-time. The present topics include projectivegeometry, linear algebra and matrices properties for establishing various sensing models tomeasure world attributes meaningful to the robot itself. Including the mathematical descriptionof odometers, accelerometers, ultrasonic sonar, light detection and ranging sensors (LiDARs),image processing techniques, and feature extraction. Methods to solve systems of linear andnon linear equations are used, such as systems of Jacobian matrices (squared and non squared)analysed by means of matrix properties: determinants, pseudo-inverse and decomposition of



6singular values. Furthermore, different types of integrate-differential, and partial differentialequations are proposed as basis for navigation and trajectory control. The fitting of curvesby polynomial interpolations to model schemes for planning, tracking, kinematics and dynam-ics control of robotic platforms are discussed as well. The models for actuation are obtainedadaptively through Taylor series expansion, and polynomial regressions.The book provides understanding on numerical modelling methods for different types ofmobile robots. Its contents is written for graduate, and undergraduate students of advancedcourses that are related to engineering sciences with a background on computational Mathsand Physics. Finally, I would like to thank all my undergraduate and graduate students thathave co-worked and collaborated with me as their academic advisor in the Robotics Laboratory.Students such as Alejandra Marín, Juan Carlos Solís, Karen Cangas, Maribel Bailón, RamónEsparza, Eder Jimenez, Oscar Payán, Ellian Herrera, Joab Retana, Diana Torres, Nestor Santos,Lídice Castro, Dulce Torres, whom helpfully supported by setting up experiments, coded soft-ware tools, collected dataset for the Lab’s users, tested algorithms, fixed robotic platforms orhelped configuring the technological infrastructure of the Robotics Laboratory. In addition, Ithankfully mention the staff of my institution UACJ that provided me the administrative supportfor the production of this book, Jesús Valencia, Lisbeyli Dominguez, and Luis Gutierrez fromthe Research and Postgraduate Coordination Office.

Assoc. Prof. Edgar Alonso Martínez García (PhD Eng.)Head of the Robotic LaboratoryInstitute of Engineering and TechnologyUniversidad Autónoma de Ciudad JuárezCd. Juárez, Chihuahua, Mexico



7
Foreword

Right from its origin, robotics and automation has capitalized on advancements on computingand data management to support the designing, building and testing of advanced robotic sys-tems. The impressive development of technology and its contribution to the information-basedsociety, is undoubtedly reshaping every aspect of our human daily life. Just as processor poweris no longer a constraint factor for building computational expensive applications, robotics hasbeen a recipient of new modern ubiquitous systems that include a wide integration of severaldata communication protocols, high definition graphic displays, and the availability of amazingamounts of computing memory. The overall field has grown to become a mature and growingsubject. History began with industrial manipulators five decades ago but spans to our daysas robotic explorers that have been sent to Mars to explore the planet, perform experimentsand send their results back to Earth. Other advancements include lots of research about au-tonomous operation in complex environments to develop a driver-less car while humanoidrobots have been sent into space and a number of advanced legged mobile robots have beendeveloped by several high Tech companies. Unmanned aerial vehicles have a wide variety ofmilitary and commercial uses and new robotic applications now include robots that might holdno bolts or metallic parts on their construction whatsoever; new materials are being used toimitate several nature-inspired locomotion and sensing mechanisms. Despite their clear dif-ferences, these robotic applications require the solution of common tasks like controlling therobot’s physical behaviour, sensing the environment, building up world models and tools forinteracting with the environment. Such issues precisely uphold the foundations of this book.The education of future engineers and scientist around robotics and automation subjectsmust include a deep and solid understanding of mathematical modelling fundamentals and aclear vision of control engineering, computational intelligence and advanced processing of sev-eral signal types such as voice, images and real-time video. Modern robotics demands a deepintegration of such subjects, making space for a common ground between electronics, com-puter science, mechanics, pervasive computing, among others. However, among all subjects,the mathematical modelling of each component and its clear interpretation of the overall robotmechanism’s behaviour must be appropriately addressed. For such a purpose, the author ofthis book has embraced a carefully developed mathematical framework to support the learningof fundamentals for modern robotics and automation. The book’s perspective relays over a



8step-by-step approach for introducing core concepts of advanced robot modelling. It supportsa second or third year undergraduate course in advanced robotics or can be a compulsorytext for a first year postgraduate course. It is suitable for a range of different areas includingmechanical and electrical engineering, applied mathematics and computer science.The book has seventeen chapters devoted to the key mathematical topics for basic andadvanced robotics, all divided into five sections. The first chapter begins by reviewing basicmathematical concepts of linear algebra and numerical methods, supporting the reader witha smooth transition between introductory and deeper concepts, all required by subsequentchapters. The section I presents a close review of relevant robotic sensing models that in-clude visual methods, odometry-based procedures and multi-sensor registration. The sectionII focuses on the dynamical behaviour and navigation principles. Four chapters are devotedto directional derivatives, vector fields and task planning respectively. Section III presentsthree chapters that are completely devoted to the analysis of trajectory control of wheeled andwalking legged robots, the required dynamics analysis and the control for trajectory tracking.This section included studies of the complexity of the kinematic analysis for a four-wheeledactive suspension. The book’s section IV is fully devoted to walking robotic structures, rangingfrom Klann linkages, Jansen-based quadrupeds, the mixed Hoeken-Jansen bipedal robot andthe complex kinematics of self-configuration of heel-leg robots. The last section V is devotedto discuss robots kinematic for robots that navigate in 3D spaces or fluid environments such asunderwater vehicles and hover craft mobile robots. This section is a remarkable contributionof the textbook since only few manuscripts in the literature include a study on such an issue.The organization of each chapter builds on basic concepts to demonstrate the use of classicmodelling methods for a wide variety of robotic plants. At the same time, several method-ologies are used for the computer-based analysis of modern robot structures. It is expectedthat students will appreciate the ability to run the simulation exemplars in order to reinforcetheir understanding of the mathematical derivations. Adopting a simulation-based approach tolearning basic and advanced robotic concepts, just after a careful review of theoretical issues,ensures that students approach all concepts in an enjoyable and interactive fashion.Finally, it is important to share that the problem set included for each robotic architecturehas been carefully selected in order to assure a full inclusion of previously presented theoreticalconcepts. It is expected that this manuscript will become a remarkable tool for undergraduate,postgraduate and researchers alike. Such expectancy grows from its broad, careful and deep



9study of a considerable number of modern robotic plants, whose concepts are still handy toanalyse classic robotic devices. Such coverage assure its usefulness and appreciation amongthe robotic related community.

Prof. Dr. Marco Antonio Perez-Cisneros, MIEEE MIET MSNIRobotics, Computer Vision and Automatic Control Research GroupDean of Science Division, CU TONALÁUniversity of Guadalajara, MEXICOMarch 16th, 2015
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Chapter 1

INTRODUCTION

Edgar A. Martínez García

Laboratorio de Robótica, Institute of Engineering and Technology
Universidad Autónoma de Ciudad Juárez, Mexico.

This chapter contains a toolbox for the mathematical methods that are used along the book.This is intended to be a general guide to introduce the reader through some fundamentaldeterministic mathematical concepts generally applied in robotics engineering such as controland sensor models.
1.1 Fundamentals of vector algebra and geometry

A vector is a physical quantity having magnitude, and angular direction. Let v, and u be vectorsin Rn ,

u =

u1
u2...
un

; v =

vx
vy...
vn


For practical purpose, let us assume u, v ∈ R2, the scalar product of two vectors, the inner ordot product.
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u> · v = u1v1 + u2v2 (1.1)

or
u> · v = ‖u‖‖v‖ cos(θ) (1.2)

θ = arccos( u · v
‖u‖‖v‖

) ; 0 ≤ θ ≤ π (1.3)
Thus, the following dot product properties are valid. The commutation is denoted by

u> · v = v> · u

the associative property of vectors is given,
(v + u)> ·w = u> ·w + v> ·w

and let c be a scalar, (cu>) · v = c(u> · v) = u> · (cv)
likewise,

u> · u ≥ 0

However, for the case where
u> · u = 0; ⇔ u = 0

The following definition considers the right-sided depiction of the figure 1.1.
Definition 1.1.1. The length (or norm) of b is non negative scalar ‖b‖ defined by

‖b‖ = 2√c>/2 · h = 2√c2/2 + h2; ‖b‖2 = c>/2 · h (1.4)

Which also implies
‖c/2b‖ = ∣∣∣c2 ∣∣∣ ‖b‖



1.1. FUNDAMENTALS OF VECTOR ALGEBRA AND GEOMETRY 31In general, two vectors u and v ∈ Rn are orthogonal to each other, if u> · v = 0. Therefore,
Theorem 1.1.2 (The Pitagorean). Two vectors u and v are orthogonal if and only if

‖u + v‖ = ‖u‖+ ‖v‖ (1.5)

For angles in R2 and R3,
u> · v = ‖u‖‖v‖ cos(θ) (1.6)

Proof,
‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos(θ)

and
‖u‖‖v‖ cos(θ) = 1

2
[
‖u‖2 + ‖v‖2 − ‖u− v‖2

]
and = 12 [u21 + u22 + v21 + v22 − (u1 − v1)2 + (u2 − u2)2]
finally, = u1v1 − u2v2 = u> · v

Given the figure 1.1, we have two triangles1, For figure 1.1 next theorems apply,

Figure 1.1: For any triangle ∠A+ ∠B+ ∠C = 180o .
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Theorem 1.1.3 (Cosine law). The cosine law :

a2 = b2 + c2 − 2bc cos(∠A) (1.7)
b2 = a2 + c2 − 2ac cos(∠B) (1.8)
c2 = a2 + b2 − 2ab cos(∠C) (1.9)

In addition,
Theorem 1.1.4 (Sine law).

asin(∠A) = bsin(∠B) = csin(∠C) (1.10)

h = b sin(∠A) = a sin(∠B) (1.11)
Accordingly to 1.1 right-sided figure, b = 2√(c/2)2 + h2, and

sin(A) = 2h
c ; cos(A) = c2b ; tan(A) = 2h

c ; sin(B) = c2b
1.1.1 Outer product

The cross or vectorial product
u× v = (u1 u2 . . . un)> × (v1 v2 . . . vn)> (1.12)

for three dimensions, where each orthogonal axis is denoted by the unit vectors î, ĵ, k̂ ∈ R3

u× v = (u1 î + u2ĵ + u3k̂)× (v1 î + v2ĵ + v3k̂) (1.13)
defined by

u× v = ‖u‖‖v‖ sin(θ)η̂ (1.14)
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η̂ = u× v

‖u× v‖ (1.15)
it is not commutative

u× v 6= v× u; u× v = −(v× u)
but it is distributive

u× (v×w) = u× v + u×w

it is not associative, (u× u)×w 6= u× (v×w)
and

cu× v = c(u× v)
and if the vectors are parallel,

u× v = 0; θ = 0.
The vectors are perpendicular u⊥v, when u> · v = 0. Two vectors are parallel u‖v, when

u× v = 0.
1.1.2 Unit vectors

û = u
‖u‖ = u2√u>u

(1.16)
where the Cartesian components of a vector u ∈ R2

u = u1 î + u2ĵ
The scalar magnitudes of the Cartesian components u1 and u2 that are mutually orthogonal,

u1 = ‖u‖ cos(φ); u2 = ‖u‖ sin(φ)
where,

u = ‖u‖ = 2√u21 + u22
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φ = arctan(u2

u1
)

for three dimensions the vector components are
u = u1 î + u2ĵ + u3k̂

where each unit vector representing an independent Cartesian axis are defined by,
î = (1, 0, 0)>; ĵ = (0, 1, 0)>; k̂ = (0, 0, 1)>

which is equally represented by,
u = ‖u‖ cos(φ1 )̂i + ‖u‖ cos(φ2 )̂j + ‖u‖ cos(φ3)k̂

thus, by factorising the common term ‖u‖,
u = ‖u‖(cos(φ1 )̂i + cos(φ2 )̂j + cos(φ3)k̂)

hence, by defining the unit vector λ̂ as:
λ̂ = cos(φ1 )̂i + cos(φ2 )̂j + cos(φ3)k̂

it is deduced that,
λ1 = cos(φ1); λ2 = cos(φ2); λ3 = cos(φ3)

The magnitude of the three angles are not independent from each other,
λ21 + λ22 + λ23 = cos2(φ1) + cos2(φ2) + cos2(φ3) = 1

Thus, the direction cosines are defined as:
cos(φ1) = u1

‖u‖ ; cos(φ2) = u2
‖u‖ ; cos(φ3) = u3

‖u‖
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î× î = 0; ĵ× î = −k̂; k̂× î = ĵ;
î× ĵ = k̂; ĵ× ĵ = 0; k̂× ĵ = −î;

î× k̂ = −ĵ; ĵ× k̂ = î; k̂× k̂ = 0

1.2 Linear matrix algebra

A system of linear equations (or linear system) is a collection of one or more linear equationsinvolving the same variables. A solution of the system is a list (s1, s2, . . . , sn) of numbersthat makes each equation a true statement when the values s1, s2, . . . , sn are substituted for
x1, . . . , xn , respectively. Let us consider the following linear model representing a generalizedlinear system of algebraic equations2,

Ax = b (1.17)
If A is not an invertible n × n matrix, then for each b ∈ Rn the equation (1.17) has the uniquesolution x = A−1 · b. Therefore, let us define a single linear model equation in the followinggeneral form,

a1x1 + a2x2 + · · ·+ anxn = b1 (1.18)
for a system of linear equations of the form

ai1x1 + ai2x2 + · · ·+ ainxn = b1
aj1x1 + aj2x2 + · · ·+ ajnxn = b2...

am1x1 + am2x2 + · · ·+ amnxn = bn

(1.19)

Thus, the matrix form of our system of linear equations form = n, it is denoted by as previouslydefined by eq.(1.17), 
ai1 + ai2 + · · ·+ ain
aj1 + aj2 + · · ·+ ajn...

am1 + am2 + · · ·+ amn

 ·

x1
x2...
xn

 =

b1
b2...
bn

 (1.20)
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a) A + B = B + A, and A + 0 = A

b) A + (B + C) = (A + B) + C

c) A(BC) = (AB)C
d) A(B + C) = AB + AC, or (B + C)A = BA + CA

e) r(AB) = (rA)B = A(rB)
f) IA = A = AI

The transpose of a product of matrices equals the product of their transposes in the reverseorder. Thus, let A and B denote matrices where sizes are appropriate for the following sumsand products.
a) (A>)>
b) (A + B)> = A> + B>

c) (rA)> = rA>

d) (AB)> = B>A>

The symmetric matrix is equal to its transpose,
A> = A

The antisymmetric matrix has opposite sign to its transpose,
A> = −A

In the orthogonal matrix, the inverse of a matrix is equally obtained by its transpose,
A> = A−1
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1.2.1 Determinants

A determinant is a single number that summarises a square numeric matrix (multivariatephenomenon) in a certain way and represents special characteristics of that matrix3.The determinant of a 1-by-1 matrix is
det[a11] = a11

for a 2× 2 matrix,
det a11 a12

a21 a22
 = a11a22 − a12a21

and for a 3× 3 matrix,
det

a11 a12 a13
a21 a22 a23
a31 a32 a33

 = a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31

Let us consider A = [aij ] with a11 6= 0. If we multiply the second and third rows of A by a11and then subtract appropriate multiples of the first row from the other two rows, we find that
A is row equivalent to the following two matrices:

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ∼

a11 a12 a130 a11a22 − a12a21 a11a23 − a13a210 a11a32 − a12a31 a11a33 − a13a31

 (1.21)
Subsequently, multiply the row 3 by (a11a22 − a12a21), and then to the new row 3 add

−(a11a32 − a12a31) times row 2. Thus, this will yield
A ∼


a11 a12 a130 a11a22 − a12a21 a11a23 − a13a210 0 a11∆

 (1.22)
where,

∆ = a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31
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(a11a22a33 − a11a23a32)− (a12a21a33 − a12a23a31) + (a13a21a32 − a13a22a31),

such algebraic expression is equivalent, if we factorize and regroup the terms,
∆ = a11 · det a22 a23

a32 a33
− a12 · det a21 a23

a31 a33
 + a13 · det a21 a22

a31 a32
 (1.23)

and for brevity, we write with sub matrix notation in the following manner
∆ = a11 · det A11 − a12 · det A12 + a13 · det A13 (1.24)

where A11, A12, and A13 are obtained from A by deleting the first row and one of the columns.For any square matrix A, let aij denote the sub matrix formed by deleting the ith row and jthcolumn of A. Therefore, the determinant may be defined inductively by the Laplace expansion:
n∑
j=1 (−1)i+jaij det Aij = n∑

i=1 (−1)i+jaij det Aij (1.25)
for all i ≤ n, j ≤ n, and this common value is det(A) or simply |A|. The left-hand side is theLaplace expansion by minors along row i, and the right-hand side is the Laplace expansionalong column j .
1.2.2 Trace of a matrix

The trace of a matrix A Tr(A), A ∈ Rn×n. The properties of the trace of a matrix,
Tr(A) = n∑

i=1 aii = Tr(A>)
and Tr(cA) = cTr(A), ∀ k ∈ R

Tr(A + B) = Tr(A) + Tr(B)
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1.2.3 Matrix inversion

The matrix inversion based on the determinant calculus is a common approach deployed whenwe have squared matrices An×n. An n×n matrix A is said to be invertible in fact, if there is an
n × n inverse matrix denoted by A−1, uniquely defined by A. The following are some inversematrix conditions:

a) If A is an invertible matrix, then A−1 is invertible,
(A−1)−1 = A

b) If A and B are n × n invertible matrices, then the product of the inverses is
(AB)−1 = BA

c) If A is an invertible matrix, then the inverse of its transpose A>

(A>)−1 = (A−1)>
d) The identity matrix of a matrix A and its inverse,

A−1 ·A = I, A ·A−1 = I

A non invertible matrix is sometimes called singular matrix; an invertible matrix is called anon singular matrix where |A| 6= 0 must exist.
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Theorem 1.2.1 (An Inverse Formula). Let A be an invertible n × n matrix, such that

A = a1 a2
a3 a4


hence, if a1a4 − a2a3 6= 0, then A is invertible and

A−1 = 1det(A)adj(A) = 1
a1a4 − a2a3

 a4 −a2
−a3 a1

 (1.26)
But, if a1a4 − a2a3 = 0, A is not invertible.

This can be an efficient way to calculate the inverse of small matrices. For n ≥ 2, thedeterminant of an n×n matrix A = [aij ] is the sum of n terms of the form ±a1j det(A1j), wherethe entries a11, a12, . . . , a1n are from the first row of A.
Definition 1.2.2. The determinant of an n × n matrix A being n ≥ 2 is

|A| = a11 det(A11)− a12 det(A12) + · · ·+ (−1)1+na1n det(A1n) (1.27)
or

|A| = n∑
j=1

(−1)1+j det(Aij) (1.28)

In addition, the transpose of the matrix of cofactors is known as the adjugate matrix,
adj(A) = C>
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A =

a11 a11 . . . a1n
a21 a21 . . . a2n...
an1 an1 . . . ann

 (1.29)

And, the cofactors matrix C is stated as

C =

c11 c11 . . . c1n
c21 c21 . . . c2n...
cm1 cm1 . . . cmn

 (1.30)

Where each cofactor matrix terms is formulated by
ci = (−1)i+ai (1.31)

1.2.4 Cramer’s Rule

This is an explicit formula for the solution of a system of linear equations with as many equa-tions as unknowns, valid whenever the system has a unique solution. It expresses the solutionin terms of the determinants of the (square) coefficient matrix and of matrices obtained fromit by replacing one column by the vector of right hand sides of the equations.
For a general systems of linear equations,

a11x11 + a12x12 + · · ·+ a1nx1n = b1,

a21x21 + a22x22 + · · ·+ a2nx2n = b2,
and

am1xm1 + am2xm2 + · · ·+ amnxmn = bm,
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a11 a12 . . . a1n
a21 a21 . . . a2n...
am1 am2 . . . amn

 ·

x1
x2...
xn

 =

b1
b2...
bn

 (1.32)

Given the linear form of the vector x ∈ Rn , x = (x1, x2, . . . , xn)>.
A ·
(
x1 x2 . . . xn

)> = b (1.33)
Thus, let us define and apply the Cramer’s theorem,
Theorem 1.2.3 (Cramer’s Rule). Let A be an invertible n × n matrix. For any b in Rn , the

unique solution x of Ax = b has the entries given by

xi = det Ai(b)det A , i = 1, 2, . . . , n (1.34)

thus,

x1 =

∣∣∣∣∣∣∣∣∣∣∣∣

b1 a12 · · · a1n
b2 a22 · · · a2n...
bn an2 · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 ... a1n
a21 a22 ... a2n...
an1 an2 ... ann

∣∣∣∣∣∣∣∣∣∣∣∣∣

, x2 =

∣∣∣∣∣∣∣∣∣∣∣∣

a12 b1 · · · a1n
a22 b2 · · · a2n...
an2 bn · · · ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 ... a1n
a21 a22 ... a2n...
an1 an2 ... ann

∣∣∣∣∣∣∣∣∣∣∣∣∣

, . . . xn =

∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · b1
a21 a22 · · · b2...
an1 an2 · · · bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 ... a1n
a21 a22 ... a2n...
an1 an2 ... ann

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(1.35)
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1.2.5 Pseudoinverse

The following equations are used to define a generalised inverse, a reflexive generalized inverse,and a pseudoinverse of A

Proposition 1.2.4. For J ∈ Rm×n, and rank(J) = m, then (JJ)−1 exists.

Consider the following Penrose conditions,
A · J ·A = A (1.36)
J ·A · J = J (1.37)

(A · J)> = A · J (1.38)
(J ·A)> = J ·A (1.39)

Definition 1.2.5. A generalised inverse of a matrix A ∈ Rm×n is a matrix J = A− ∈ Rn×m

satisfying (1.36).
Definition 1.2.6. A reflexive generalised inverse of a matrix A ∈ Rm×n is a matrix J =
A−r ∈ Rn×m satisfying (1.36) and (1.37).

A pseudo-inverse is sometimes called the Moore-Penrose inverse 1.
Definition 1.2.7. A pseudo-inverse of a matrix A ∈ Rm×n is a matrix J = A+

r ∈ Rn×m

satisfying (1.36) through (1.39).

1After the pioneering works by Mores (1920, 1935) and Penrose (1955).
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Lemma 1.2.8. For a linear equation (1.17), where A ∈ Rm×n, x ∈ Rn, and b ∈ Rm, a

necessary and sufficient condition for the existence of solution x is

rank([A b]) = rank(A)

If previous equation is satisfied then x = A− · b, which is a solution of eq.(1.17).
Lemma 1.2.9. For an arbitrary A ∈ Rm×n, there exist at least one generalised inverse

A− and rankA− ≥ rankA. Thus, A− coincides with a reflexive generalized inverse if and

only if rankA− = rankA

Lemma 1.2.10. Generally A− and A−r are not unique. If A is square and non singular,

then the generalised inverse A− and the reflexive generalized inverse A−r are unique,

and A− = A−r = A−1

Lemma 1.2.11. A ·A− and A− ·A are idempotent (if a square matrix A2 = A).

Using an arbitrary matrix U ∈ Rn×m and a generalised inverse A−, all the generalisedinverses of A can be represented by the following J:
J = A− + U−A− ·A ·U ·A ·A− (1.40)

This result can be readily shown by multiplying A at the two sides of each term of the equationaccording to the Penrose condition (1.36),
A · J ·A = A(A− + U−A− ·A ·U ·A ·A−)A (1.41)

and by multiplying A by all terms,
A · J ·A = (A ·A− ·A) + A ·U ·A − (A ·A− ·A) ·U · (A ·A−A) (1.42)
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A = A + (A ·U ·A)− (A ·U ·A) (1.43)

where A ·A− ·A = A was used. Thus,
A = A (1.44)

Thus, the pseudo-inverse A+ ∈ Rn×m is unique for a given A ∈ Rm×n, whereas A− and A−rare not necessarily unique. Let the sets of A−, A−r and A+ be S−, S−r and S+, respectively; then,the following inclusion holds:
S+ ⊂ S−r ⊂ S− (1.45)

Then, (A+)+ = A

Similarly for reverse order the transpose applies,
(A>)+ = (A+)>

and
A+ = (A> ·A)+ ·A> = A> · (A ·A>)+

and the identity matrix is a product of
AA+ = I

or well (AA>)(AA>)−1 = I

regrouping terms according to the associative property of matrices,
A
[
A>(AA>)−1] = I
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Theorem 1.2.12 (The Right-Pseudo-inverse). For A ∈ Rm×n, if m < n and rank(A) = m,

then AA> is non singular and

A+ = A> · (A ·A>)−1 (1.46)

Here, A+ = A>(AA>)−1 is called a right pseudo-inverse of A, since AA+ = I. Thus, contrary,
Theorem 1.2.13 (The Left-Pseudo-inverse). For A ∈ Rm×n If m > n and rank(A) = n, then

A> ·A is non singuar and

A+ = (A> ·A)−1 ·A> (1.47)
Furthermore,

Theorem 1.2.14 (The Orthogonal Matrix). If m = n and rank(A) = m, then

A> = A−1 (1.48)

Thus, for the general linear model (1.17), if m < n and applying theorem 1.2.12,
x = A>(A ·A>)−1 · b (1.49)

Finally, note that A+ ·A ∈ Rn×n, and that in general, A+A 6= I because matrix multiplicationis not commutative.
1.2.6 Singular value decomposition

In order to deal with the case for non-squared matrices Am×n where m 6= n, for multipleindependent variables; the determinant value is not possible. Thus, not all matrices can be
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Am×n. A special factorization of this type, called the singular value decomposition (SVD) is alinear algebra matrix factorization.

The SVD is based on the fact that the ordinary diagonalizability can be imitated for rectan-gular matrices. The magnitudes of the eigenvalues λi of a symmetric matrix A measure theamounts that A stretches or shrinks its eigenvectors. That is, if λi is the greatest eigenvalue’smagnitude, then a corresponding unit vector v1 identifies a direction in which the stretchingeffect of A is greatest.
The norm of ‖Ax‖ = ‖λx‖, ‖x‖ = 1 is maximised when x = v1,

‖Ax‖ = ‖λx‖ = |λ|‖x‖ = |λ|
The following equivalence holds having a non trivial solution.

(A − λI)x = 0 (1.50)
Thus, the next theorem is stated,

Theorem 1.2.15 (Singular Value Decomposition). Let Rank(A)m×n = r, then there exist

Σm×n with diagonal entries in D are the first r singular values of A, σ1 ≥ σ2 ≥ · · · ≥ σr > 0,

and there exist an orthogonal matrix Um×m , and an orthogonal matrix Vn×n such that

A = UΣV>

Thus, A>A is symmetric and can be orthogonally diagonalized. And
U = [u1, . . . ,um] ∈ Rm×m

and let V = [v1, . . . , vn] ∈ Rn×n be an orthonormal basis consisting of eigenvectors of A>A,where A is represented as in theorem 1.2.15.
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‖Avi‖2 = (Avi)>(Avi) = v>i A>Avi = v>i (λivi) = λi (1.51)

Arranging the corresponding all non negative eigenvalues and renumbering to satisfy thevalues λ1 ≥ λ2 ≥ · · · ≥ λn > 0, then {Av1, . . .Avr} is an orthonormal basis for Col A andRank(A) = r, and by expression (1.51), their lengths are the singular values, then (Avi) 6= 0 ⇔1 ≤ i ≤ r. The singular values of A>A are σ1, . . . σn , arranged in decreasing order. That is,
σi = 2√λi, 1 ≤ i ≤ n

For any y in Col(A), y = Ax,
x = c1v1 + . . . cnvn (1.52)

and
y = Ax = c1Av1 + · · ·+ crAvr + cr+1Avr+1 + · · ·+ cnAvn (1.53)

y = Ax = c1Av1 + · · ·+ crAvr + 0 + · · ·+ 0 (1.54)
Following that dim[ColA] = Rank(A) = r.Thus, the diagonal matrix D = diag(σ0, σ1, . . . , σn) ∈ Rr×r is squared and symmetric.

Dr×r =

σ1

σ2 . . .
σr

 (1.55)

In addition the condition number k denotes the ratio of the longest and smallest values namely
k = σ1

σr
; (k ≥ 1) (1.56)

For a small k the matrix is well conditioned; for a large k the matrix is ill conditioned. Thus,numerical computation of an ill-conditioned coefficient matrix may involve large computationalerrors.



1.3. EXPANSION BY TAYLOR SERIES 49Furthermore, the matrix Σ,
Σ = D 00 0


For example, the singular values σi of J can be used to find the eigenvectors u, . . . ,um thatsatisfy the equality JJT = ui = σiui. Such eigenvectors comprise the matrix U = [u1,u2, · · · ,um].Thus, the system is then rewritten as,

JJTU = UΣ2
m (1.57)

Hence, it is defined Vm = JTUΣ−1
m , and let V be any orthogonal matrix that satisfies the expres-sion V = [Vm|Vn−m]. Notice that V is an n × n matrix. Then, constructing the right pseudo-inverse of J using singular value decomposition, the pseudo-inverse J+ = VΣ−1UT. Therefore,the SVD are given by (12.36), in which Σ+

m is the inverse (square) matrix of Σm.

Σ+
m =


σ−11

σ−12 . . .
σ−11

 (1.58)

For instance the solution for x in example y = A · x, A ∈ Rm×n , such that x = A−1 ·yis given by,
x = (A ·U ·Σ−1

m
)
·Σ−1

m ·
((

A> ·A
)−1 U ·Σ2

m

)>
· y (1.59)

1.3 Expansion by Taylor series

Taylor’s theorem provides a way of expressing a function as a power series in the independentvariable x, known as a Taylor series, but only applied to those functions that are continuousand differentiable within the x-range of interest4. Difference formulas can be developed usingTaylor series. This approach is especially useful for deriving finite difference approximationsof exact derivatives (both total derivatives and partial derivatives) that appear in differential
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Theorem 1.3.1 (Taylor’s theorem). Let f (x) ∈ D, and x = x0 is any point in D. Thus, a power

series exist with centre in x0 that represents an f (x) in the following form,

f (x) = ∞∑
i=0 ai(x − x0)i (1.60)

where,

ai = 1
i! f (n)x0

Such coefficients satisfy the inequality,

|ai| ≤
max |f (x)|(x − x0)i

where max |f (x)| is the maximal value over the residual circumference |x − x0|.

Difference formulas for functions of a single variable, for example, f (x), can be developedfrom the Taylor series for a function of a single variable5,
f (x) ∼= f (x) + f (1)(x)∆x + f (2)(x)2! ∆x2 + f (4)(x)3! ∆x3 + · · ·+ f (n)(x)

n! ∆xn + Rn (1.61)
where ∆x = (x − h), and the residual term Rn is

Rn = f (ξ)(n + 1)!∆xn+1 (1.62)
If the residual Rn is omitted, the equation becomes the approximation of the Taylor polynomialfor f (x). Thus, the general algorithmic formula,

f (x) ∼= ∞∑
i=0

f (x)(i)
i! ∆xi (1.63)
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1.3.1 Multivariate expansion by Taylor series

For multivariate functions the Taylor series formulation is stated in the following manner,
f (x0, x1, . . . , xn) ∼ ∞∑

k=0
1
k!
( n∑

i=1 (xi − hi) ∂∂xi
)k

f (x0, x1, . . . , xn) (1.64)
for n variables given in a vector x ∈ Rn , such that x = {x1, x2, . . . , xn}. And the k degree Taylorexpansion is developed,

f (x) ≈ f (x) + ((x1 − h1) ∂
∂x1 + (x2 − h2) ∂

∂x2 + · · ·+ (xn − hn) ∂
∂xn

)k
f (x) (1.65)

For instance, by developing the expansion of Taylor series for two variables x1 and x2, and for
h = 0, with k = 2 degrees (second order derivative), the following expression is provided:

f (x1, x2) ≈ f (x1, x2) + (x1 ∂
∂x1 + x2 ∂

∂x2
)2

f (x1, x2) (1.66)
by algebraically expanding the two degree binomial,

f (x1, x2) ≈ f (x1, x2) + (x21 ∂2
∂x21 + 2x1x2 ∂

∂x1∂x2 + x22 ∂2
∂x22

)
f (x1, x2) (1.67)

thus, the second order derivative approximation is
f (x1, x2) ≈ f (x1, x2) + x21 ∂2f (x1, x2)

∂x21 + 2x1x2 ∂f (x1, x2)
∂x1∂x2 + x22 ∂2f (x1, x2)

∂x22 (1.68)
1.4 Solution of non linear equations

The term root of an equation refers to the values of the independent variable x calculated thatmake f (x) = 0. There exist numerous complex equations where it is not possible to find adirect analytical solution of the variables of interest. There are numerical methods to solveequations where analytical solutions are not possible. This section presents open methods thatdeploy only an initial value x0 to find the solution. Sometimes, such methods diverge fromfinding the real root value as the process of calculation progresses. Nevertheless, when theyconverge, unlike close methods they are faster and iteratively find the solution.
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1.4.1 The Newton-Raphson method

In order to calculate the root of a non linear function, from the known initial value xi , a tangentline is yielded from the point (xi, f (xi)) to the X axis, which represent a better approximationof the real root. Form this geometric meaning, it is deduced that the first order derivative w.r.t.
x is equivalent to the tangent line slope. The following deduction is made by the expansion ofTaylor series,

f (xi+1) = f (xi) + f ′(xi)(xi+1 − xi) + f ′′(ξ)2! (xi+1 − xi)2 (1.69)
where ξ exists in the interval ([xi, . . . , xi+1), just after the term of the first order derivative.Thus, an approximation is provided by

f (xi+1) ∼= f (xi) + f ′(xi)(xi+1 − xi) (1.70)
the intersection of f (xi+1) with the axis x must be f (xi+1) = 0, therefore

f (xi) + f ′(xi)(xi+1 − xi) = 0 (1.71)
such that,

f ′(xi) = f (xi)− 0
xi − xi+1 (1.72)

and dropping-off xi+1, the Newton-Raphson equation is
xi+1 = xi −

f (xi)
f ′(xi) (1.73)

Thus, by estimating the error formula,
f (xi) + f ′(xi)(xi+1 − xi) + f ′′(ξ)2! (xi+1 − xi)2 = 0 (1.74)

evaluating xr in f (xr) and by substituting in
f ′(xi)(xr − xi) + f ′′(ξ)2! (xr − xi)2 = 0 (1.75)

where
Et,i+1 = xr − xi+1 (1.76)
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f ′(xi)Et,i+1 + f ′′(ξ)2! E2

t,i = 0 (1.77)
hence,

Et,i+1 = −f ′′(xr)2f ′(xr) E2
t,i (1.78)

Thus, the relative error,
εi = ∣∣∣∣xi − xi−1

xi

∣∣∣∣ (1.79)

1.4.2 The secant method

Sometimes exist cases of functions where their derivatives might be difficult to calculate, wherethe method of Newton-Rapshon may loose efficiency due to divergence, specially when slopesvalues are nearly 0, making difficult to find roots. Hence, in such cases a potential problem oncalculating the derivative, may be overcome by approximating it by backward finite differences.This type of approximation basically substitute the derivative by the use of a secant, which isan extrapolation of the tangent line crossing the x axis.
xi+1 = xi −

f (xi)(xi−1 − xi)
f (xi−1)− f (xi) (1.80)

Nevertheless, the secant method may diverge for some types of functions f (x). Instead of usingtwo arbitrary numeric values to approximate the derivative, an alternative modified methodconsiders a fractional change of the independent variable to estimate f ′(x),
f ′(xi) = f (xi + δxi)− f (xi)

δxi
(1.81)

where δ represents a small fractional change, and substituting it in the derivative function ofthe Newton-Raphson formula previously stated, the following modified secant method formulais obtained,
xi+1 = xi −

δxif (xi)
f (xi + δxi)− f (xi) (1.82)
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1.4.3 Solution for polynomials

The Müller method is a manner to solve polynomial functions, similarly to the secant methodthat directs a line until the x axis using two values of the function. The Müller method is verysimilar, but considering three consecutive points along the polynomial curve. Such segmentof three points is assumed to model a parabolic function5.
f2(x) = a(x − x2)2 + b(x − x2) + c (1.83)

It is desired the parabola curve passes along (x0, f (x0)), (x1, f (x1)), and (x2, f (x2)). Those threepoints are substituted in eq.(1.83) to evaluate its coefficients a, b, c. Therefore, the first point
f (x0) = a(x0 − x2)2 + b(x0 − x2) + c (1.84)

for the second point,
f (x1) = a(x1 − x2)2 + b(x1 − x2) + c (1.85)

and for the third point,
f (x2) = a(x2 − x2)2 + b(x2 − x2) + c (1.86)

From third equation, c is easy found
f (x2) = c

and substituting c next, two equations with two variables come up,
f (x0)− f (x2) = a(x0 − x2)2 + b(x0 − x2) + c (1.87)

and
f (x1)− f (x2) = a(x1 − x2)2 + b(x1 − x2) + c (1.88)

being h0 = x1 − x0 and h1 = x2 − x1 and by algebraic arrangements, a and b are solved, thedivided differences are defined
δ0 = f (x1)− f (x0)

x1 − x0 ; δ1 = f (x2)− f (x1)
x2 − x1
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a = δ1 − δ0

h1 − h0 (1.89)
b = ah1 + δ1 (1.90)

and
c = f (x2) (1.91)

Therefore, to find either the real or complex roots, the quadratic expression is solved by thegeneral formula,
x3 = x2 + −2c

b ±
√
b2 − 4ac (1.92)

This solution is a direct manner to find the approximation error. In addition, the discriminantvalue is defined by d = √b2 − 4ac, and it is evaluated by |b−d| > |b+d|. In the same way, theabsolute error is calculated by
εr = ∣∣∣∣x3 − x2

x3
∣∣∣∣

Finally, the sign is chosen by matching the sign of factor b. This choice provides a largernumeric denominator, and therefore the root will be very approximated to x2. Once, x3 isdetermined, the process is repeated.

1.5 System of non linear equations

The problem of this section consist of obtaining the roots of a set of simultaneous non linearequations. Where the solution is determined by a set of xi that simultaneously make that allequations are zero.
f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0...
fn(x1, x2, . . . , xn) = 0
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1.5.1 The Newton-Raphson method

The Newton-Raphson method utilises the first order derivative to evaluate the tangent lineslope of a function. Such calculation has its foundations on the series of Taylor first orderderivative,
f (xi+1) = f (xi) + (xi+1 − xi)f ′ (xi) (1.93)

Given that we look for solving the systems of equations when the root is approximately found
f (xi+1) = 0, when the function is evaluated for xi+1. Thus, by dropping-off the independentvariable,

xi+1 = xi −
f (xi)
f ′ (xi)which is the method for a single equation. For multiple equations the method to calculatea root is very similar. However, the series of Taylor for multiple variables must be used, inorder to know that more than a single independent variable contributes to determine the root.Considering the case for two variables,

ui+1 = ui + (xi+1 − xi)∂ui∂x + (yi+1 − yi)∂ui∂y (1.94)
and

νi+1 = νi + (xi+1 − xi)∂νi∂x + (yi+1 − yi)∂νi∂y (1.95)
Considering the same principle for the roots that ui+1 = 0, y νi+1 = 0. The iterative solutionmethod5 starts by stating the initial values,

∂ui
∂x xi+1 + ∂ui

∂y yi+1 = −ui + xi
∂ui
∂x + yi

∂ui
∂y

and
∂νi
∂x xi+1 + ∂νi

∂y yi+1 = −νi + xi
∂νi
∂x + yi

∂νi
∂y



1.5. SYSTEM OF NON LINEAR EQUATIONS 57Now previous equations are stated as linear, where xi, yi are known, and xi+1, yi+1 are theunknown variables to solve. Therefore, by realising algebraic manipulations to equations, andusing an algebraic method to solve the system (i.e. Cramer theorem, section 1.2.4).
xi+1 = xi −

ui
∂ν
∂y − νi

∂ui
∂y

∂ui
∂x

∂νi
∂y −

∂ui
∂y

∂νi
∂x

(1.96)
and

yi+1 = yi −
νi
∂ν
∂x − ui

∂νi
∂x

∂ui
∂x

∂νi
∂y −

∂ui
∂y

∂νi
∂x

(1.97)
In addition, the denominator term in both equationsis known as the determinant of the Jacobianmatrix of the system of equations, which may be described separately. The Jacobian matrix isdefined as

Ji =
∂ui∂x

∂ui
∂y

∂vi
∂x

∂vi
∂y


Hence, its determinant is formulated by

|Ji| = ∂ui
∂x

∂vi
∂y −

∂vi
∂x

∂ui
∂y

Another way to express the solution for the multivariate system of equations is
xi+1 = xi −

ui
∂νi
∂y − νi

∂ui
∂y

|Ji|

and
yi+1 = yi −

νi
∂ui
∂x − ui

∂νi
∂x

|Ji|Furthermore, the sufficient conditions for convergence are the following criteria,∣∣∣∣∂u∂x
∣∣∣∣ + ∣∣∣∣∂v∂x

∣∣∣∣ < 1
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∣∣∣∣ + ∣∣∣∣∂v∂y

∣∣∣∣ < 1
1.6 Numerical fitting models

Either the realistic calculation of a point between discrete values, or the simplified version of acomplex mathematical function, is known as Curves Fitting. A fitting model is obtained fromthe process of constructing a curve having its best fit to a series of data points.
1.6.1 Newton polynomial interpolation

If it is known that the points of a dataset or table are very precise, then the basic procedureis to fix a curve or series of curves crossing through each point directly. The estimation ofvalues between discrete points are known as interpolation.Let be the polynomial of the general form5,
fn(x) = b0 + b1(x − x0) + b2(x − x0)(x − x1) + · · ·+ bn(x − x0) . . . (x − xn−1) (1.98)

where the coefficients are obtained from the next expression,
b0 = f (x0) (1.99a)

b1 = f (x1, x0) (1.99b)
b2 = f (x2, x1, x0) (1.99c)

bn = f (xn, xn−1, . . . , x0) (1.99d)
The divided differences are described by,

f (xi, xj ) = f (xi)− f (xj )
xi − xj

(1.100)
likewise, the second divided difference is deduced in the next expression,

f (xi, xj , xk) = f (xi, xj )− f (xj − xk)
xi − xk

(1.101)
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f (xn, xn−1, . . . , x1, x0) = f (xn, xn−1, . . . x1)− f (xn−1,xn−2,...x0 )

xn − x0 (1.102)
Such differences are useful to evaluate the coefficients of equations (1.99), which are substitutedin equation (1.98) to obtain the interpolative polynomial, which is defined next,
fn(x) = f (x0)+(x−x0)f (x1, x0)+(x−x0)(x−x1)f (x2, x1, x0)+· · ·+(x−x0) · · · (x−xn−1)f (xn, . . . , x0)(1.103)which is know as the Newton’s interpolation polynomial of divided differences. Points equallyspaced, or values along abscissa ascendantly ordered are not required.

1.6.2 Lagrange polynomial interpolation

In order to avoid the calculus of the divided differences, the Newton polynomial interpolation isalgebraically reformulated to state the Lagrange interpolation, which is concisely representedby the next equation,
f (x) = n∑

i=0 [Li(x)yi] (1.104)
where

Li(x) = n∏
j=0
i6=j

x − xi
xj − xi

(1.105)
or well, directly used as

f (x) = n∑
i=0
 n∏

j=0
x − xi
xj − xi

yi

 (1.106)
For instance, the linear version n = 1 is

f1(x) = x − x1
x0 − x1 f (x0) + x − x0

x1 − x0 f (x1) (1.107)
The general model will produce a polynomial equation that fit a table of data of degree n − 1.

yi(xi) = ao + a1xi + a2x2
i + · · ·+ anxni (1.108)
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1.6.3 Polynomial regression

When data exhibit a significant degree of error, unlike intersecting all points, but a single curvethat represent the data trend as a group is known as Regression. The procedure of squareleast is enhanced to adjust data that fit non linear functions, such as polynomials.Given the empirical model y = ym + ε , in order to approximate it to a suitable theoreticalmodel ym , and fitting the numeric data to a second degree polynomial with the general form,
ym = a0 + a1x + a2x2 (1.109)

Thus, the sum of the squared differences yields the residual theorem,
Theorem 1.6.1 (Least square polynomial regression). The residual of the squared sum

of the empirical and theoretical fitting model is sr = (y − ym)2
sr = n∑

i=1
(
yi − (a0 + a1xi + a2x2

i + · · ·+ akxki ))2 (1.110)

By partial derivatives the rate of change of the function w.r.t. each coefficient is determinedby the next three equations. Let us assume a quadratic problem for simplicity purposes.
∂sr
∂a0 = −2 n∑

i=1 (yi − a0 − a1xi − a2x2) (1.111a)
∂sr
∂a0 = −2 n∑

i=1 xi(yi − a0 − a1xi − a2x2) (1.111b)
∂sr
∂a0 = −2 n∑

i=1 x
2
i (yi − a0 − a1xi − a2x2) (1.111c)

Equating to zero each function and algebraically factorizing them, a set of linear equations interms of their coefficients ai are stated for subsequent solution,
(n)a0 +(∑

i
xi

)
a1 +(∑

i
x2
i

)
a2 =∑

i
yi (1.112a)
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i
xi

)
a0 +(∑

i
x2
i

)
a1 +(∑

i
x3
i

)
a2 =∑

i
xiyi (1.112b)

(∑
i
x2
i

)
a0 +(∑

i
x3
i

)
a1 +(∑

i
x4
i

)
a2 =∑

i
x2
i yi (1.112c)

Algebraically ordering in the matrix form as a linear system v = A · a; see please section 1.2,
∑

i yi∑
i xiyi∑
i x2

i yi

 =


n
∑

i xi
∑

i x2
i∑

i xi
∑

i x2
i
∑

i x3
i∑

i x2
i
∑

i x3
i
∑

i x4
i

 ·

a0
a1
a2

 (1.113)
by solving the system of equations by the algebraic inverse matrix obtaining its determinant,

a = A−1 · v (1.114)
for the actual quadratic problem, the coefficients are a0, a1, and a2. In addition, with standard-ised error sy/x , and coefficient of determination r2 = (st − sr)/st ,

sy/x = √ sr
n − (k + 1)

1.7 Numerical differentiation and integration

1.7.1 Numerical derivation

The derivative of a function is the means of differentiation that represents the rate of changeof the dependent variable (function) w.r.t. an independent variable. Its mathematical definitionstarts by an approximation by differences,
∆y∆x = f (xi + ∆x)− f (xi)∆x (1.115)

where y or f (x) are alternative representations of the dependent variable; while x is the in-dependent variable. By approximating ∆x to zero, the quotient of the differences becomes aderivation.
dy
dx = lim∆xÏ0 f (xi + ∆x)− f (xi)∆x (1.116)
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f (xi+1) = f (xi) + f (1)(xi)h + f (2)(xi)2 h2 + · · · (1.117)

from where, drop-off the first order derivative function,
f (1)(xi) = f (xi+1)− f (xi)

h − f (2)(xi)2 h +O(h2) (1.118)
as we are interested in the first derivative term, we truncate the second derivative term,

f (1)(xi) = f (xi+1)− f (xi)
h +O(h) (1.119)

However, we now keep the second derivative term substituting its next approximation,
f (2)(xi) = f (xi+2)− 2f (xi+1) + f (xi)

h2 +O(h) (1.120)
thus,

f (1)(xi) = f (xi+1)− f (xi)
h − f (xi+2)− 2f (xi+1) + f (xi)2h2 +O(h) (1.121)

by algebraically ordering,
f (1)(xi) = −f (xi+2) + 4f (xi+1)− 3f (xi)2h +O(h2) (1.122)

1.7.2 High precision numerical derivation

Furthermore, the forward finite divided differences is presented in two version for each deriva-tive. The last version uses more terms of the expansion of Taylor series, and as a consequenceis becomes more exact.The first derivative
f (1)(xi) = f (xi+1)− f (xi)

h (1.123)
and

f (1)(xi) = −f (xi+2) + 4f (xi+1)− 3f (xi)2h (1.124)
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f (2)(xi) = f (xi+2)− 2f (xi+1) + f (xi)

h2 (1.125)
and

f (2)(xi) = −f (xi+3) + 4f (xi+2)− 5f (xi+2) + 2f (xi)
h2 (1.126)

Third derivative
f (3)(xi) = f (xi+3)− 3f (xi+2) + 3f (xi+1) + f (xi)

h3 (1.127)
and

f (2)(xi) = −3f (xi+4) + 14f (xi+3)− 24f (xi+2) + 18f (xi+1)− 5f (xi)2h3 (1.128)
Fourth derivative

f (4)(xi) = f (xi+4)− 4f (xi+3) + 6f (xi+2)− 4f (xi+1) + 5f (xi)
h4 (1.129)

and
f (4)(xi) = −2f (xi+5) + 11f (xi+4)− 24f (xi+3) + 26f (xi+2)− 14f (xi+1) + 3f (xi)

h4 (1.130)
In addition, the backward divided differences is presented in two versions for each orderderivative. The second one poses more terms than the Series of Taylor, hence consequently ismore exact. Thus, the first derivative

f (1)(xi) = f (xi)− f (xi−1)
h (1.131)

and
f (1)(xi) = 3f (xi)− 4f (xi−1) + f (xi−2)2h (1.132)

Second derivative,
f (2)(xi) = f (xi−2)− 2f (xi−1) + f (xi)

h2 (1.133)
and

f (2)(xi) = −f (xi−3) + 4f (xi−2)− 5f (xi−1) + 2f (xi)
h2 (1.134)
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f (3)(xi) = −f (xi−3) + 3f (xi−2)− 3f (xi−1) + f (xi)

h3 (1.135)
and

f (2)(xi) = 3f (xi−4)− 14f (xi−3) + 24f (xi−2)− 18f (xi−1) + 5f (xi)2h3 (1.136)
Fourth derivative

f (4)(xi) = f (xi−4)− 4f (xi−3) + 6f (xi−2)− 4f (xi−1) + f (xi)
h4 (1.137)

and
f (4)(xi) = −2f (xi−5) + 11f (xi−4)− 24f (xi−3) + 26f (xi−2)− 14f (xi−1) + 3f (xi)

h4 (1.138)
The central divided differences are also presented in two versions for each derivative. Thesecond derivative formula uses more terms than the series of Taylor, hence it is more exact.The first derivative

f (1)(xi) = f (xi+1)− f (xi−1)2h (1.139)
and

f (1)(xi) = −f (xi+2) + 8f (xi+1)− 8f (xi−1) + f (xi−2)12h (1.140)
The second derivative

f (2)(xi) = f (xi+1)− f (xi) + f (xi−1)
h2 (1.141)

and
f (2)(xi) = −f (xi+2) + 16f (xi+1)− 30f (xi) + 16f (xi−1)− f (xi−2)12h2 (1.142)

The third derivative
f (3)(xi) = f (xi+2)− 2f (xi+1) + 2f (xi−1)− f (xi−2)2h3 (1.143)

and
f (3)(xi) = −f (xi+3) + 8f (xi+2)− 13f (xi+1) + 13f (xi−1)− 8f (xi−2) + f (xi−3)8h3 (1.144)
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f (4)(xi) = f (xi+2)− 4f (xi+1) + 6f (xi)− 4f (xi−1) + f (xi−2)

h4 (1.145)
and

f (4)(xi) = −f (xi+3) + 12f (xi+2)− 39f (xi+1) + 56f (xi)− 39f (xi−1) + 12f (xi−2) + f (xi−3)6h4 (1.146)

1.7.3 Numerical integration

The Newton-Cotes formulae are common types of numeric integration methods. They replacea complex function or a table of data by an approximated polynomial that is easier to integrate.
I = ∫ b

a
f (x)dx ∼= ∫ b

a
fn(x)dx (1.147)

where fn(x) is polynomial of the form,
fn(x) = a0 + a1x + · · ·+ an−1an−1 + anxn (1.148)

Before the trapezoidal rule is applied, the previous polynomial may be expressed as
f1(x) = f (b)− f (a)

b − a x + f (a)− af (b)− af (a)
b − a (1.149)

algebraically grouping the last terms,
f1(x) = f (b)− f (a)

b − a x + bf (a)− af (a)− af (b) + af (a)
b − a (1.150)

and simplifying,
f1(x) = f (b)− f (a)

b − a x + bf (a)− af (b)
b − a (1.151)

which can be integrated between the limits x = a and x = b to obtain,
I = f (b)− f (a)2(b − a) x2 + bf (a)− af (b)

b − a x|ba (1.152)
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I = f (b)− f (a)2(b − a) (b2 − a2) + bf (a)− af (b)

b − a (b − a) (1.153)
In addition, since

b2 − a2 = (b − a)(b + a),
thus,

I = [f (b)− f (a)]b + a2 + bf (a)− af (b) (1.154)
By multiplying and algebraically grouping, the Trapezoidal rule is obtained,

I = (b − a) f (a) + f (b)2 (1.155)
In order to improve the trapezoidal rule’s precision, the interval a to b is divided in n+ 1 seg-ments. The integration method is applied to each equally spaced n+1 segments. Consequently,

h = b − a
n (1.156)

If a and b are designated as x0 and xn , respectively, the complete integration is represented by
I = ∫ x1

x0 f (x)dx + ∫ x2
x1 f (x)dx + · · ·+ ∫ xn

xn−1 (1.157)
Therefore, by substituting the trapezoidal rule in each integral,

I = hf (x0) + f (x1)2 + hf (x1) + f (x2)2 + · · ·+ hf (xn−1) + f (xn)2 (1.158)
by algebraically factorizing,

I = h2
[
f (x0) + 2 n−1∑

i=1 f (xi) + f (xn)] (1.159)
or if substituting h, then

I = (b − a) f (x0) + 2∑n−1
i=1 (f (xi) + f (xn))2n (1.160)
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SENSING MODELS IN ROBOTICS

Edgar A. Martínez García

Laboratorio de Robótica, Institute of Engineering and Technology
Universidad Autónoma de Ciudad Juárez, Mexico.

The mathematical formulations to describe how sensors commonly used in mobile roboticsobtain data is a matter of discussion provided in this chapter. Sensor measurements that arerelative to the robot’s fixed inertial frame are transformed into global or Cartesian spaces toallow robots to map, navigate, and autonomously perceive attributes of the world. Any type ofsensor data is useful to feedback the robot about the changes of the world, and to take smartdecisions autonomously. Furthermore, a sensor1 is a device that detects attributes of the envi-ronment provided in forms that usually are readable or understandable by the human users,such as odometers, a colour camera, gyroscope, etc. There exist sensors8 that provide propri-oceptive data, which arise from robot’s inner stimulus. Likewise, exteroceptive data providesrobot’s attributes, which are stimuli measured w.r.t. to external objects surrounding the robot.A sensor model3,9 is a mathematical description on how a sensor obtains data from the phys-ical measurements of the environment. Sensing models could be either, to describe passivesensors, which detect energy naturally from the environmental conditions (i.e. vision cameras,gyroscopes, accelerometers, stereo pairs)2; or active sensors, which pose a traducer to detectthe reflection of energy that was previously emitted by the sensor’s transmitter (i.e. ultrasonicsonars, light detection and ranging, light strips). A transducer is a device that detects a typeof energy and transforms it into another type, commonly electric energy. Some examples of



72 CHAPTER 2. SENSING MODELS IN ROBOTICStransducers are thermocouples, pulse encoders, optical arrays, quartz crystals, and so forth.One of the main interest of this chapter is to obtain sensing models to infer the instantaneousrobot’s posture (xt , yt , θt)>, from different sensing means. The robot posture is a fundamentalinformation to register massive data into different spaces, building environmental maps, andtrajectory control algorithms.

2.1 Odometer sensing model

An odometer sensing model allows to infer the robot’s posture by means of quantization of theinstantaneous displacements. An odometric model infers displacement, velocity, and accelera-tion of a wheeled mobile robot from direct sensing of encoder pulses. An encoder device ortransducer poses a rotatory mechanisms fixed to the wheels shaft to count rotational motion.For instance, analysing the robot’s posture with a dual asynchronous speeds robot, also knownas differential speed control, in which the independent variables are the right and left wheelsvelocities vr , and vl . Figure 2.1 shows the odometer displacement ∆S, which is an averageof the right and left wheels displacement ∆Sr and ∆Sl respectively. The odometers kinematicconsiders the distance between the wheels’ encoder b, and their radius r.

Figure 2.1: Dual wheels speed robot’s kinematics inferring odometer’s displacement.

The total robot’s displacement is an averaged value expressed by S,
s = ∆sr + ∆s`2 (2.1)



2.1. ODOMETER SENSING MODEL 73Likewise, the robot’s orientation is defined by θ as a function of the wheels displacements,
θ = ∆sr −∆s`

b (2.2)
Where each wheel’s displacement is formulated independently, and the right-sided linear dis-placement is, ∆sr = nr · fs (2.3)
while the left-sided distance, ∆s` = n` · fs (2.4)
where nr , and n` are the measured number of pulses counted by the shafts encoder. Thefactor fs represents the encoders resolution defined by the equation (2.5). Where r is thewheel’s radius, and k is the total number of pulses within a rotation.

fs = 2πr
k (2.5)

The asynchronous wheels displacement is deduced by substituting the factor of expression(2.5), in equations (2.3) and (2.4). ∆sr = 2πr
k · nr , (2.6)

and ∆s` = 2πr
k · n` . (2.7)

Thus, the instantaneous robot’s position and orientation are provided by substituting the equa-tions (2.6) and (2.7), in expressions (2.1) and (2.2), and algebraically simplifying.
s = πr

k · (nr + n` ) (2.8)
and

θ = 2πr
kb · (nr − n` ) (2.9)

Therefore, the robot’s instantaneous posture (position and orientation) is modelled by the fol-lowing recursive expressions,
xt = xt−1 + ∆sx , (2.10)
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yt = yt−1 + ∆sy , (2.11)

and
θt = θt−1 + ∆θ. (2.12)

Where ∆sx and ∆sy are the Cartesian components of distance, and they are defined in termsof the displacement s, by ∆sx = s · cos(θ) (2.13)
and ∆sy = s · sin(θ) (2.14)
Thus by substituting the expressions (2.8) and (2.9) in equations (2.13) and (2.14), the completerobot’s displacements are formulated,

∆sx = πr
k (nr + n` ) · cos(2πr

kb (nr − n` )) (2.15)
and ∆sy = πr

k (nr + n` ) · sin(2πr
kb (nr − n` )) (2.16)

Thus, the actual robot’s posture computed recursively within a common inertial system5 withorigin at robot’s initial posture, the following model is provided:

xt
yt
θt

 =

xt−1
yt−1
θt−1

+


πr
k (nr + n` ) · cos( 2πr

kb (nr − n` ))
πr
k (nr + n` ) · sin( 2πr

kb (nr − n` ))
2πr
kb · (nr − n` )

 (2.17)

Depending on the robot’s hardware configuration, we may frequently obtain sequences of sen-sor data from encoder readings: angular positions, or angular velocities φ̇0, . . . , φ̇t−1, φ̇t , . . . , φ̇t+1.For high precision estimation, at least three sensor readings to determine the real actuator’s ro-tational velocity are needed. The next function calculates the angular speed through backwardfinite divided differences. See section 1.7 for further details.
φ̇i = 3φi − 4φi−1 + φi−22∆t (2.18)



2.2. ULTRASONIC RANGE FINDING 75Similarly, online angular accelerations are possible to measure by a second order numericaldifferentiation w.r.t. angular positions based on the backward finite divided differences,
φ̈i = −φi−3 + 4φi−2 − 5φi−1 + 2φi∆t2 (2.19)

Likewise, obtaining displacement and speed from angular acceleration sensor data φ̈, the in-verse calculus is obtained throughout numerical integration. Thus, the trapezoid theorem isone of the close form integration equations of Newton-Cotes (chapter 1.7), where
φ̇t = ∫ t2

t1 φ̈tdt (2.20)
and

φt = ∫ t2
t1 φ̇tdt = ∫∫ t2

t1 φ̈tdt2 (2.21)
By obtaining angular speed from acceleration,

φ̇i = (t2 − t1) φ̈0 + 2∑n−1
i=1 (φ̈i+1 + φ̈n)2∆t (2.22)

A second integration w.r.t. time using the same model (2.22) is applied to obtain the angularposition when required.

2.2 Ultrasonic range finding

The ultrasonic sonar is an exteroceptive active type of sensor, which produce an acousticvibration. The sensor contains a receiver that detects the ultrasonic return, or echo of theobjects surrounding the robot that reflected the emitting sound pulses. A sonar is capableto detect a diversity of materials, which do not reflect electromagnetic waves, such as glass.A robot is frequently instrumented with a ring of i sonar arranged in cylindrical positions
zi = (`i, φi)> w.r.t. to the fixed robot’s inertial system (centroid), see figure 2.7-right. Thus,each sonar range finder is located atzxi

zyi

 = `i

cos(φi)sin(φi)
 (2.23)



76 CHAPTER 2. SENSING MODELS IN ROBOTICSwhere φi is the angle orientation, and `i is the length on the chassis of the sonar device ith w.r.t.to the robot’s centroid. The distance of the nearest object w.r.t. perpendicular sonic emissionis the time of a round flight, being the speed of sound c = 341m/s at 25oC.
c = 2d

t (2.24)
The total time of flight t in sg includes the emission and returning of echo. Thus, the senseddistance d(t) as a function of time is,

d = ct2 (2.25)
Let si be the Cartesian coordinates vector of a sensed object at distance di by the sonar device
i. From the robots body until the sensed object, each sonar device located at position (2.23)poses a bearing direction βi. Hence, the expression (2.26) completes the real distance from therobot.

sRi = di(t) ·
cos(φi + βi)sin(φi + βi)

+zxi
zyi

 (2.26)
Therefore, the object position w.r.t. to a global system that is different from the coordinateframe where the robot started motion is given by a homogeneous transformation,

sIi = R(γ) · sRi + ξt (2.27)
For this specific example the coordinates of the robot’s position are taken from the posturevector ξ , namely px and py as depicted in figure 2.7-centre. By substituting (2.26) in (2.27),the complete expression maps the sensed objects within a common coordinate frame rotated
γ degrees by (2.28).

sIi = cos(γ) − sin(γ)sin(γ) cos(γ)
 · di(t)

cos(φi + θ)sin(φi + θ)
+zxi

zyi

+px
py

 (2.28)
Figure 2.2 depicts some experimental data produced during an experiment deploying a ring ofultrasonic sonar. The figure shows the real scene, the sensors ultrasonic cones by a GUI, thepolar form plot, and the Cartesian plot of the objects.
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(a) (b)

(c) (d)
Figure 2.2: (a) Photo of the experimental scene; (b) GUI with sensors conic scope; (c) polar plot of ring of
sonars: di(t) vs φi + βi; (d) Cartesian plot of sensed objects.

2.3 Stereo vision sensing model

Stereo vision10,11 refers to a visual method to fuse two or more planar intensity images In×mtaken from different perspective locations to infer 3D information about the present environ-mental scene. The importance of deploying stereo vision to mobile robotics regards the metricmeasure of near obstacles. Stereo vision provides massive 3D data of the environment in thesensors angle of view. This section analyses a stereo sensor comprised of two cameras(binocular), where such visual sensors are physically aligned along a baseline distance b overa vertical epipolar plane (figure 2.3). In this figure pr and p` are the pixels in right and leftcameras respectively, representing the projection of the same object in the scene. By taking asame measuring reference (i.e. images right-side), the variables xr and x` are the number ofcolumns of the pixels pr,` with respect to the same images’ side.
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Figure 2.3: Epipolar alignment with baseline b of a binocular system.

The multi view camera system is assumed to have same focal distance f for each camera, andit is depicted in figure 2.4 (top view). From the stereo pair (the two images aligned) we look forcorrelating the pixels in both images that represent same objects in the scene. As a matter offact, the magnitude of the arithmetic subtraction of |xr −x` | is known as the value of disparity
d, and is given by equation (2.29).

d = |x` − xr | (2.29)
The disparity value is proportional to the distance of the object from the stereo pair centre.The disparity map is a grey-level intensity valued matrix with all pixels disparity values thatwere calculated from correlated pixels.

Figure 2.4: Stereo pair top view.



2.3. STEREO VISION SENSING MODEL 79Hence, the further the object, the smaller the numeric value of d; and when the object locatesvery near from the sensor, the disparity value d approaches the rank(I) that is the image wide.
lim
z→∞
|xr − x` | = 0; lim

d→rank(I) z = 0;
The disparity values are critical because 3D information is calculated in terms of disparities.From figure 2.4, by trigonometric relationships PO`Or , and the triangle PP`Pr , the object’sdepth z is involved by the following expression,

b
z = (b + xr)− x`

z − f (2.30)
crossing terms,

b(z − f ) = z[(b + xr)− x` ] (2.31)
algebraically expanding in equation both sides,

zb − bf = z(b + xr)− zx` (2.32)
and

zb − bf = zb + zxr − zx` (2.33)
subsequently reducing terms,

zx` − zxr = bf (2.34)
the formal expression to calculate the object depth z is

z = bf
x` − xr

(2.35)

The aligned cameras are separated by a baseline b, and the focal distance (separationbetween focal plane and the light convergence point). Thus, whith such parameters, the object’s3D postured is geometrically triangulated as decribed by equations (2.36), (2.37), and (2.38).Thus, the depth z(d) is calculated in terms of the object disparity d,
z(d) = bf

d (2.36)



80 CHAPTER 2. SENSING MODELS IN ROBOTICSthen, the x component is calculated in terms of d and x` ,
x(d, x` ) = z(d)x`

f (2.37)
and, the component y is obtained by

y(d, y` ) = z(d)y`
f (2.38)

It follows from previous expressions:
• 2√x2 + y2 + z2 is inversely proportional to d, and the coordinates (x, y, z)> are measuredmore accurately for nearer objects than for the farther ones. Making this approachtractable to be used for obstacle avoidance in navigation.
• As b increases, occlusions might occur and such objects would neither have correlationnor disparity values.
• A real 3D point yields a pair of points in focal planes, known as conjugated. For a memberof the conjugate pair, the other one exists somewhere along the horizontal epipolar line.

Figure 2.5 depicts an RGB image, and its associated disparity map experimentally taken withinthe Robotics laboratory.

Figure 2.5: RGB image and its disparity map.

Furthermore, figure 2.6 depicts three different 3D views, or clouds of points generated frominput image 2.5.
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Figure 2.6: Cloud of 3D points of the Robotics Lab.

2.4 Light detection and ranging model

Unlike ultrasonic range finders, the use of light detection and ranging radar (LIDAR), whichis a common electro-optic sensor used in robotics. It is used to sense objects by emission ofelectromagnetic radiation. LIDARs provide more accuracy in measuring distance and muchhigher resolution than the ultrasonic sonar. LIDARS4 also use measuring techniques of time offlight of a beam, which reaches (in vacuum) around v = 299, 792, 458m/s. Besides, phase-shiftmeasurement techniques are also used, where phase of reflected beam is compared with thephase of original signal emitted.
d = ∆φλ4π = ∆φv4πf (2.39)

where λ is the wave length of the modulated signal. f is the electromagnetic beam frequency.Thus, for sonars and LIDAR the sensing models and data registration formulation are basicallythe same. Figure 2.7-centre depicts a diagram of the measuring model . For the x component,
lx = dj · cos(θ + φj ) (2.40)

and y component,
ly = dj · sin(θ + φj ) (2.41)

where di is the measured distance between an object and the LIDAR ad bearing φj . Likewise,the angle θ is the actual robot’s orientation. And, (px , py)> is the actual robot position within acommon coordinate system. Thus, the measurement w.r.t. the robot’s local frame,
sRj = dj ·

cos(θ + φj )sin(θ + φj )
 (2.42)



82 CHAPTER 2. SENSING MODELS IN ROBOTICSNevertheless, for the global mapping (sIj )>, we have the following expression:
sIj = R(γ) · sj + ξt (2.43)

where R(γ) is the Euler rotation matrix of equation (2.44), and ξ is the posture vector in theglobal plane.

(a) (b) (c)
Figure 2.7: (a) Inertial frames; (b) range measuring w.r.t. the robot’s frame; (c) ring of measuring devices
w.r.t. the robot’s centroid.

Thus, the Euler matrix rotation is defined by
Rz(γ) =


cos γ − sinγ 0sinγ cos γ 00 0 1

 (2.44)
The angle γ represents the difference between the local and global frames. It is assumeda height h that represent the vertical position where the sensor is located ξ = (x, y, θ)>.By substituting expressions (2.42), (2.44) in (2.43), the final vector expression describes thecoordinates5 of sensed obstacles as formally described by the following expression

sIj =


cos γ − sinγ 0sinγ cos γ 00 0 1

dj ·


cos(θ + φj )sin(θ + φj )

h/dj


 +


px
py0
 (2.45)

where the positions of the sensed data points are mapped onto a global inertial system sI ,which origin is as located as far as (px , py)> from the robot, and rotated by a constant angle γ



2.5. ROBOT’S ORIENTATION MODEL IN EIGENSPACE 83with respect to the robot’s actual orientation. Figure 2.8-(a) depicts a photo of a wheeled mobilerobot (PeopleBot) sensing an environment with two short carton-made walls in the RoboticsLaboratory. (b) shows the control GUI. (c) is a polar plot of LIDAR’s measurements. And (d)shows an environment local Cartesian map.

(a) (b)

(c) (d)
Figure 2.8: (a) Real experiment in laboratory; (b) the GUI software for robot control; (c) polar form of the
LIDAR measurements; (d) local Cartesian map of the environment.

2.5 Robot’s orientation model in eigenspace

In scan matching techniques, scans of point sref and sk are aligned as to maximize the overlap,so that rotation and translation can be estimated. The angle φk is useful to incrementallyestimate the robot’s heading and to know how much it deviates from the previous robot’sangle φk−1. A range point in polar form is defined by si,··· ,N = (ρ, θ), with distance ρ and angle
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θ. The reference and current scans are Sref ,Sk or Xref ,Xk. In polar or coordinate form Xis the set of sample points. A vector point in Cartesian space x = (x, y), where the samplepoints x1, · · · ,xN , for Rd of d-dimensional space. As showed in figure 2.9 which depicts fourconsecutive scans distributions (separated components). The points hold similar distributiontrends (specially for the x ∈ xi,··· ,N component) along the axis despite their roto-translationalincrements yielded by the robot’s motion. The covariance matrix Ck for the kth range scan

Figure 2.9: The x and y components of 4 consecutive range scan distributions.

is a measure of the degree of statistical dependence between x, y ∈ xi. Thus, such statisticalinformation stored in C geometrically represents the variability of the environment in termsof the sensor data X ∈ Rd , resulting that with principal component analysis (PCA) it is possibleto compute the environment directions respect to the robot’s perspective φk projected into arelative eigenspace. In particular, PCA provides linearity and dimensionality reduction, whichmeans that it spans a linear subspace within a minimum number of dimensions. The set ofeigenvectors W computed from the matrix C characterizes the range data scatter by theirlocal orthonormal orientations, while their magnitudes (eigenvalues) say which direction isstronger. All the column-vectors of W are orthonormal, no matter how large the Rd spaceis. This is important because it means that the sensor information Sk can be expressed interms of these orthogonal eigenvectors {w1, · · · ,wd}, instead of expressing them in terms of
N Cartesian points x ∈ X. The principal components W of the sensor data C (observationmatrix) create an orthogonal basis set {w1, · · · ,wd}, which are the eigen-components (eigen-scans) of the Cartesian space. The first principal component is selected by the eigenvector
w1 corresponding to the largest eigenvalue λ1. The second principal component w2 is the



2.5. ROBOT’S ORIENTATION MODEL IN EIGENSPACE 85eigenvector corresponding to the second largest eigenvalue λ2, and so forth. The data variability(variance) is the spread of deviated N total points in a set of data scans Si = {s1, · · · , sN}. Where
x ∈ Xk respect to x̄k , a measure of the spread of the data namely x̂ is a crucial parameter thatsays the average distance of the scan profile to the robot, and how much the points {x1, · · · ,xN}might vary respect to x̄. The sample mean vector x̄i in R2 Cartesian space is computed withthe Cartesian range scan set Xk of vector points x ∈ Xk, (k = 1, · · · , K) of (2.46) as

x̄k = 1
N
∑
x∈Xi

x (2.46)
Thus, the mean values x̄k = (x̄, ȳ) are adjusted by the expression of equation (2.47) which isalso known as the mean-deviation form. It is a subtraction of x̄ from the data, and representedby the N-elements in X̂k with components x̂i = (x̂, ŷ), compounded by {x̂1, · · · , x̂N}

X̂ = (x− x̄)x∈X (2.47)
This expression basically accounts for the variability of the objects observed from the robot’slocation. The sample covariance matrix Ck of the sensor data provides a measure of thecorrelation between the two (or more) sets of variables. Such that, C1,··· ,K . The resulting Ckfrom the deviated form X̂ in equation (2.47) is compounded by two N-elements vectors called
X̂x and X̂y that are the matrix entry elements to compute C by

C = 1
N − 1

 ∑
i X̂x

i X̂x
i
∑

i X̂x
i X̂

y
i∑

i X̂
y
i X̂x

i
∑

i X̂
y
i X̂

y
i

 (2.48)
It follows that the PCA are obtained by diagonalizing the nonsingular matrix C by (C−λI)W = 0in order to calculate the set of eigenvalues {λ1, · · · , λd} and its respective set of eigenvectors
{w1, · · · ,wd} of the kth observation matrix Ck , and are called the principal components of thedata. It has been important to analyse the PCA formulation and how it works in the contextof vector points of 2D laser range scans. A set of different synthetic environments werecreated that would let us to better understand the laser scan PCA behaviour, and to detectwhat environment conditions would affect the results. At left-up side of figure 2.10 it shows asingle point in an empty environment. A set of 100 points is plotted in local robot’s coordinates,forming a unique spatial point. Below are both components xy plotted separately, and up-right



86 CHAPTER 2. SENSING MODELS IN ROBOTICSside the resulting eigen-space for such data set. The eigenvectors did not yield any dominantdirection, as their corresponding set {λ1, λ2} had same magnitudes, and then, such values solelyexpress no dominant direction. In the same manner, w1,2 determine always same directionseven if the robot moves around such coordinate point (holding λ1 = λ2), the angles of w1,2would simply keep same angle. Similarly, in figure 2.10-right a set of Cartesian points with
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Figure 2.10: A single point in Cartesian space and eigen-space (left). A vertical line in 2D space and its
eigenspace directions (right).

no noise added depict a vertical line which is about 10 metric units from the sensor locationat (0, 0) with 360o of field of view. It would typically represent a wall in a corridor, in suchlocation the set of points of the component x ∈ xi basically does not variate at all, while theset y ∈ xi has a diagonal trend. For the x-component the mean value is equal to its expectedvalue zero. In this geometric x-component there is no variability and because of that, it is theonly information provided that the robot knows about its position respect to the environment.However, the points of the y-component are linearly separated and its mean value is calculatedin 50. As the covariance matrix also yields a geometric representation of the variance betweenvariables that geometrically can be depicted as an ellipse, the variability for the x-componentwould be the minor axis with zero value, but extending its major axis (y-component) as longas the value of its variance. As for the eigenvalues, they only indicate which direction has astronger influence in the variability of the data. In the legend of the figure 2.10-right up-lefthand, the term PC1 is the first principal component (the largest one). Thus, PC1 has the samedirection as the set of points yields the most pronounced variations (vertical component).



2.5. ROBOT’S ORIENTATION MODEL IN EIGENSPACE 87Another kind of synthetic environment is a perfect square, generated with 361 vector pointsand a bearing resolution of 0.5o , assuming a 360o of field of view. The robot’s position is atcoordinate (0, 0) which is the center of the square. For this, case there is no noise added tothe data but for this and previous cases different noise rates were also assumed. In figure
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Figure 2.11: A squared area and its eigen-space directions for a robot rotation of 115o (left). A circular area
and its eigenspace directions (right).

2.11-left the rotation of 115o is depicted by both eige-spaces and in the Cartesian space. The
xy-components practically hold the same magnitudes respect to the mean value, but onlyrotated in their radial order. Perhaps the most challenging case that could affect the reliabilityof the PCA approach is for the case of circular rooms, which are symmetric and from anyperspective the robot always would see the same geometric shape. However, the method iscapable to estimate rotation if the robot turns with no translation because there exist smallvariability in the data sets. Such a small variability is basically detected at regions were thereexist almost no linearity along the circular shape, as shown in the xy-component plots. At arange direction of 0o±5o the ranged points denote almost no variation for ∆x and incrementsare smooth, while opposite to this, in ∆y their increments have almost no linearity and theseregions are located as the peaks or valleys of the xy distribution plots. For this case the robotrotated 120o , such angle rotation has resulted reliably even for a circular area. Although, nonoisy data set are being depicted, same analysis was carried out for different rates of noisecases. In values for λ1 and λ2 there exist a very slight difference in magnitude, only for the case



88 CHAPTER 2. SENSING MODELS IN ROBOTICSwhen the robot solely rotates. However, when the robot performs any coordinate translation,the eigenvalues magnitudes start to differ form each other as the robot approaches any sideof the circular wall.
2.6 Segmentation model for 2D range scans

This section introduces a method for segmentation of 2D pairwise laser scans, which the is thepreamble for scan matching in robot localization. Matching 2D range scans has been a basiccomponent of a diversity of localization and environment mapping techniques12–15, which hasbeen proposed specially during the last years. Let us define partitions Sk into groups Di of 2Dpoints. Only few clusters belonging to Eref are associated with the clusters found in Ek. Mostknown procedures either explicitly or implicitly attempt to optimize a global criterion functionwith a known or assumed number of clusters. Probably the most obvious measure of thesimilarity (or dissimilarity) between two samples is the distance between them. Many differentmeasures of similarity (and dissimilarity as well) have been proposed16–18. Thus, we have madeuse of the similarity function17 ς(xi,xi+1) between two contiguous vector points namely xi and
xi+1 to label such points if they may naturally belong to the same groups.

ζ(xi,xi+1) =∇f

(
log

[
xTi · xi+1
‖xi − xi+1‖

]) (2.49)
The logarithmic function that affects the result of the central member in equation (2.49) onlyreduces the scale of the magnitudes but still preserves the rate of differences between largeand small magnitudes. The objects represented by groups of points sharing similar properties(angles and distances) but affected by noise are attenuated. In fact, only the gaps between theobjects become the most salient metric values respect to the values representing objects. Inaddition, a gradient function is applied in order to exaggerate such gaps between objects andattenuate near zero the points representing an object. When c is unknown we can proceedby solving the problem stating a threshold for the criterion of a new cluster. If there is alarge gap in the criterion values, it suggests a natural number of clusters. The equation (2.50)is the similarity criterion that automatically calculates a threshold value dζ . This allows thepartition function equation (2.51) to split the data set in adequate groups essentially separatedby a gap. Equation (2.50) relates the statistical mean value of the histogram of ζ(·) which always
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Figure 2.12: Histogram of ζ(·) (left), and the polar and the similarity linkage (right).

is warranted to be unimodal due to the convergent effect produced by the gradient function
∇f (·). As a matter of fact, the array values computed by ζ(·) resulted unimodal for all therange scan observations in the experiments, with mean value close to zero. Let ζ(x,x′ ) be thesimilarity function of x,x′ .

dζ = 1
N − 1 N−1∑

i=1 ζi(xi,xi+1)− ‖σζ‖2 (2.50)
Given this fact, we established the dζ value equivalent to less than half a standard deviation(σζ/2) in equation (2.50) as part of the partition criterion function. From this follows that thethreshold to cluster points is determined by equation 2.50

In this context, a raw laser scan Sk is initially considered a single cluster Dc=1 ∈ D com-pounded of N-elements, subsequently the scan is split into c > 1 different classes (clusters). Ascan be seen in figure 2.12-right, only the most salient values represent the gaps as depictedby the similarity function plot. The similarity function curve can be compared with its polarform plot, where each object is divided by pairs of sudden large magnitude impulses (negative-positive signs) which highlights the gaps. The criterion for partitioning Xk into c groups called
Dj (j = 1, · · · , c) with nj as number of points which are labelled by l for each jth group. Thegroups of points D1 · · · , Dc are within ck clusters of the kth scan. Thus, it is given by the
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Dj (i) =

l, ζ(xi,xi+1) ≤ dζ
l + 1, otherwise.

(2.51)
After applying the partition criterion to successive range scans, the resulting number of clustersin each scan are depicted in figure 2.13. There is a reduction of the number of clusters based
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Figure 2.13: Labelled groups of points in three consecutive range scans.

on a simple statistical summary. Groups containing a covariance value less than 1. Usuallysuch a value numerically represents noisy measurement with too few points (less than 5) orisolated small objects within areas smaller than 0.04m2, as depicted in figure 2.14.
2.7 Separability model for 2D range clusters

Linear discriminant analysis (LDA) yields separability and eigen-projection respect to the orig-inal data by using their eigenvector directions, and consequently clusters correspondence isimproved. The main idea behind using linear discriminant analysis is to find the clusters thathave correspondence with their representative ones allocated in a reference scan. With LDAwe can project the set of thin c clusters allocated in Dk by maximizing separability from otherclusters through the SB matrix and minimizes the distances of all points in a same group byits SW matrix. In figure 2.15-(a) two groups of points labelled in the reference scan namely
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Figure 2.14: Cleaned set of clusters in 2 scans.

Di(ref ) and Dj (ref ) are originally projected in X-space. Similarly, both clusters representingsame objects were labelled again in the next scan of points, but now called Di(k) and dj (k), alsoprojected onto the same X-space but rotated and translated as the robot moved and sensed theenvironment from different location. Such rigid roto-translation projection makes difficult forthe algorithm to correctly associate the correspondent group. Nevertheless, in figure 2.15-(b)same objects are now projected into Y using their eigen-directions, although still misalignedbut maximal separability is warranted between clusters, and contrary to it their within-clusterseparation is minimized. It makes easier to find correspondences only in some clusters insteadof the whole set of vector points. In other words, spurious correspondences are reduced innumber and this mechanism assures finding more correspondences, which are essential to ul-timately find the best robot’s translation that correctly aligns both scans. The figure 2.15-rightdepicts clusters which belong to objects segmented in three consecutive range scans. Thus, inthe correspondence problem of figure 2.15-right the cluster A is approximately close to clus-ters A′ and A′′, and their size (number and density of points) are more or less same as cluster
A. The problem is to determine which association to A is the correct one. Although PCAfinds components that are useful for representing data, there is no reason to assume that thesecomponents must be useful for discriminating between data in different classes. However, aclose mechanism to PCA could be used. Let W be the set of eigenvectors of C.Thus, geometrically, if |W| = 1, each y1 is the projection of the corresponding xi onto a linein the direction of W by the general equation (2.52). If we form a linear combination of the
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Figure 2.15: Orthogonal projection of Xk into Xref 7Ï Y (left). Spurious association among clusters (right).

components of xi , we obtain a corresponding set of N samples {y1, · · · ,yN} divided into thesubsets Y1, · · · , Yc , given a set of N d-dimensional samples {x1, · · · ,xn} and ni in the subsetsD1, · · · ,DC . Hence, let Y be the transformation space of vectors, with points y1, · · · ,yn. If thesamples labelled l1 fall more or less into one cluster while those labeled l2 fall in another, wewant the projections falling onto the eigen-direction to be well separated.
Yk = WTXk (2.52)

Thus we now turn to the matter of finding the best such direction W, one that should enableaccurate clusters association. A measure of the separation between the projected points is thedifference of the sample means mi of equation (2.53).
Scatter criteria

Before going farther with this explanation let us firstly define some variables that formulatesthe scatter criteria. The scatter matrix does not depend on how the set of samples is partitionedinto clusters; it depends only on the total set of samples Xk. The within-cluster and between-



2.7. SEPARABILITY MODEL FOR 2D RANGE CLUSTERS 93cluster scatter matrices taken separately do depend on the partitioning. The between-clustergoes up as the within-cluster scatter goes down. Thus, the mean vector for the ith cluster
mi = 1

ni

∑
x∈Di x (2.53)

The total mean vector of all groups, is seen as the general mean value of Xk , and is given by
m = 1

n
∑
Di x = 1

n

c∑
i=1 nimi (2.54)

The scatter matrix for the ith cluster
Si = ∑

x∈Di(x−mi)(x−mi)T (2.55)
The within-cluster scatter matrix

SW = c∑
i=1 Si (2.56)

The between-cluster scatter matrix
SB = c∑

i=1 ni(mi −m)(mi −m)T (2.57)
The total scatter matrix is given by the expression

ST = ∑
x∈Di(x−m)(x−m)T (2.58)

Thus, it follows that the total scatter matrix is the sum of the within-cluster scatter matrix andthe between-cluster scatter matrix ST = SW + SB.

Scatter separability

Perhaps the simplest scalar measure of a scatter matrix is its trace. The trace measures thesquare of the scattering radius, because it is proportional to the sum of the variances in thecoordinate directions. Thus, an obvious criterion function to minimize is the trace of SW . In



94 CHAPTER 2. SENSING MODELS IN ROBOTICSfact, this criterion is nothing more or less than the sum-of-squared-error criterion.
tr[SW ] = c∑

i=1 tr[Si] = c∑
i=1
∑
x∈Di

‖x−mi‖2 = Je (2.59)
Because tr[ST ] = tr[SW ] + tr[SB] and tr[ST ] is independent of how the samples are partitioned,and it is important to know that in seeking to minimize the within-cluster criterion Je = tr[SW ]we are also maximizing the between-cluster criterion

tr[SB] = c∑
i=1 ni‖mi −m‖2 (2.60)

The eigenvalues λ1, · · · , λd of S−1
W SB are invariant under nonsingular linear transformation ofthe data. Indeed, these eigenvalues are the basic linear invariants of the scatter matrices. Theirnumerical values measure the ratio of between-cluster to within-cluster scatter in the directionof the eigenvectors, and partitions that yield large values are usually desirable.

Ortho-projection in Y-space

In order to project the set of vector points onto the Y-space by a slightly adapted version ofthe general equation (2.52), then we define the sample mean for the yi projected points by
m̃i = 1

ni

∑
y∈Yi y = 1

ni

∑
x∈Di

wTx = wTmi (2.61)
It is a simple transformation of mi , and it follows that the distance between the projected meansof two clusters ( figure 2.16) is

|m̃1 − m̃2| = |wT (mi −m2)| (2.62)
To obtain good separation of the projected data the difference between the mean valuesmust be large relative to some measure of the standard deviations for each class. Rather thanforming sample variances, we define the projected scatter matrix s̃2

i for the projected sampleslabelled li by
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s̃2
i = ∑

y∈Yi(y − m̃i)2 (2.63)
Thus, (s̃21 + s̃22) is called the total within-class scatter of the projected samples. The Fisherlinear discriminant employs that linear function wTx for which the criterion function J(·).

J(w) = |m̃ − m̃1|2
s̃21 + s̃22 (2.64)

While the w maximizing J(·) leads to the best separation between the two projected sets, athreshold criterion would give a good separation between groups. Before we have a classifier.To obtain J(·) as an explicit function of w, we defined the scatter matrices Si and Si. Then wecan write
s̃2
i = wTSiw (2.65)

therefore the sum of these scatters is written
s̃21 + s̃22 = wTSWw (2.66)

Similarly, the separations of the projected means obeys
(m̃1 − m̃2)2 = wTSBw (2.67)

In particular, for any w, SBw is in the direction of m1 −m2. The columns of the optimal Ware generalized eigenvectors that correspond to the largest eigenvalues in
SBwi = λiSWwi (2.68)

The equation (2.69) is the Fisher’s discriminant rule on a projection of the the set of observa-tions X onto a Y-space such that a good separation between clusters is achieved. The algorithmstudied in18 to solve the problem of mapping a two-class problem was adapted to solve for ekclusters contained in the kth scan. Discrimination in the present scan matching algorithm isbeing used to discriminate false correspondences with the groups labelled in the referencecluster-scan with eref groups. Firstly, let us project X with respect to the eigen-directions of



96 CHAPTER 2. SENSING MODELS IN ROBOTICS

Figure 2.16: SW minimization and SB maximization.

SW, which is equivalent to whiten the data (normalization) by
Y = Λ−1/2ΦX (2.69)

Where Λ and Φ are the eigenvalue and the eigenvector matrices of SW. Although, the vectorsspanned by Φ are orthonormal, it is merely a scale and they provide the directions, while Λgives the scale for such a projection. And in the Y-space compute the between-clusters Sb by
Sb = C∑

i=1
1
N

ni∑
j=1 ωi(yij −mi)(yij −mi)T (2.70)

The weighting function ωi of the ith cluster has the property that vector points near the clas-sification boundary such as v1, v2, v3 showed in figure 2.16, it takes on values close to 0.5 anddrops off to zero as we move away from the classification boundary.
ωi = min{δ(yk, yijNN ), · · · , δ(yk, yijNN )}

δ(yk, yijNN ) + · · ·+ δ(yk, yijNN ) (2.71)
The jNN distance function δ(·) is a procedure for voting the j-nearest neighbour and jNN isdefined as

yjNN = 1
ni

∑
y∈Yi y



2.7. SEPARABILITY MODEL FOR 2D RANGE CLUSTERS 97According to this definition, a sample vector is assigned to the cluster represented by a majorityof its j-nearest neighbours in the set (see figure 2.16). In the voting jNN criterion it implicitlyassumes the j nearest neighbours of a data point yi to be contained in a region of relativelysmall volume, so that sufficiently good resolution in the estimates of the different conditionaldensities can be obtained. Furthermore, the criterion used to compute the distance betweenvector points is defined by the expression
δ(yi,yj ) = (yi − yj )TΣ−1

j (yi − yj ) (2.72)
It is the Mahalanobis distance δ(·) which was used in this weighting criterion because it differfrom Euclidean distance in that it takes into account the correlations of the data set (Σj ) andis scale-invariant (does not dependent on the scale of measurements). Nevertheless, anothercriterion can be used accordingly. Moreover, projecting the clusters onto a different space theprincipal components of only the m-eigenvectors of interest of SW namely ψ1, · · · , ψm are thenselected, which correspond to the m largest eigenvalues. Thus, the optimum linear labelling(mapping) called Z that involves only the most representative eigenvectors Ψm = [ψ1, · · · , ψm]

Z = ΨT
mY (2.73)

In figure 2.17, shows separated and scaled segmented clusters which are mapped in Z-space,while projected along eigen-directions (below) by the relation y = Φxi. This expression wasonly deployed to project the groupings along the eigenvectors.

Figure 2.17: Clusters projected onto Y-space.
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2.8 Eigen-space data association model

In order to establish correspondence between two closest groups namely Erefj and Ekl , there isa pair relation R{Erefj ↔ Ekl } that associates them by solely considering their minimal distance
δ(Erefj , Ekl ) between both centroids.

R(Erefj , Ekl ) = min
l
{δ(Erefj , Ek1 ), · · · , δ(Erefj , Ekei )} (2.74)

Thus, in X-space the Cartesian distance between two closest clusters is denoted by the norm oftheir central values that are vector points denoted by ‖ej −ElNN‖ (nearest neighbour centroid),and we can calculate the displacement in x by ∆xj,lNN which is the horizontal displacementobtained by the magnitude (x, y) ∈ (erefj − eklNN ), and the total displacement based on theassociated clusters R(Eref
j ,Ek

l ) is average of the displacements in ∆x1,··· ,ek and ∆y1,··· ,ek by,
∆X∆Y

 = 1
ek

ek∑
l=1
∆x(i,jNN)

l∆y(i,jNN)
l

 (2.75)
In the world coordinate system the kth robot state is defined by Rk = [x, y, φ]T , and Rk =
Rk−1 + ∆Rk is the general equation that localizes the robot in world coordinates, being ∆Rk =[∆X,∆Y, φ]T the relative displacement estimated between two consecutive observations, thenequation (26) and equation (27) are involved in the general equation for Rk which is also ex-pressed as

Rk =


xk

yk

φk

 =


xk−1 + 1
ek
∑ek

l ∆x(j,iNN)
l

yk−1 + 1
ek
∑ek

l ∆y(j,iNN)
l

φk−1 + φk

 (2.76)

The angle φk which is the relative rotation of the robot respect to its previous state, and itis calculated directly from the set of eigenvectors Wk−1 and Wk. In fact only the rotativedifference found in either of the principal components is enough because all the componentsare orthogonal in the eigen-space, so this simple relation is given by
φk = arccos( w1

k−1·w1
k

‖w1
k−1‖‖w1

k‖

) (2.77)



2.9. LIDAR-BASED LOCALIZATION 99Although, these two eigen-spaces are given in separated observations, the eigenvectors areprojected in local spaces solely expressing how much the environment is statistically rotatedrespect to the robot’s sensor field of view. Thus, φk is the angle either of first or secondprincipal components, we chose the first principal components w1
k−1 and w1

k. Thus, mapping theenvironment on to a global coordinate frame we define the new sensor data world coordinatesas sxi and syi (i = 1, · · · , N) computed for the kth observation by the expressionsxi
syi

 = xk + xi cos(θi + φk)− yi sin(θi + φk)
yk + yi sin(θi + φk) + cos(θi + φk)

 (2.78)
Where xi, yi are the components (x, y) ∈ xi of the local sensor observations with their re-spective bearing angle θi , and xk , yk are the world coordinates robot location with angle φkof equation (2.76) The scan matching method finds the directions of the environment respectto the robot by means of vectorial directions which are a compressed version of the Carte-sian sensor data and its covariance matrix. As opposite from geometric models where we arelimited to extract only the set of most descriptive feature models (e.g. points, lines, curves,etc.) Instead, the present algorithm finds natural clusters that represent objects of the environ-ment which are used to estimate the robot’s translation. Association between clusters of twosuccessive scans can be found by using LDA whereby projects the objects orthogonally alongthe natural most important directions of the environment and spurious correspondences arereduced as it assures maximal scatter separability.

2.9 LIDAR-based localization

This section describes a scan matching approach based on the ICP (iterative closest point)algorithm as a fundamental to perform SLAM (simultaneous localization and mapping). SLAMconsist of building a map of the environment, and deploy it to simultaneously to estimateits posture4. The localization process is a procedure to estimate the robot’s Cartesian position(x, y), and its instantaneous orientation θ. Map building is the process of sensor data registrationof the objects on a same Cartesian space, which exist in the environment7. A main advantageon using SLAM is that it estimates robots position from sensor readings. For instance, forLIDAR based data points, robot’s posture incrementally become uncertain as the robot navigates



100 CHAPTER 2. SENSING MODELS IN ROBOTICSfor long terms cumulating pose errors. An illustrative experimental approach is by usingthe C/C++ libraries with the driver MRICP (Map Reference ICP) of player/stage, to buildenvironmental maps and localize a robot online. These libraries used the ICP6 with LIDARdata and odometry correction 8,9. For the LIDAR based scan matching process, two consecutivesensor measurements with k observed points in cylinder form are taken, zt = (δ, φ)>, and
zt+1 = (δ, φ)>.

s(δ, φ) = δ

cos(φ)sin(φ)


The measurement st−1 is always represented onto the global plane,
sIt−1 = R(γ) · sRt−1 + t

and it is used as reference to match the last data scan measured by obtaining a correlationfactor by equation (2.79)
fc = k∑

i=1
k∑
j=1 |s(i)t−1 − (R(ψ) · s(j)t + t)|2 (2.79)

If the matrix R(ψ), and the vector t, satisfy for st = st−1, then the correlation factor is zero.Hence, all points converge. The ICP algorithm iteratively compute all measured points cor-respondence. Each iteration computes R(ψ) and t that minimises the equation (2.79). It isassumed that in the last iteration the correspondence between points is correct, as shown infigure 2.18.
In practice this localization and mapping algorithm is very sensitive to problems of inter-obstacles occlusion, and hence is prone to fail after short navigation in too cluttered environ-ments. When this occurs the scanmatching algorithm no longer compute accurately the robot’sposture. Nevertheless, this problem is solved by an algorithmic proposal. The ICP-SLAM al-gorithm is restarted in-situ just in the very last posture ξs before the fail occurred. Thus, thenew initial posture is reset by ξ0 = ξs. The subsequent new LIDAR scanlines ξs are processedwith ICP-SLAM as usually, w.r.t. the new global coordinates origin by the following expression,

ξg = K(ψs) · ξs + tg (2.80)
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Figure 2.18: Alignment of two scanlines in a common coordinates frame.

Where ξg is the robot’s posture in global the frame. The new angle ψs = ψ0 + θs is resetusing the previous inertial frame angular reference and the last robot’s orientation last correctorientation of the robot before the fail. And ξ0 is once again the new robot’s initial posture inglobal coordinate frame.
tg = ξ0 + ξr (2.81)

Meanwhile the scanmatching does not fail, the current robot’s posture ξs is preserved. Other-wise, ξs is obtained as given by the equation (2.82).
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ξs =

ξg fc < fcmin

ξs otro (2.82)
Figure 2.19 illustrates how previous correction works formulated by expressions (2.80)-(2.82).
ξr1 and ξr2 are failing points, which if not corrected, the robot’s posture accuracy diverges.

Figure 2.19: Robot’s posture with reset in-situ to fix divergences (left). Robot’s localization and mapping

mixing ultrasonic sonar and LIDAR data (right).

By using data from LIDAR and a ring of ultrasonic sonar, multi-sensor registration of theRobotics Lab was carried out. The experiments built environmental maps by deploying the ICP-SLAM algorithm, as shown in figure 2.20. It was found out that the map built with ICP-SLAMwas quite accurate, being very near to the real environment metrics. Finally, an illustration ofsensor data registration is depicted in figure 2.19-right that shows a map of the Robotics Labmixing ultrasonic sonar and LIDAR data.
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A) B)

C) D)
Figure 2.20: Online robot’s localization and mapping. A) probabilistic grid-based map. B) robot’s trajectories
with odometry and ICP-SLAM. C) odometry only mapping. D) mapping with ICP-SLAM.
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Multisensor registration

Joaquín Rivero and Edgar A. Martínez-García
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Universidad Autónoma de Ciudad Juárez, Mexico.

This chapter presents a model to register heterogeneous 3D data obtained from three typesof sensors: a ring of eight ultrasonic sonar; a high density data LiDAR (light detection and rang-ing); and from three visual sensors radially placed. One of the contributions is the fusion modelto provide a radial multi-stereo geometric system to yield 3D data. All deployed sensors are ge-ometrically placed on-board a wheeled mobile robot platform, and data registration is carriedout navigating indoors. The sensor devices in discussion are coordinated and synchronizedby a homeŋ-made distributed sensor suite system. Mathematical deterministic formulation fordata registration is used to obtain experimental and numerical results on global. Data regis-tration relies on a geometric model to compute depth information from a divergent trinocularstereo sensor w.r.t. a common origin point. Sensor fusion is an engineering research fieldof study about the process to combine measurements from different sensors, or single sensorwith spatio-temporal frames to provide a robust and a complete description about environmen-tal objects. Sensor fusion is used to yield sensor redundancy in order to reduce uncertainty ofmeasurements, to improve the perception of the world in order to take smart decisions. Dataregistration is a field that search for models to accurately store data obtained from sensors atdifferent spatio-temporal sensor measurements. In the present context, 3D heterogeneous datarefers to depth information from different types of sensors1 with different sensing modalities.
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3.1 Sensors suite

A sensors suite (SS) is a device comprised of multiple interconnected sensors that are controlled,coordinated, and synchronized to accomplish detection of relevant environmental perceptsthrough information synthesis2–4. Since it manages sensors with different kinds of transducers,the types of energies are also diverse. Therefore, a SS provides distinct sensing modalities,and it is purposed to obtain reliable information through physical and logical redundancy. Inthe present research we are deploying a home-made apparatus with a distributed computersystem for data registration (see figure 3.14 left and center). The sensor devices instrumentingthe SS are concretely summarised in table 1 classified by their data types. Each sensor devicewas labelled for identification with their symbolic variables that represent the types of data.
Table 3.1: Sensor suite devices and their types of data.

Sensor ID Modality Type variableStereo Vision S1 Vision/range Pasive P = (x, y, z)T ,
Inxmx3Spherical Vision S2 Vision/multiple Pasive Inxmx3, Jnxmx3,
Knxmx3IMU S3 Linear acceler-ation & angularvelocity

Pasive ẍ, ÿ, ω
GPS S4 Position Pasive x, y, zLIDAR S5 Range Active δj , φjEncoder S6 Position Pasive v, sCompass S7 Angle Pasive θUltrasonic Sonar S8 Range Active δBinocular Multi-function S9 Vision/Range Pasive P = (x, y, z)T ,

Inxmx3, Jnxmx3
The sensor S1 represents a binocular stereo sensor with maximal resolution of 1600 x1200pixels, at 15fps (frames per second), with a baseline configuration of 63mm. The sensordevice S2 represents a ring of visual sensor, which are geometrically arranged as a cylindricalarray set up as a multi-stereo system. It is compounded of three colour cameras connectedthrough an IEEE-1394 port centralised to the SS computer host5,6. Device S3 is a 2-DOFgyroscope, with a 2-axis accelerometer integrated. The S4 is a GPS receiver with USB interface,



3.2. ACTIVE SENSING MODELS 109with an accuracy of 5m 2D RMS, when WAAS is enabled. It uses a GPS protocol NMEA 0183and SiRF binary as secondary protocol. The S5 is a LiDAR sensor device with a scanning areaof 240◦, angular resolution of 0.36◦, and an accuracy range from 60 - 4,095mm. Multiple S6can be present in the SS, which are quadrature encoders with 90 pulses per revolution. SensorS7 is a magnetic compass with accuracy of 0.5◦ and works with an I2C interface. The S8 areultrasonic sonar sensors ranging 100 - 5,000 mm. S9 are two visual sensor calibrated as astereo pair, but configured with an embedded vision processor. Both are set up to either workindividually, or in combination as a binocular stereo sensor. Both visual sensors process colourimages with resolution of 352x288 pixels. This chapter focuses on providing a mathematicalformulation for data registration by deploying several sensors: three S2, one S5 and eightS8. Although, S2 are in principle 2D images, a radial multi-stereo model is formulated in thepresent context. Thus, 3D information inferred from S2 is then homogenised with S5 and S8.
3.2 Active sensing models

3.2.1 Sonar model

A sonar sensor is an electro-acoustic device that measures range of the nearest orthogonalpoint by using a time of-flight ranging technique. Sensitivity range of traditional used ultrasonicsonar ranges from 0.10 ≤ s < 5m, is typically deployed in mobile robotics to measure obstaclesrange. In this work, a ring of eight sonar sensors radially arranged were deployed in ourrobotic platform7. Depth information w.r.t. environmental objects is measured through sound(see 2.2), fundamentally the speed of sound in general is modelled by,
s = ct2 (3.1)

where c is the sound speed; s is the distance an acoustic vibration travelled over an elapsedperiod of time t. Measurement data are treated by homogeneous transformations to representthe environment from the robot’s fixed coordinate system, according to fig 3.1-a,
sRsonarj = lj


cos (φj)sin (φj)0

+ dj (t) ·


cos (θj)sin (θj)0
 (3.2)



110 CHAPTER 3. MULTISENSOR REGISTRATIONwhere dj (t) is the measurement value, and lj is the Cartesian distance between the robot’sgeometric centre to the jth sonar. φj is the angle yielded by the robot’s X-axes and line ljwhere the sonar is located. Angle θj is the orientation of the sonar (see figure 3.1.a).
sRsonarj =


lj cos (φj) + dj (t) cos (θj)
lj sin (φj) + dj (t) sin (θj)0

 (3.3)
Furthermore, by transforming onto a global Cartesian coordinate system for ξt = (x, y, θ)>,the following postulate is stated,
Postulate 3.2.1 (Global sonar-based data representation).

pIsonarj = R (γ) · sRsonarj + ξt (3.4)

and by substituting each expression terms the equation is stated in global inertial frame by
pIsonarj =


cos γ − sinγ 0sinγ cos γ 00 0 1

 ·


lj cos (φj) + dj (t) cos (θj)
lj sin (φj) + dj (t) sin (θj)0

+


x

y

θ

 (3.5)

3.2.2 Light detection and range model

A Light detection and ranging (LIDAR) sensor is an electro-optic device deployed to measurerange of points by electromagnetic signal time-of-flight technique (see 2.4). For a LiDAR sensor,range data are collected with cylindrical order, where points are referenced by distance andknown bearing. We deployed a Hokuyo UBG-04LX-FO1, with a scanning area of 240◦, andwas configured with beam angular resolution of 0.36◦, which includes a range accuracy of60− 4, 095mm. See figure 3.1-b), where δi(t) is the ith measurement range value. In addition,
l is the Cartesian distance w.r.t. robot’s geometric centre to any LiDAR radial measurement(see figure 3.1.b).
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Figure 3.1: a) Ultrasonic sonar configuration; b) LIDAR location and orientation; c) Radial trinocular stereo
vision system.

Likewise, ∆φ is the angular resolution, and φ0 is the minimum angle in the scan8.
sRLIDAR =


δi(t) cos (∆φ (i − 1) + φ`0) + l

δi(t) sin (∆φ (i − 1) + φ`0)0

k

i=1
(3.6)

Thus, by transforming into a global inertial coordinate system, the homogeneous rigid roto-translation model is postulated by
Postulate 3.2.2 (Global LIDAR-based data representation).

p′LIDAR = R(γ) · sLIDARki=1 + ξt (3.7)

and by substituting rotation and translation terms accordingly the next expression is produced:

p′LIDAR(t) =


cos γ − sinγ 0sinγ cos γ 00 0 1
 ·


δi(t) cos (∆φ (i − 1) + φ`0) + l

δi(t) sin (∆φ (i − 1) + φ`0)0

k

i=1
+


x

y

θ

 (3.8)
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Figure 3.2: Data registration on a global map, using a ring of eight sonar, and a LiDAR.

Indoor experimental results were carried out in the Robotics Lab that consisted of tele-operated explorations within dynamic situations. A wheeled mobile robotic platform was de-ployed and its speed model was used to estimate and predict positions, in order to match thereal observations. Besides, the robot was instrumented with the sensor suite, using only aring of ultrasonic sonar, and the LiDAR sensor (240◦ of sensing angle). Along the navigationpath, data registration on-line was carried out over a global map9,10, experimental results aredepicted in figure 3.2. Thus, data registration formulation is provided eqs. (3.5)-(3.8). Thegeneral 3D data registration model consists of union of datasets into a global Cartesian spacefrom heterogeneous sensory sources: sonars S = {pSi } where pSi = (x, y, hS)T , laser L = {pLi }where pLi = (x, y, hL)T , and trinocular radial stereo CAB = {pABi } and CBC = {pBCi } where
pABi = (x, y, z)T and pBCi = (x, y, z)T respectively. Likewise, hS and hL are sonar and LiDARmetric heights, respectively. At this stage, we only considered a deterministic model to unifyeight sonar sensors, one laser range finder scan of 681 measurements, and depth informationof a trinocular stereo sensor.

M = S ∪L ∪ CAB ∪ CBC (3.9)
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3.3 Stereo vision

3.3.1 Image transformations for correction

Affine transformations preserve collinearity, relative distance, parallelism, and proportion rate.Scale (3.10), rotation (3.11), translation (3.12) and skew (3.13) of an image are considered affinetransformations11,12. sx and sy of the diagonal matrix E are scaling parameters (see 1.2). If sxand sy are same rate, then scale is uniform.

E =


sx 0 00 sy 00 0 1
 (3.10)

The next orthogonal matrix R is the rotation homogeneous transformation matrix, wherethe angle θ is the rotation angle between two inertial systems. For orthogonal matrices, itstranspose is equivalent to its inverse, and conversely.
R =


cos θ sin θ 0
− sin θ cos θ 00 0 1

 (3.11)

An image may be translated on the plane with matrix T where tx and ty is the displacementover x and y respectively.
T =


1 0 tx0 1 ty0 0 1

 (3.12)

S =


1 λx 0
λy 1 00 0 1

 (3.13)
The set of above operations (3.14) is considered an affine transformation.

Taffine = T ·R · E (3.14)
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Taffine =


1 0 tx0 1 ty0 0 1




cos θ sin θ 0
− sin θ cos θ 00 0 1




sx 0 00 sy 00 0 1
 (3.15)

and
Taffine =


sx cos θ sy sin θ tx
−sx sin θ sy cos θ ty0 0 1

 (3.16)
Figure 3.3 centre is the raw image acquired, the affine transformation is depicted in the middle,and at right-sided the perspective transformation is shown. The perspective transformation is

Figure 3.3: Raw image (left), affine transformation (centre), and perspective transformation (right).

compounded of a 4× 4 matrix, a rotation matrix, a translation vector, and a projection vector,thus its collinearity properties are preserved. Using four points from the plane of original imageand four points from the plane of resulting image, a matrix of perspective is calculated11–13.
x′ = Hp · x =


h11 h12 h13
h21 h22 h23
h31 h32 h33

 ·


x

y1
 (3.17)

Four pairs of points generates eight linear equations. Solving this linear equations system, theelements of matrix of perspective transformation are obtained.
x′ (h31x + h32y + h33) = h11x + h12y + h13
y ′ (h31x + h32y + h33) = h21x + h22y + h23
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3.3.2 Geometric stereo model

A stereo sensor is a set of two cameras aligned along the x-axis collinear, and paraller w.r.t.yz axis (see 2.3). The baseline (b) is the distance between the origin of right camera and leftcamera13,14. A point P is projected on the plane of left image Pl, and over the plane of rightimage Pr. Geometrically, the point P is located at the intersection of the ray LPl and the ray
RPr. From similar triangles the following is obtained,

z/f = x/xl

z/f = (x − b)/xr (3.18)
z/f = y/yl = y/yr

The coordinates yl and yr are assumed with identical distance from the centre. A solution forunknown x and y coordinates of point P is obtained by algebraic substitution. Thus,
z = fb/ (xl − xr) = fb/d

x = xlz/f = b + xrz/f (3.19)
y = ylz/f = yrz/f

Disparity is the difference between xl and xr coordinates from left and right images. It is usedto calculate depth along Z.
3.3.3 Calibration and rectification

Stereo calibration is a process to calculate the geometrical relationship between two cameras.After calibration, the intrinsic and extrinsic parameters are obtained. The intrinsic parametersare focal length, principal point, and distortion coefficients. The extrinsic parameters involverotation and translation within a matrix that relates the camera’s coordinates system, and theglobal coordinates system12,13.
MRect_l,r =


fx_l,r αl,r cx_l,r0 fy_l,r cy_l,r0 0 1

 (3.20)
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Figure 3.4: Depth geometric model of a binocular stereo sensor.

and Distorsion = [ k1 k2 p1 p2 k3 ]> (3.21)
The rotation matrix R, the translation vector T, the essential matrix E, and the fundamentalmatrix F are required to be obtained. R and T denote rotation and translation of both: theleft camera’s coordinates system, and the right camera’s coordinates system. The essentialmatrix E relates the location of a point, which is located between the left camera, and rightcamera w.r.t. the global coordinates. the fundamental matrix F is similar to the essential matrix
E, however the former is provided in pixel coordinates. At this process, various images of achessboard with different perspectives are obtained (figure 3.5).

Figure 3.5: Cameras calibration using a chessboard.



3.3. STEREO VISION 117The distortion vector consists of three radial distortion coefficients (k1, k2, k3), as well astwo tangential distortion coefficients (p1, p2). The radial distortion is produced by the form ofthe lens.
xcorrected = x

(1 + k1r2 + k2r4 + k3r6) (3.22)
ycorrected = y

(1 + k1r2 + k2r4 + k3r6)
In addition, tangential distortion is an effect produced by lenses manufactured with defects, andsuch defects affect the projection of light not being parallel with the plane of image.

xcorrected = x + [2p1xy + p2 (r2 + 2x2)] (3.23)
ycorrected = y + [p1 (r2 + 2y2) + 2p2xy]

After distortion parameters are obtained, the next step is the rectification process, which cor-rect each individual image by reducing the effects of radial and tangential lens distortions. Itproduces misalignment of rows in stereo pairs. The matrix Rl, Rr, Pl, Pr, and Q are obtainedfrom the rectification process. Rl and Rr are the rotation matrices for each camera. Pl and
Pr are the projection matrices of the rectified system of the left and right cameras.

Pl =


fx_l αl cx_l0 fy_l cy_l0 0 1



1 0 0 00 1 0 00 0 1 0
 (3.24)

Pr =


fx_r αr cx_r0 fy_r cy_r0 0 1



1 0 0 Tx0 1 0 00 0 1 0
 (3.25)

A pair of images after rectification process is showed at figure 3.6.
3.3.4 Disparity calculation

Stereo matching establishes coincidences between left and right rectified images in order toproduce a disparity map (see 2.3). To find the correspondence of a section between left andright images, similarity or dissimilarity measures are used13–15. An experiment for measuring a
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Figure 3.6: A rectified stereo pair.

numerical degree of correlation was developed with an image window of 5×5 pixels in size. Andit was slide along the horizontal axis, from the left-sided image until the right-sided image edge.Further, it was compared with a second window simultaneously sliding horizontally too, but inthe right-sided image (figure 3.7). With such process, the three different similarity/dissimilaritymeasures were applied.

Figure 3.7: Epipolar alignment of a stereo pair.

Similarity measurements are generally used to measure the similarity between two datasets.A high value indicates high correspondence15. In this application, compared datasets are grayscale intensities in both: left and right images. One of the applied similarity measures is thePearson correlation coefficient value, it numerically varies between -1 and +1. When X̄ and Ȳare equal, it means that the Pearson correlation coefficient resulted r = +1. This is known asa perfect positive correlation.
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r = −1. This is known as a perfect negative correlation.

r = ∑n
i=1 (xi − x̄) (yi − ȳ)[∑n

i=1 (xi − x̄)2] 12 [∑n
i=1 (yi − ȳ)2] 12 (3.26)

Figure 3.8 shows the experimental results when using the Pearson correlation coefficient.Numerous dissimilarity measurements indicate numerical differences between two datasets.For this case, a dissimilarity with a high numeric value basically indicates a low matchingbetween two image regions.

Figure 3.8: Experimental results of dissimilarity for the Pearson correlation coefficient.

Some dissimilarity measures are L1-Norm, which some well known approaches are the Man-hattan norm, or the sum of absolute differences applied to image intensities. Those, are typicaldissimilarity measures that are used to traditionally compare similarity between images. Whenthe images are obtained from the same sensor device, and under the same environmentalconditions, and if the sensor has a high signal-noise relationship, then this measurement mayproduce matching results more precisely than other methods further complex usually provide.
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L1 = n∑

i=1 |xi − yi| (3.27)
Some matching results using L1-Norm are shown in figure 3.9. The L22-Norm, or Euclidean

Figure 3.9: Experimental dissimilarity results of the L1-Norm measure.

distance or sum of squared difference of intensities is a measurement that is more sensiblethan the Pearson correlation coefficient. However, the results are poorer than the Pearsoncorrelation coefficient when the images are obtained under different lighting conditions.
L22 = n∑

i=1 (xi − yi)2 (3.28)
The matching results by using the L22-Norm is shown at figure 3.10. A disparity map is a 2Dimage which use values of gray scale to indicate disparity or difference between the featuresat left and right images. An example of a disparity map is shown in figure 3.11. The light grayareas indicate that the objects in the scene are closer than the dark gray regions.
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Figure 3.10: Experimental dissimilarity results of L22-Norm measure.

3.3.5 Depth calculation

The projection matrix basically transforms a 3D point of homogeneous coordinates into a 2Dpoint of homogeneous coordinates. In general terms, the coordinates of the image could becalculated as (x/w, y/w) through the dot product of next expression:


x

y

w

 = Pl,r


X

Y

Z1

 (3.29)

conversely, the re-projection matrix Q is the mapping representation from the disparity maponto the depth information dataset. Therefore, by knowing a 2D homogeneous point and thedisparity value that is associated to such point, then another 2D point is re-projected into the3D space.
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Figure 3.11: A stereo pair (left and centre), with its disparity values image.


X

Y

Z

W

 = Q


x

y

d1

 (3.30)

where the squared transformation matrix Q is defined by

Q =


1 0 0 −cx0 1 0 −cy0 0 1 f0 0 −1/Tx (cx − c′x) /Tx

 (3.31)

Therefore, the 3D coordinates of the global system are expressed dividing the three coordinatesvalues by the factor W (X/W,Y/W,Z/W ).
3.3.6 Stereo data map building

A laboratory experiment to build a map using stereo data was developed. The experiment con-sisted of tele-operation of a mobile platform with a stereo sensor on-board. The robot basicallywas controlled to travel a distance significant enough to build a dense map (see 2.9), about 9min length. Along such a distance 116 stereo pairs were acquired. The system specificationsare: an image sensor: CCD 1/4 in progressive scan, Sony ICX-098BQ with effective pixels659(H)× 494(V ). Image size: 640× 480, 320× 240, 160× 120. Data pPath: YUV (4 : 1 : 1, 4 : 2 : 2,4 : 4 : 4), RGB 24 bits, mono 8 bits. Cell size: 5.6µm×5.6µm. Frame rate: 30, 15, 7.5, 3.75. Focallength of lens 4.3mm.



3.4. DIVERGENT TRINOCULAR STEREO 123Furthermore, the data registration process needs a deterministic model of the robot’s pos-ture, which is defined by the posture vector ξt = (x, y, θ)> calculated recursively.
fs = 2πr

R ,

∆s = fs
(
Nr +Nl2

)
hence,

x(t) = x0 + ∆s · cos(θ0 +(2 (Nr −Nl)
b

)) (3.32)
y(t) = y0 + ∆s · sin(θ0 +(2 (Nr −Nl)

b

)) (3.33)
θ(t) = θ0 +(2 (Nr −Nl)

b

) (3.34)
Data registration consists of the union of numerous clouds of points that must be correctlyaligned at each robot’s pose overtime. The information provided by the cloud of points ishomogenised with respect to an inertial system that is consistent with the robot’s motion,throughout linear roto-translation operations.

pr = R (α, β, γ) pv (3.35)
and

pI = R (θ) pr + ξ (3.36)
A 3D map of the Robotics Lab was built online by combining sensor data arising from dif-feretn types of sensors16,17. The experimental results are depicted in figure 3.12, top view andisometric view.
3.4 Divergent trinocular stereo

The term "radial" describes an arrangement of cameras placed circularly w.r.t. a commonconvergence origin point. The proposed radial multi-stereo system consists of three camerasradially distributed where the image planes are slightly overlapped. The geometric scheme ofa radial multi-stereo system (see figure 3.13), the relationship among the common convergence
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Figure 3.12: Top view of a real environment Cartesian global map built (left). An isometric view of a real
environment global map built (right).

centre, camera B, and camera C, an isosceles triangle is formed (see 1.1). Let us call β theangle between cameras B, and C. Therefore, the angle φ is determined by summing the innertriangle’s angles, by β + φ = π and φ = π − β. Thus, φ2 = π2 − β2 . By applying the sine’s law,BC is calculated, which is the linear distance from camera B to camera C. Likewise, 1 is thedistance from O to any camera. According to figure 3.13, the next relationship is stated,
BCsin β = lsin (φ2) (3.37)

by substituting the angle in the right-side term, and by dropping-off the distance of interest,
BC = l sin βsin (π2 − β2

) (3.38)
The angle from the optical axis and the ray of projection of P at focal point of the camera Band camera C is calculated. xB is the x-coordinate of the feature at the plane of camera B. xCis the x-coordinate of the feature at the plane of camera C. And f is the focal length of thecamera.

θB = tan−1 (xBf ) ; θC = tan−1 (xCf ) (3.39)
Besides, the complementary angles models are stated by

∠B = π2 − θB + β2 ; ∠C = π2 − θC + β2 ; ∠P = θB + θC − β (3.40)
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Figure 3.13: Proposed geometric model of a divergent trinocular stereo vision system.

To estimate the range from cameras B and C w.r.t. point P, the linear distance from eachcamera in the radial system (B and C), to the point P is calculated by sine’s law by,
BCsin∠P = CPsin∠B ; and dropping-off∠CP CP = BC sin∠Bsin∠P (3.41)

Hence, the model to express depth information is given by zB = BP cos θB. Thus, by substitutingBP and θB, the model is more specified,
Proposition 3.4.1 (The divergent stereo depth model.). The depth component of an arbitrary

point projected on camera B is

zB =

(

l sin βsin( π2 − β2 )
) sin (π2 − θC + β2

)
sin (θB + θC − β)

cos (tan−1 (xBf )) (3.42)
the range of P w.r.t. camera C is zC = CP cos θC ,

zC =

(

l sin βsin( π2 − β2 )
) sin (π2 − θB + β2

)
sin (θB + θC − β)

cos (tan−1 (xCf )) (3.43)



126 CHAPTER 3. MULTISENSOR REGISTRATIONIn addition, with the depth models zB and zC , then the real X-coordinates from the cameras B(dB) and C (dC) w.r.t. point P, can be estimated. Therefore, dB = zB tan θB, and
dB = zB tan (tan−1 (xBf )) ; dB = zBxBf (3.44)
dC = zC tan (tan−1 (xCf )) ; dC = zCxCf (3.45)

Similarly, algebraic deduction is given for Y-Component and real Y-coordinates w.r.t point Pusing cameras B (hB) and C (hC) are given by,
hB
yB

= zBf ; hB = zByBf ; hC
yC

= zCf ; hC = zCyCf (3.46)
Therefore, the next corollary is stated:

Corollary 3.4.2 (Divergent geometric model). Divergent model, camera C w.r.t. camera A

CR
B,C(t) =




 l sin βsin( π2 − β2 )sin( π2 −θB+ β2 )

sin(θB+θC−β)
cos(tan−1( xCf ))xC

f
(

l sin βsin( π2 − β2 ))sin( π2 −θB+ β2 )sin(θB+θC−β)
cos (tan−1 (xCf ))

0


(3.47)

likewise, for camera A, depth models are defined by

AR
A,B(t) =




 l sin βsin( π2 − β2 )sin( π2 −θB+ β2 )

sin(θA+θB−β)
cos(tan−1( xAf ))xA

f
(

l sin βsin( π2 − β2 ))sin( π2 −θB+ β2 )sin(θA+θB−β)
cos (tan−1 (xAf ))

φA


(3.48)
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3.5 Estimation of robot’s trajectory

3.5.1 Robot pose model

Our study involves the deployment of different non-holonomic robotic platforms18,19. Forinstance, the robot namely "Popeye" depicted at figure 3.14 is an example of a real roboticplatform modelled for state estimation. At figure right-sided, the robot’s kinematic parametersare shown. The robot’s speed Cartesian components X and Y are defined as two asynchronousspeeds (differential drive model). The position and motions of a robotic platform are modelledrelaying on its kinematic restrictions, because they mathematically describe the geometry ofmovement of the robot in its surroundings.

Figure 3.14: Left and center: Wheeled mobile robot “Popeye” with a sensor suite on-board; right: platform
kinematic model configured as dual differential drive.

For a robot of dual asynchronous velocities deploying 4-wheel the first derivative posture modelis given by,
ẋR(t) = υ cos θ(t) (3.49)
ẏR(t) = υ sin θ(t) (3.50)

and robot’s orientation,
θ̇ = arctan( ẏR(t)

ẋR(t)
) (3.51)



128 CHAPTER 3. MULTISENSOR REGISTRATIONThe control vector of the system by u is defined with instantaneous tangential velocity, andangular speed,
u =  vt

ωt

 (3.52)
The instantaneous velocity υt model is approximated by an averaged velocity of the lateralasynchronous active wheels speeds,

v(t) = r2 (φ̇r + φ̇l) (3.53)
The wheels’ radius magnitude r is ideally the same for all wheels. The wheel instantaneousangular velocities are defined by φ̇r (right-sided wheels), and φ̇l (left-sided wheels). In addition,the robot’s angular velocity is a direct function of the wheels rotational speeds difference. Itsangular speed behaviour is consequently described by the differential magnitude of wheelsspeed19. Thus, the robot’s global behaviour is given by its differential velocity is defined by,

υ̂(t) = υr − υl

The transversal differential speed component of the robot w.r.t. its geometric centre (ideallylocated at the centre of mass) is inferred by,
ω(t) = υ̂(t) cos (α)

` (3.54)
According to figure 3.14-right, ` is the distance between the robot’s ideal centre of mass, andany wheel’s contact point, with constant angle α. Algebraically substituting factors in order tostate a new expression in terms of transversal and longitudinal metrics,

` = √a2 + b22
Then, the new equation to describe the robot’s angular velocity in terms of contact point metrics,
a and b, is given by,

ω(t) = 2br (φ̇r − φ̇l)a2 + b2 (3.55)



3.5. ESTIMATION OF ROBOT’S TRAJECTORY 129Hence, the robot’s pose to register non-stationary multi-sensor data is given by the expres-sion stated in the next mathematical proposition18,
Proposition 3.5.1 (Recursive robot’s posture).

x

y

θ

 =


x0
y0
θ0

+

∫
t
(
υ0 + ∫t υ̇tdt) cos (θ0 + ∫t (ω0 + ∫t ω̇tdt) dt) dt∫

t
(
υ0 + ∫t υ̇tdt) sin (θ0 + ∫t (ω0 + ∫t ω̇tdt) dt) dt∫

t
(
ω0 + ∫t ω̇tdt) dt

 (3.56)

3.5.2 State estimation

The Kalman filter is a probabilistic method based on the Bayes’ rule to improve the estimateof a state based on the measurements by considering uncertainty models of both, the robotand sensors. It is a recursive linear estimator based on Bayes’ rule. This filter calculatessuccessively a state based on measurements over the time, it generates a predicted state andcorrect that state based on the measurements20. The Kalman filter is typically used in tracking,location and navigation. The Kalman filter requires a kinematic model in order to predict therobot’s posture. The instantaneous tangential and angular speed are given by (3.57) and (3.58).
The instantaneous velocity model is approximated by a mean of asynchronous active wheels(3.57), see please section 2.1.

υt = πr∆tR
(Nr +Nl) (3.57)

and angular speed is modelled by,
ωt = 4πbr (Nr −Nl)∆tR (a2 + b2) (3.58)

where a, b are the transversal and longitudinal distances between the wheels’ contact point. ris the wheel radius. Nr and Nl are the erncoder pulses from the right and the left wheels. Ris the encoder’s resolution factor. Therefore, the robot pose model is defined by,
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f (xt−1,ut ,wt) =


xt
yt
θt

 =


xt−1 + υt∆t · cos (θt−1 + ωt∆t) +wx

yt−1 + υt∆t · sin (θt−1 + ωt∆t) +wy

θt−1 + (ωt ·∆t) +wθ

 (3.59)
Similarly, where xt−1, yt−1, and θt−1 are the previous posture coordinates. υt and ωt are thetangential and the angular speeds respectively. wx , wy , and wθ are the process noise, being con-sidered statistically independent with normal distributions of mean zero, and known variance.Therefore, the process and observation models are stated by (3.60),

xk = Axk−1 + Buk−1 + wk−1 (3.60)
zk = Hxk + vk (3.61)

where xk is the state vector, uk is the control vector, and zk is the observation vector. wk−1 and
vk are process noise and measurement noise respectively. A, B and H are transition matrices.The Kalman filter has two steps. The first step is the prediction equation (3.62) used to predictthe state based on the values of previous state, and the present control input. Likewise, thecovariance matrix is calculated.

x̂−k = Axk−1 + Buk (3.62)
P−k = APk−1A> + Qk (3.63)

The second step is the correction equation (3.64), where the Kalman gain is calculated inorder to correct the predicted state. Likewise, the covariance matrix is calculated for the nextiteration.
Kk = P−kH>

(
HP−k H> + Rk

)−1 (3.64)
x̂k = x̂−k + Kk (zk −Hx̂−k ) (3.65)

Pk = (I−KkHk) P−k (3.66)
If the process and/or observation model are non-linear (3.67), then the extended Kalman filter(EKF) is applied,

xk = f (xk−1,uk,wk) (3.67)
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zk = h (xk, vk) (3.68)

where xk is the state vector, uk is the control vector, and zk is the observation vector. Likewise,
wk and vk are process noise and observation noise, respectively. The Taylor’ expansion seriesmake a linear approximation of the function f from the valued function and the slope of f ,which is obtained from the partial derivative (3.69).

f ′ (ut , xt−1) = ∂f (ut , xt−1)
∂xt−1 (3.69)

Linearised models of the process and observation are shown by (3.70) and (3.71),
f (x) = f (x̂) + f ′ (x̂)︸ ︷︷ ︸=A

(x− x̂) (3.70)
and

h(x) = h (x̂) + h′ (x̂)︸ ︷︷ ︸=H
(x− x̂) (3.71)

The steps for prediction (3.72) and correction (3.74) for EKF are adapted to the linearisedmodels of the process and observation.
x̂−k = f (xk−1,uk−1, 0) (3.72)

P−k = AkPk−1A>k + WkQk−1W>
k (3.73)

and
Kk = P−kH>k

(
HkP−k H>k + VkRkV>k

)−1 (3.74)
x̂k = x̂−k + Kk (zk − h (xk, 0)) (3.75)

Pk = (I−KkHk) P−k (3.76)
The matrices and vectors used in the EKF are described next. The state vector x consistsof the robot’s posture components x, y, θ. Likewise, the control vector consists of the linearand angular velocities. The observation vector z consists of the values x and y obtained fromodometry sensors. And, process noise vector, and measurement noise vectors are defined.
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x =

xt
yt
θt

; uk = υ
ω

; zk = x
y

; wk =

wx

wy

wθ

; vk = vx
vy

 (3.77)
Matrix A is the Jacobian matrix of state function with respect to state vector.

A = ∂f
∂xk−1 =


∂xk
∂xk−1

∂xk
∂yk−1

∂xk
∂θk−1

∂yk
∂xk−1

∂yk
∂yk−1

∂yk
∂θk−1

∂θk
∂xk−1

∂θk
∂yk−1

∂θk
∂θk−1

 (3.78)
Modelling a linearised approach of the robot’s displacement, the Jacobian is written by

A =


1 0 −υt∆t sin (θt−1 + ωt∆t)0 1 υt∆t cos (θt−1 + ωt∆t)0 0 ∆t

 (3.79)
Observation function represents how state vector and control vector modify the measurement.

h (xk−1,uk, vk) =  xk−1 + υk∆t · cos (θk−1 + ωk∆t) + vx
yk−1 + υk∆t · sin (θk−1 + ωk∆t) + vy

 (3.80)
Matrix H is the Jacobian matrix of observation function w.r.t. the state vector.

H = ∂h
∂x =

 ∂xk
∂xk−1

∂xk
∂yk−1

∂xk
∂θk−1

∂yk
∂xk−1

∂yk
∂yk−1

∂yk
∂θk−1

 (3.81)
Modelling a linearised approach of the observation matrix, it is written by

H = 1 0 −υk∆t sin (θk−1 + ωk∆t)0 1 υk∆t cos (θk−1 + ωk∆t)
 (3.82)



3.5. ESTIMATION OF ROBOT’S TRAJECTORY 133The covariance matrix P consists on initial values of variance for each state variable. Theelements of this matrix are non-stationary.
P0 =


σ2
x 0 00 σ2

y 00 0 σ2
θ

 (3.83)
The process noise covariance matrix,

Qk =

σ2
x 0 00 σ2

y 00 0 σ2
θ

 (3.84)
The observation noise covariance matrix,

Rk = σ2
x 00 σ2

y

 (3.85)
Although, both matrices are time-varying, however they are consider constant. Likewise, Wkis the Jacobian matrix of process model w.r.t. the process noise vector.

Wk = ∂f
∂wk

=


∂xk
∂wx

∂xk
∂wy

∂xk
∂wθ

∂yk
∂wx

∂yk
∂wy

∂yk
∂wθ

∂θk
∂wx

∂θk
∂wy

∂θk
∂wθ

 (3.86)
Vk is the Jacobian matrix of observation model w.r.t. the measurement noise vector.

Vk = ∂h
∂vk

=  ∂xk
∂vx

∂xk
∂vy

∂yk
∂vx

∂yk
∂vy

 (3.87)
Uncertainty of x and y were obtained experimentally, consisting of moving the robot linearly.The error was calculated from the difference of ideal and the real ending positions. Fromthe experiment, µx = 0.457 and µy = 0.569 were measured. The Extended Kalman filter wasimplemented in the mobile robot to track its location indoor with experimental results shownin figure 3.15. Values of the covariance matrix P overtime are depicted.
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Figure 3.15: Sensor observation and Kalman estimation of the robot’s position (above). Numeric calculated
values of the covariance matrix P during experiment (below).
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Chapter 4

VISUAL INVARIANT DESCRIPTORS

Edgar A. Martínez-García

Laboratorio de Robótica, Institute of Engineering and Technology
Universidad Autónoma de Ciudad Juárez, Mexico.

Visual landmark tracking represents a major problem due to occlusion, illumination varia-tions and affine transformations between subsequent images. A desired goal for mobile robotapplications is to increase stability during invariants detection in order to minimize trackingerrors. Instead of using expensive and sophisticated sensor devices, a trend in mobile roboticsis using cheaper, passive, and widely available sensors operated by complex algorithms. Vi-sual sensors, for instance, involve several perception problems such as infeasible lighting anduncontrolled illumination conditions, which prevail in mobile robot scenarios. Invariant de-scriptors provide relative steady geometric parameters of regions for recognition problems.Regional descriptors must be highly accurate in terms of their locations to associate correctlysets of landmarks coming from different regions, and accomplish precise geometric triangula-tion between two successive image frames1. Two issues must highly be reliable, the matchingalgorithm and landmarks position accuracy. If invariant descriptors locations are stable, thenprojective geometry algorithms will provide highly accurate robot displacement calculations.Reason of failure of the matching algorithm may be caused by missing landmarks due tolighting noise and/or occlusion; even if landmarks are matched correctly, there exists the pos-sibility of variations of descriptors’ position, yet if sensed from the same observing location. Theapproach is based on a feature-space analysis, although different approaches are reported2.



138 CHAPTER 4. VISUAL INVARIANT DESCRIPTORSUnlike other approaches3–5, this chapter focuses on solving the problem of feature descriptorsinstability while tracking landmarks unlike other approaches6. In order to understand howthe instability descriptors problem evolves in different moments and invariant moments, wecarried out a comparative study on different algorithms to learn how to increase a steady state.Given the value of stability in the MSER algorithm, we can minimize errors specially wherelandmarks observation yields false positives and negatives.
4.1 Feature points detection

A quantitative analysis of stability tracking of invariant descriptors is presented. Two feature

extraction algorithms are compared: the Harris Corner Detection and the Fast Corner De-tection. Corner detectors are the introductory algorithmic processes of almost any regionalinvariant descriptor algorithm. Two of the most popular corner detectors to compare are theHarris Corner Detection (HCD)7, and the Fast Corner Detection (FCD) algorithm8. The HCDhas been a popular interest point detector due to its strong invariance to rotation, scale, illu-mination variation, and image noise. A predecessor of the HCD was presented by Moravec7.The HCD is based on the local auto-correlation function of a signal; where the local auto-correlation function measures the local changes of the signal with patches shifted by a smallamount in different directions9. The discreteness refers to the shifting of the patches. Givena shift (∆x,∆y) and a point p(x, y), the auto-correlation function is defined by
c(x, y) =∑

W
[I(xi, yi)− I(xi + ∆x, yi + ∆y)]2, (4.1)

where I denotes the image function and (xi, yi) are the points in the window W centred on(x, y). For the case of the FCD, it classifies a pixel p as a corner, if there exists a set of nneighbouring pixels which intensities are all brighter than the intensity of the candidate pixel
Ip plus a threshold th , otherwise, all pixels are darker than Ipt.With similar setting parameter for the FCD and the HCD, the FCD usually detects a greaternumber of feature points than the HCD. Actually, the number of features are nearly duplicatedas detector’s threshold decreases at constant rate. FCD yields more density of points dispersionthan the HCD; while the HCD detects points basically without redundancy (non cumulative cor-ners around the same region) due to its statistical mechanism based on associating a regional



4.1. FEATURE POINTS DETECTION 139

50 100 150 200 250 300

50

100

150

200

50 100 150 200 250 300

50

100

150

200

Figure 4.1: Left: FCD features detection. Right: HCD features detection.

covariance and its central value (a corner). HCD has a more enhanced level of suppressiondetection than FCD. However, the FCD detects clouds of feature points specially within a mor-phologically homogeneous regions. HCD is more sensitive to regional changes than FCD,being less immune than FCD and with an increased number of false positives/negatives. TheHCD resulted faster than FCD in our on-board computers configuration regardless similarthresholds configuration in both algorithms (figure 4.2), but HCD yields to a more globallyscattered dispersion of feature points, although less redundant than FCD (see figure 4.1). Fig-ure 4.2 depicts a comparative plot of speed computation between FCD and HCD, using thesame thresholds.
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Figure 4.2: Left: FCD/HCD number of keypoints; right: computing time vs. selected Th.



140 CHAPTER 4. VISUAL INVARIANT DESCRIPTORSIt was established an average number of features, in our examples n = 20. A qualitativeanalysis is presented in table 4.1; the HCD/FCD reliabilities when facing faults are presented.In general, both corner detection algorithms (CDAs) have similar reliability, specially without
Table 4.1: Corners detection reliability, 20 features.Time F. Positives F. NegativesFrame HCD FCD HCD FCD

t0 5 3 3 2
t1 4 2 3 3
t2 2 1 2 3
t3 3 2 4 3
t4 3 2 3 2
t5 4 2 4 2
t6 3 3 2 3
t7 4 2 4 3
t8 5 2 3 4
t9 5 3 4 3
t10 4 4 4 2Reliability 81% 88% 84% 86%

previous image enhancement.The resulting feature points from the CDAs are then analysed bya local invariant detector10. The CDA’s parameters are adjusted accordingly before applyingthe invariant detection algorithm.
4.2 Stability analysis of invariant descriptors

A comparative study of three known invariants algorithms (SIFT, MSER, Quick SHIFT) iscarried out to track multiple regional descriptors correlated among consecutive video frames.These algorithms were compared on faults tolerance and computational complexity. Feature-points usually lie on high-contrast regions of the image, such as edges. An important charac-teristic of these feature-points is that the relative positions between them in the original sceneshould not change from one image to another. Affine invariant feature descriptors are nor-mally computed by sampling the original (grey-scale) image in an invariant frame defined fromeach detected feature. Experiments were carried out with three popular invariants detectionalgorithms: the SIFT11, the Quick SHIFT12, and the MSER13. The SIFT algorithm extractsdistinctive features from images in gray scale. It recognizes the same trait among differentviews of objects11, extracted features are invariant to image scale and rotation (figure 4.3).
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Figure 4.3: Visual local invariants: QShift, SIFT, and MSER (left to right).

The Quick SHIFT algorithm implements a mode seeking algorithm to form a tree of linksto divide an image into a set of super-pixels around the nearest neighbour. This algorithmmay not be seen as a invariant detection algorithm, but we found that centroids associatedto each superpixel region may represent the invariants at different frames as it increases anestimate of the density. It increases an estimate of the density. With respect to the MSERmethod, the regions are defined solely by an extreme property of the intensity function in theregion, and on its outer boundary (see bottom image in figure 4.3). We may refer to the pixelsbelow a threshold, as black; and to those above or equal, as white. Throughout a sequence ofthreshold images I(t) and I(t − 1), with corresponding threshold th , we would see first a whiteimage. Subsequently, black spots corresponding with local intensity minima will appear andgrow. At some point, regions corresponding with two local minima will end merging. Thus,the last image will be black. The set of all connected components of all frames are the setof all maximal regions; minimal regions could be obtained by inverting the intensity of I andrunning the same process.
In addition, computational complexity for all invariant algorithms is depicted in figure 4.4,whereas in Table 4.2, a faults tolerance study is summarized. The proposed EMSER algorithmhas a computational complexity close to MSER (figure 4.4) but a superior performance withrespect to the other algorithms in terms of reliability. Stability of invariant descriptors in thiscontext pursuits to reduce false positives/negatives during detection.
By applying invariants, given the degree of stability in the MSER algorithm, we can minimizeerrors based on analysis in feature-space instead of the orthogonal sensor image, although dif-ferent approaches are reported2. Errors can be minimized especially where a landmark mightsignificantly be similar to others, causing confusion in the robot. Based on those findings, in-
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Figure 4.4: Invariant algorithms arithmetic-logic complexity (In×n).

creasing stability of invariant descriptors is desirable, which in turn means to reduce falsepositive/negatives during detection. By a preprocessing algorithm, selecting natural environ-mental features can be accomplished automatically. These landmarks are then transformedinto invariant regional descriptors.
4.3 Image preprocessing

Image preprocessing is a set of algorithms to improve the quality, and the number of salientfeatures-points detected. The proposed methods is described as the following order.
1. Automatic image contrast enhancement.
2. Image sharpening.

(a) Adaptive edge detection.
(b) Correlation-based isotropic filtering kernel.
(c) Sharpening.



4.3. IMAGE PREPROCESSING 143
Table 4.2: Faults tolerance, 20 descriptors, 11 frames.Frame False Positives False Negatives

time sift mser emser sift mser emser
t0 12 4 3 8 5 3
t1 11 6 2 6 4 2
t2 10 7 2 7 5 1
t3 12 7 3 8 5 3
t4 12 8 1 7 4 2
t5 11 6 1 6 5 3
t6 10 7 3 6 6 4
t7 12 8 2 8 5 3
t8 9 9 4 6 4 2
t9 8 8 2 6 4 3
t10 10 7 3 7 4 147 % 65 % 88 % 66 % 77 % 88 %

4.3.1 Automatic contrast enhancement

Because of outdoors environmental scene structure has much greater dynamic range, lightingconditions vary enormously for a given visual sensor on-board the robot. In addition, low-contrast images may result from poor illumination, lack of dynamic range in the imagingsensor, or wrong setting of a lens aperture during image acquisition. Contrast enhancementincreases the total contrast of an image by making light color lighter, and dark colours darkersimultaneously in image IC = histeq(IG), where IG is the input image and IC is the enhancedcontrast image. By improving the image contrast, saliency and definition of regions corner-likeare enhanced. We apply histogram equalization to the acquired images in order to recoverthe lost contrast by remapping the brightness values or more evenly distribute its brightnessvalues. An example of contrast enhancement is shown in figure 4.5-A).
The histogram h(rk) = nk , rk: the level of grey, and nk the num. of pixels. Thus, thenormalization for k = 0, 1, . . . , L − 1

p(rk) = nk
nt

(4.2)
then, the transformation s = T(r) for 0 ≤ r ≤ 1,

ps(s) = pr(r)|dr/ds| (4.3)
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s = T(r) = ∫ r

0 Pr(w)rmdw (4.4)
4.3.2 Image sharpening

Adaptive edge detection The sharpening process is to detect the edges of the scene in theenhanced contrast image. The edges are line regions used to increase the numeric value ofcorners points located at lines-crossing. For practicability we deployed the Canny algorithmbecause we can adjust the maximal suppression factor (edge thickness). Only most salientfeature-points are extracted by automatically selecting corners that mutually lie collinear overcrossing edges (vertical-horizontal cross points). The resulting edge image IE is deployedsubsequently (see figure 4.5-B)).

A) B)
Figure 4.5: a) raw and contrast enhancement images; b) Edge detection.

Correlation-based isotropic filtering kernel Under natural light conditions, having a gooddefinition of corners is a critical issue for the sake of key-features stability detection. Weestablish an non-sharp kernel through the negative of a Laplace filter. The Laplacian is a 2Disotropic measure of the 2nd spatial derivative, which in an image processing context is equally



4.3. IMAGE PREPROCESSING 145applied in all directions. The purpose of this is to highlight regions of rapid intensity changeparticularly for edge detection. The Laplacian ∇2 or H of an image is given by:
∇2 = ∂2IC

∂x2 + ∂2IC
∂y2 , (4.5)

where IC is the enhanced contrast image. This is calculated by using a convolution filter whichapproximates a second derivative kernel in the definition of Laplace. Thus, it can be calculatedby using standard convolution methods. Nevertheless, by approximating a second derivativemeasurement on the image, it results very sensitive to noise. The Laplacian is often applied toan image that has first been smoothed approaching a Gauss behaviour filter to reduce noisesensitivity.As the convolution operation is associative, we convolve the Gaussian smoothing filter withthe Laplace filter first, and then convolve this hybrid filter with the image to achieve therequired result, and only one convolution needs to be performed at run-time on the image.
LoG(x, y) = − 1

πσ2
(1− c2 + r22σ2

)
e−

c2+r22σ2 . (4.6)
The 2D Laplacian of Gaussian function centered on zero has discrete form in an image pro-cessing context of the form:

H = 1
α+ 1 ·


−α α − a −α

α − a α − b α − a

−α α − a −α

 , (4.7)
where factor 0 ≤ α ≤ 1, for the results shown in this manuscript, was set to α = {0, 0.1} as themaximal sharpening factor, under natural lighting conditions.
Sharpening The sharpening process is enhanced by introducing an adaptive function β(IE)that highlights only the most prominent edges (referring to IE where edges had been detected).All edges greater than 50% of their intensity values in IE are filtered. Likely, most prominentedges associate crossing of vertical and horizontal edges (best corners featuring the scene).In the vicinity of a change in intensity, the LoG response will be positive on the darker side,and negative on the lighter side. A reasonably sharp edge between two regions of uniform but



146 CHAPTER 4. VISUAL INVARIANT DESCRIPTORSdifferent intensities, the LoG response will be zero at a long distance from the edge; positivejust to one side of the edge; negative just to the other side of the edge; zero at some point inbetween, on the edge itself. The enhancement function β(IE) defined by,
β(IE(i, j)) = ((i · j)−1∑

i

∑
j

IE(i, j)) ≤ IE(i, j). (4.8)
In addition,

JE =
L, β(IE) · IC(i, j)

0, otherwise
(4.9)

where L is the maximum grey level.
Corollary 4.3.1. The sharpen image IS is given by the following kernel,

IS(t) = IS(t − 1) + α · β(IE) · (IE(t − 1)−H⊗ JE). (4.10)

The unsharp image IS enhances edges via a procedure which subtracts an unsharp versionof an image from the contrast-enhanced image.
4.4 Feature-points (corners) detection

The sharpened image IS is now the input image to any corner-detection algorithm. Although,we analysed both the Fast Corner Detector (FCD), and the Harris Corner Detector (HCD),depicted results shown in figure 4.6 correspond to FCD, applied to a raw image (above), aswell as to its contrast-sharpening enhanced version (below). The preprocessed version showsprominent results with respect the original raw image. In addition, figure 4.7-B) shows theresulting salient feature points on the sharpened image by corner_detector(IS).
4.5 Adaptive dilation factor

The dilatation factor df is a concept introduced in this chapter. The factor df is used to easythe ability of the MSER algorithm to create connected components. The dilatation factor allow
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Figure 4.6: Feature-points detection. a) raw image; b) enhanced image (contrast and sharpening).

us to adaptively (based on the dispersion of key-features) dilate at a rate of the factor df ,
df = 2

√ 100
in × jm

∑
i

(p− µ̄) · s−1, (4.11)
where s is the vector of statistical variances of the key-feature points; p is the vector locationof a key-feature point; and µ̄ is the mean-vector of key-feature points. As a result, figure 4.7depicts a unique map of regions formed by the set of key-points dilated at a factor df . Theoriginal information data of the scene is no longer required, and MSER is applied in a veryreduced computational search space, called stable binary regions.
4.6 Descriptors in Binary Stable Regions

The Binary Stable Region is a binary image compounded only of multiple dilated circulardescriptors that by overlapped areas will form new regions featuring the scene. Thus, the realimage scene is no longer required because binary regions are the scene descriptor themselves,with a reduced search space. Only binary regions are now uniquely predominant as candidatesfor analysis by the MSER algorithm to extract a small number of covariant regions (stablecomponents) highlighted by circles to describe local invariants.Figure 4.7 depicts some experimental results in the binary stable regions, as well as de-scriptors projected over the raw image. Further study can be found in 13, which is a precedenttheoretical work that explain how we arrive with our algorithm to improve the invariant’s
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a) b)
Figure 4.7: a) key-points at cross-edges, and adaptively dilated feature-points; b) Maximally stable regions
detection (bounded by circles).

Cartesian stability for robots localization. Our endeavour to alleviate the instability behaviouris not by applying MSER directly to the sensor observation (image), but only to their binary sta-ble regions (figure 4.7 binary stable regions). We call this strategy enhanced MSER (EMSER).In addition, it is worth mentioning that these results improved reliability in data association.

4.7 Optical flow data association

The implemented optical flow algorithm is based on a gradient method14. It correlates visualenvironmental landmarks, which as the robot moves, such natural landmarks or key-featuresare displaced overtime, as depicted in figure 4.8-A), and those key-points are used as visualfeedback. Optical flow provides the apparent motion in a visual scene I caused by the relativemotion between the inertial frame of the robot and the scene’s landmarks15 as depicted infigure 4.8-B.
I(x, y, θ) = I(x + ∆x, y + ∆y, t + ∆t). (4.12)
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Figure 4.8: a) keypoints overlapped in time; b) optical flow from invariant keypoints.

By assuming relatively small robot’s displacements (sensor suite on-board), the image con-straints at I(x, y, t), and changes overtime ∆x and ∆y in coordinates XY in time ∆t as definedby,
∂I
∂x

∆x∆t + ∂I
∂y

∆y∆t + ∂I
∂t

∆t∆t = 0. (4.13)
The partial derivatives of the pixels of interest will result as the optical flow of pixels (xf , yf ) by

∂I
∂x ẋ

f + ∂I
∂y ẏ

f + ∂I
∂t = 0, (4.14)

where ẋf and ẏf are the velocity component of each invariant descriptors detected in images
I(t) and I(t −1). Both speed components allow to know the angle and magnitude of the velocityvector (figure 4.8-b)). For every key-point detected within the vision sensor field of view, itsapparent motion is analysed by their optical flow feature vector. The optical flow feature vectoris the input vector argument for the data association process, defined next.



150 CHAPTER 4. VISUAL INVARIANT DESCRIPTORS

f =



ẋf

ẏf

θf

vf

c

r


=



(∂I/∂x)ẋf(∂I/∂y)ẏfarctan(ẏf /ẋf )
2√(ẋf )2 + (ẏf )2

c

r


, (4.15)

where θf is the direction of optic flow vector, vf is the velocity vector magnitude; c and r arethe column and row respectively of the invariant feature within the focal plane. With a groupof optical flow feature vectors f, the data association function δi(t) in eq.(4.16) correlates allinvariants velocity.
Proposition 4.7.1. The argument that minimizes the function δi(t) is the most similar

feature vector within a multidimensional space,

arg min
fj (t) δfi (t) = ‖fi(t)− (fj (t))kj=1‖. (4.16)

Data association of the kth landmark is illustrated in figure 4.9. Dots and empty-circles thatoverlap together indicate successful landmarks data association of their inertial frames w.r.t.to the robot’s displacement. The detected invariant descriptors are extracted from the sceneimage and placed onto an empty image frame (white background) at same spatial coordinates.Thus, the optical flow process is assured to be performed only to detected invariants.Table 4.3) show results on data association between two successive images at robot speeds ofabout 0.3m/s. The original data association index as well as the closer descriptor are recorded,and a specific threshold is used to determine the number of matching features. This can beseen in the sequences of images in figure 4.9.
4.8 Local invariants consideration for robot motion

For the sake of visual odometry, the locations of these descriptors are geometrically triangu-lated to infer the robot’s displacement, as illustrated by figure 4.10. Detecting each descriptor’s
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Frame Correlated

t0 10
t1 10
t2 10
t3 9
t4 10
t5 10
t6 10
t7 10
t8 8
t9 9
t10 9Reliability 95%

Table 4.3: Data Association, 10 landmarks, 11 frames.

key-point with no perturbation in the same scene’s configuration regional location is desired;otherwise robot’s positioning is not accurate. Descriptors stability is important for numerousmobile robot applications with visual feedback (i.e. positioning control, trajectory tracking,visual odometry, robot pose estimation). Descriptors are advantageously used as natural envi-ronmental landmarks by geometrically triangulating their locations.Detection of key-points with no perturbations (same regional location of the scene overtime)is a desired condition15.
Proposition 4.8.1. The key-point coordinates ẋ = f (x), x = (r, c)T for f : D Ï <n is stable,

if the equilibrium point x = xe (xe ideal location), and

f (xe) = 0; ‖x0 − xe‖ < δ

and lim
tÏ∞

x(t) = xe

such that,
δ = (∆c2 + ∆r2)1/2

in which δ is a marginal error due to instability of the visual perception process.
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Figure 4.9: Data association results with the proposed method.

The key-points location is ideally inferred, if the robot’s motion is robustly controlledthrough the control vector u = (v, ω)T , where vt and ωt are the robot’s instantaneous lin-ear and yaw velocities. There for, estimation of robot’s displacement w.r.t. the visual landmarkis modelled by the linearised state equation,
ẋ = Ax + Bu (4.17)

Thus, x = xe for ẋ = f (x) = Ax, which is asymptotically stable, it is both stable and convergent.The model for the descriptor location x = x0 +g(ẋ, ẏ, t) arises from a kinematic robot’s motionmodel g(·), which is not treated in this chapter because of its extensive nature and lack of space.

Figure 4.10: Stability invariants for robot motion.
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 = f

tan(arccos(x1
l1 ))− tan(arccos(x2

l2 ))tan(arccos( y1
k1 ))− tan(arccos( y2

k2 ))
 (4.18)

where f is the focal length of the visual sensor; (∆c,∆r) are the expected location of thedescriptor in focal plane according to the actual robot’s motion; (xi, yi) is the Euclidian positionof the descriptor; li and ki are the line distances between robot and descriptor in Cartesianspace (see figure 4.10). Perturbations will affect the stable equilibrium point if overpassing themagnitude of δ.In addition, xi and yi (robot position w.r.t. key-feature) arise from the deterministic robot’smotion model that defines its small displacement ∆ξ(t)
∆ξ(t) = x2

y2
− ∫ t2

t1 v(t)cos(∫t ω(t)dt)sin(∫t ω(t)dt)
dt (4.19)

The input control vector u(t) = (v, ω)T defines the robot’s linear and angular velocities for any
k number of wheels with actual speed φ̇i(t) of constant radius r,

v(t) = r
k
∑
i
φ̇i(t); ω(t) = v(t)/h (4.20)

where h is the robot’s body radius (width from geometric centre to any wheel’s contactpoint). For an ideal model, we might say that ∆c, ∆r are deterministic variables in termsof ∆ξ(v(t), ω(t), g(x, y), t).





Numerical Modelling in Robotics (2015)

Bibliography

[1] López G., Guerrero J.J., Sagués C., Visual control of vehicles using two-view geometry, Mechatronics,Vol. 20, pp. 315-325, 2010, doi: 10.1016/j.mechatronics.2010.01.005.
[2] Hayet J.B., Lerasle F., Devy M., A visual landmark framework for mobile robot navigation, Imageand vision computing, Vol. 25, pp. 1341-1351, 2007, doi: 10.1016/j.imavis.2006.08.006.
[3] Ramisa A., Tapus A., Aldavert D., Toledo R., Lopez R., Robust vision-based robot localization using

combinations of local feature region detectors, Autonomous Robots, Vol. 27(4), pp. 373-385, 2009, doi:10.1007/s10514-009-9136-9.
[4] Kunze L., Lingemann K., Nuchter A., Hertzberg J., Salient visual features to help close the loop in 6D

SLAM , 5th Intl. Conf. on Computer Vision Systems, Bielefeld Germany, 2007.
[5] Lowe D., Little J., Vision-based mobile robot localization and mapping using scale-invariant fea-

tures, IEEE ICRA, Vol. 2, pp. 2051-2058, 2001.
[6] Bayramog̃lu E., Andersen N.A., Poulsen N.K.,Andersen J.C., Ravn O., Mobile robot navigation in a

corridor using visual odometry, Intl. Conf. on Adv. Robotics, pp. 1-6, 2009.
[7] Harris C., Stephens M., A combined corner and edge detector, Proc. 4th Alvey Vision Conf., pp.147-151, 1988, doi: 10.5244/C.2.23.
[8] Trajkovic M., Hedley M., Fast corner detection, Image and Vision Computing, 16(2), pp. 75–87, 1998,doi: dx.doi.org10.1016S0262-8856(97)00056-5.
[9] Kos̃ecká J., Li F., Vision based topological Markov localization, IEEE ICRA, pp. 1481-1486, 2004, doi:dx.doi.org10.1109robot.2004.1308033.



156 BIBLIOGRAPHY[10] Flusser J., Suk T., Zitová B., Moments and moment invariant in pattern recognition, Wiley, 2009,doi: 10.1002/9780470684757.
[11] Lowe, D., Distintive image features from scale invariant keypoints, University of BC Canada, 2004.
[12] Vedaldi A., Soatto J., Quick shift and kernel methods for mode seeking , In Proc. of the EuropeanConf. on Computer Vision, 2008, doi: 10.1007/978-3-540-88693-8_52.
[13] Fellow R.K., Zhang C., Bronstein A., Bronstein M., Are MSER features really interesting? , IEEE Trans.on Patt. Analysis and Mach, Intel, 2011.
[14] Mccarthy C., Barnes N., Performance of Optical Flow Techniques for Indoor Navigation

with a Mobile Robot , IEEE Intl. Conf. on Robotics & Automation, pp. 5093-5098, 2004, doi:dx.doi.org/10.1109/robot.2004.1302525.
[15] Martínez-García E.A., Torres-Mendez L.A., Mohan R.E., Multi-Legged Robot Dynamics Navigation

Model with Optical Flow, Intl. Journal of Intelligent Unmanned Systems, Vol. 2, Iss. 2, pp. 121-139,2014, Emerald, doi: 10.1108/IJIUS-04-2014-0003.



Part II

Robot Navigation and Planning





Numerical Modelling in Robotics (2015)

Chapter 5

MULTI-LEGGED OBSTACLE AVOIDANCE

Cesar García Sariñaga and Edgar A. Martínez García

Laboratorio de Robótica, Institute of Engineering and Technology
Universidad Autónoma de Ciudad Juárez, Mexico.

In this chapter the kinematics, and the navigation model for obstacle avoidance of a six-leg (hexapod) robot are discussed. A navigation model controls the course of a mobile robotfrom a starting position towards a goal destination. The kinematics describes the geometryof motion of a body (i.e. limbs, links, a joint, a walker) regardless the causes that producedsuch motion. Therefore, a robotic navigation model entirely depends on the kinematic modelsin order to describe the set of local Cartesian goals that the mobile robot must reach. Thepresent approach is on combining the optic flow information observed from the obstacles, witha decision engine comprised of the image motion analysis, and a kinematic control law. Theoptical flow describes the apparent motion of a body w.r.t. the observer location (i.e. the robot’svisual sensor on board), and such description consists of the velocity components within a localinertial frame. In the present scheme, a decision engine is a robot’s algorithm that considersinformation descriptors that are used to take decisions on how to avoid collisions online againststatic and dynamic obstacles. The decision engine considers motion information from theactual image frames to feedback a linear state equation control law about the environment’snear obstacles. The inverse and direct kinematic analysis of a leg is presented separately toapproach an algebraic solution that obtains the Jacobian matrix of the limbs. The limb’s inversekinematic solves the independent variables that control the system, the rotational joints; given



160 CHAPTER 5. MULTI-LEGGED OBSTACLE AVOIDANCEthat the workspace variables are known. Inversely, the forward kinematics obtains the solutionof the unknown workspace Cartesian variables, given that the independent control variables areknown. The Jacobians are deployed to build the input vector model u = (v, ω)> of a lineariseddisplacement state feedback equation control ẋ = A · x+B · u. The function of the state controlis to provide a fast response navigation reaction for avoiding obstacles. The Jacobian matricesare the functions in terms of the workspace state variables derived w.r.t. the all independentcontrol variables. Thus, the solution of the Jacobians are directly involved with the input vector.Finally, the hexapod robot is a statically stable multi-legged robot comprised of six limbs ableto walk over rough terrains, developing a variety of gait configurations.
5.1 Limb forward kinematics

Figure 5.1 depicts the robotic platform body, and the limb’s kinematic. The platform is an AH3-R hexapod model, which is a radially symmetric multi-legged walker with 3 DOF for each leg.A general view of the mechanical structure is shown in figure 5.1. The limb inertial space Eis defined with Cartesian origin at the base of the first joint φ0, following the next two joints
φ1 and φ2, and links called l0, l1, and l2. The leg’s contact point is modelled by the positionvector1,3, which defines the instantaneous position usually stepping the ground surface.

Figure 5.1: The AH3-R hexapod: body and leg kinematics.

The extremity position vector p = (xce, yce, zce)> is locally described w.r.t. limb’s base Carte-sian coordinate system; analysing independently each workspace variable, the x component isdefined by
xce = cos(φ0)(l0 + l1 cos(φ1) + l2 cos(φ1 + φ2) (5.1)
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Figure 5.2: Leg whole workspace, and step-limit workspace.

for the position projected along the y axis,
yce = l1 sin(φ1) + l2 sin(φ1 + φ2) (5.2)

as well as for the component along the z axis.
zce = sin(φ0)(l0 + l1 cos(φ1) + l2 cos(φ1 + φ2) (5.3)

With the equations (5.1), (5.2) and (5.3), the plots in figure 5.2 are produced. The left-handside plot shows the limb’s workspace; being the workspace each three-dimension Cartesianpoint that the limb’s contact point is able to reach. Metric scale is represented with the realphysical size of the links l0 = 0.04, l1 = 0.06 and l2 = 0.14 (m). Likewise, the right-hand side plotdepicts the angular independent variables with numeric limits to approach the AH3-R joints’movements to one-step in three-dimension space.
Equations (5.1)-(5.3) represent the forward kinematics using an algebraic approach to analysethe limb’s kinematics. With this forward position equations and by knowing the control in-dependent articular variables, the workspace variables are obtained. Nevertheless, it is ourinterest to get an algebraic inverse solution. Unlike geometric approaches, such as using thesine and cosine laws in order to solve for the limb’s angles, our approach is rather flexible tomathematically model in case of reconfiguring or making physical changes to the limbs.

In this algebraic context, to solve for the inverse kinematic equations of the position modelthat is denoted by the vector p ∈ R3, it is proposed to algebraically expand, and then derivew.r.t. time as to express the new mathematical relation in terms of velocities. Thus, beingthe expressions in terms of velocities, it is easier to drop-off the angular speeds vector since



162 CHAPTER 5. MULTI-LEGGED OBSTACLE AVOIDANCEthe robot AH3-R software technology solely allows to move the joints by using the angularvelocities φ̇i and the angular positions φi. Therefore, by algebraically expanding the positionequations, the next expression for the component x is produced,
xce = l0 cos(φ0) + l1 cos(φ0) cos(φ1) + l2 cos(φ0) cos(φ1 + φ2) (5.4)

However, for the y component (5.3), it does not require any further algebraic expansion. Andfor the component z, the following expression is yielded,
zce = l0 sin(φ0) + l1 sin(φ0) cos(φ1) + l2 sin(φ0) cos(φ1 + φ2) (5.5)

5.1.1 First order derivatives

The present approach states the first order derivatives w.r.t. time for the position compo-nents. The partial derivatives of each workspace variable are defined as functions of the threeindependent angular variables.
dxce = ∂xce

∂φ0 dφ0 + ∂xce
∂φ1 dφ1 + ∂xce

∂φ2 dφ2 (5.6)
for the component y,

dyce = ∂yce
∂φ0 dφ0 + ∂yce

∂φ1 dφ1 + ∂yce
∂φ2 dφ2 (5.7)

and for the component z.
dzce = ∂zce

∂φ0 dφ0 + ∂zce
∂φ1 dφ1 + ∂zce

∂φ2 dφ2 (5.8)
The three previous equations if arranged in the matrix form, then the Jacobian matrix ofderivatives is obtained. Hence, previous definitions are solved by developing the first orderderivative w.r.t. time, for the component ẋ,

ẋce = −l0 sin(φ0)φ̇0 + l1[− sin(φ0) cos(φ1)φ̇0 − cos(φ0)sin(φ1)φ̇1]+l2[− sin(φ0) cos(φ1 + φ2)φ̇0 − cos(φ0) sin(φ1 + φ2)(φ̇1 + φ̇2)] (5.9)
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ẏce = l1 cos(φ1)φ̇1 + l2cos(φ1 + φ2)(φ̇1 + φ̇2) (5.10)

and finally for the component ż,
żce = l0 cos(φ0)φ̇0 + l1[cos(φ0)cos(φ1)φ̇0 − sin(φ0) sin(φ1)φ̇1]+l2[cos(φ0) cos(φ1 + φ2)φ̇0 − sin(φ0) sin(φ1 + φ2)(φ̇1 + φ̇2)] (5.11)

Since our interest is on solving for the angular derivatives, we firstly expand algebraically thesame equations,
ẋce = −l0 sin(φ0)φ̇0 − l1 cos(φ0)sin(φ1)φ̇1 − l1 sin(φ0) cos(φ1)φ̇0

−l2 sin(φ0) cos(φ1 + φ2)φ̇0 − l2 cos(φ0) sin(φ1 + φ2)φ̇1 − l2 cos(φ0) sin(φ1 + φ2)φ̇2 (5.12)
for the velocity ẏ,

ẏce = l1 cos(φ1)φ̇1l2cos(φ1 + φ2)φ̇1 + l2cos(φ1 + φ2)φ̇2 (5.13)
and for the velocity ż,

żce = l0 cos(φ0)φ̇0 + l1 cos(φ0)cos(φ1)φ̇0 − l1 sin(φ0) sin(φ1)φ̇1+l2 cos(φ0) cos(φ1 + φ2)φ̇0 − l2 sin(φ0) sin(φ1 + φ2)φ̇1 − l2 sin(φ0) sin(φ1 + φ2)φ̇2 (5.14)
Thus, in order to factorise the higher order derivatives, it is reduced algebraically in thefollowing manner,

ẋce = − sin(φ0)[l0 + l1 cos(φ1) + cos(φ1 + φ2)]φ̇0
− cos(φ0)[l1sin(φ1) + l2 sin(φ1 + φ2)]φ̇1

−l2 cos(φ0) sin(φ1 + φ2)φ̇2
(5.15)

likewise, for the velocity ẏ,
ẏce = [l1 cos(φ1) + l2cos(φ1 + φ2)]φ̇1 + l2cos(φ1 + φ2)φ̇2 (5.16)
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żce = cos(φ0)[l0 + l1cos(φ1) + l2 cos(φ1 + φ2)]φ̇0

−sin(φ0)[l1 sin(φ1) + l2 sin(φ1 + φ2)]φ̇1
−l2 sin(φ0) sin(φ1 + φ2)φ̇2

(5.17)

Stating (5.15)-(5.17) in the matrix form, the second derivatives are factorised and the Jacobianmatrix J(Φ) = J(φ0, φ1, φ2) is established. Therefore, the squared Jacobian matrix in the generalform is defined by the next expression (5.18).
J(φ0, φ1, φ2) =


∂xc
∂φ0 ∂xc

∂φ1 ∂xc
∂φ2

∂yc
∂φ0 ∂yc

∂φ1 ∂yc
∂φ2

∂zc
∂φ0 ∂zc

∂φ1 ∂zc
∂φ2

 (5.18)
Thus, since the Jacobian matrix expression terms are too long, then for purpose of practicalitythey are substituted by new abbreviated expressions. Likewise, the trigonometric functions sinand cos are substituted by the letters s and c, respectively. The values of the variables alongthe first row are,

a = −s0(l0 + l1c1 + l2c12); b = −c0(l1s1 + l2s12); c = −l2c0s12
for the second row,

d = 0; e = l1c1 + l2c12); f = l2c12
and the third row,

g = c0(l0 + l1c1 + l2c12); h = −s0(l1s1 + l2s12); i = −l2s0s12
The Jacobian matrix is then simplified,

J =

a b c

d e f

g h i

 (5.19)



5.2. LIMB INVERSE KINEMATICS 165Therefore, forward kinematics equation of the whole limb is presented in its matrix linearform as expressed by the equation (5.20); where Φ̇ is the vector of angular velocities, withvector components Φ̇ = (φ̇0, φ̇1, φ̇2)>.
ṗ = J · Φ̇ (5.20)

The limb’s contact point Cartesian positions provided by the forward kinematics of equation(5.3) are depicted by the plots of figure 5.3.

Figure 5.3: Forward kinematics numerical simulations: Angular speeds(left); Cartesian speeds (center); and
limb’s contact point positions (right).

5.2 Limb inverse kinematics

The limb’s inverse kinematic solution allows to obtain the joints control variables as functionsof the known workspace variables. The inverse kinematic solution is useful to directly controlthe kinematic structure joints, knowing where it is desired to move the limb’s contact point.
From expression (5.20), the vector Φ̇ is solved to represents the inverse equation form inexpression (5.22). This, by multiplying the inverse Jacobian in both sides of the expression:

J−1 · ṗ = J−1 · (J ·Φ) (5.21)
and then the identity matrix I is the product of J−1 · J, hence

Φ̇ = J−1 · ṗ (5.22)
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5.2.1 Singular matrix inversion

To solve the linear equation (5.22), the method of the inverse matrix is applied to the Jacobianmatrix. This algebraic process is developed since the Jacobian is a squared matrix, and there-fore by obtaining its non zero determinant a solution is possible. The linear algebraic methodwas already discussed in chapter 1.2.3.
J−1 = 1

|J|Adj(J)> (5.23)
Its algebraic form is obtained with the cofactors matrix Adj(A)

Adj(J) =


J11 J12 J13
J21 J22 J23
J31 J32 J33

 (5.24)
where each cofactor term for the 3× 3 matrix is defined by,

J11 = (−1)2
∣∣∣∣∣∣ e f

h i

∣∣∣∣∣∣ ; J12 = (−1)3
∣∣∣∣∣∣ d f

g i

∣∣∣∣∣∣ ; J13 = (−1)4
∣∣∣∣∣∣ d e

g h

∣∣∣∣∣∣

J21 = (−1)3
∣∣∣∣∣∣ b c

h i

∣∣∣∣∣∣ ; J22 = (−1)4
∣∣∣∣∣∣ a c

g i

∣∣∣∣∣∣ ; J23 = (−1)5
∣∣∣∣∣∣ a b

g h

∣∣∣∣∣∣
J31 = (−1)4

∣∣∣∣∣∣ b c

e f

∣∣∣∣∣∣ ; J32 = (−1)5
∣∣∣∣∣∣ a c

d f

∣∣∣∣∣∣ ; J33 = (−1)6
∣∣∣∣∣∣ a b

d e

∣∣∣∣∣∣
By defining the terms u = l0 + l1c1 + l2c12 and v = l1c1 + l2c12, the cofactors are representedby the next expressions,

J11 = −l1l2s0s2; J12 = l2c0c12u; J13 = −c0uv

J21 = 0; J22 = l2s12u(c20 + s20); J23 = −u(l1s1 + l2s12)(s20 + c20)
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J11 = l1l2c0s2; J12 = l2s0c12u; J13 = −s0uv

In addition the determinant of the Jacobian matrix det(A) is obtained by the rule of Sarrus (seechapter 1.2.1), det(J) = aei + bfg + cdh − gec − hfa − idb (5.25)
hence, det(J) = l1l2(l0s2 − l2s1 + l1c1s2 + l2s1c2 + l2c1c2s2) (5.26)
and by using the equation (5.23) the inverse Jacobian is obtained, which is depicted by thefollowing expression (5.27),

J−1 =


j k l

m n o

p q r

 (5.27)
where the terms of the inverse matrix J−1 are expressed as given by the following expressions.For the first row, the matrix factors are,

j = −s0
u ; k = 0; l = c0

u

the matrix second row terms,
m = c0c12

l1s2 ; n = s12
l1s2 ; o = s0c12

l1s2
and the matrix third row terms,

p = −c0v
l1l2s2 ; q = −l1s1 + l2s2

l1l2s2 ; r = −s0v
l1l2s2

5.2.2 Inverse matrix by Cramer theorem

The Jacobian inverse matrix was obtained by using the Cramer’s rule (5.28) as a second choice.This method was already discussed in chapter 1.2.4. Let us state the next expression,
φi = det(Ai(ṗ))det(A) (5.28)



168 CHAPTER 5. MULTI-LEGGED OBSTACLE AVOIDANCEwhere Ai(ṗ) is the matrix formed by replacing the column i for the vector ṗ such that,
det(A1) =

∣∣∣∣∣∣∣∣∣
ẋ b c

ẏ e f

ż h i

∣∣∣∣∣∣∣∣∣ ; det(A2) =
∣∣∣∣∣∣∣∣∣
a ẋ c

d ẏ f

g ż i

∣∣∣∣∣∣∣∣∣ ; det(A3) =
∣∣∣∣∣∣∣∣∣
a b ẋ

d e ẏ

g h ż

∣∣∣∣∣∣∣∣∣ (5.29)
the determinant of each matrix is given by the next expressions,

det(A1) = l1l2s2(żc0 − ẋs0) (5.30)
and,

det(A2) = l2u(ẏs12 + ẋc0c12 + żs0c12) (5.31)
and,

det(A3) = −u(ẏl2c20s12 + ẏl2s20s12 + ẏl1c20s1 + ẏl1s20s1+ẋl2c0c12 + żl2s0c12 + ẋl1c0c1 + żl1s0c1) (5.32)
Furthermore, the inverse solution of the joints’ angular speed are the results of the nextexpressions,

φ̇1 = żc0 − ẋs0
u

(5.33)
for φ̇2,

φ̇2 = ẏc1s2 + ẏs1c2 + ẋc0c1c2 + żs0c1c2 − ẋc0s1s2 − żs0s1s2
l1s2 (5.34)

and for φ̇3,
φ̇3 = −(ẏl1s1 + ẋl1c0c1 + ẏl2c1s2 + ẏl2s1c2 + żl1s0c1+ẋl2c0c1c2 + żl2s0c1c2 − ẋl2c0s1s2 − żl2s0s1s2)/l1l2s2 (5.35)

Thus, by algebraically arranging and reducing the equations (5.33), (5.34) and (5.35), thesame inverse matrix result J−1 is obtained as the previous section equation (5.27). Numericalsimulations of the inverse kinematics model (5.22) yields the numerical results depicted infigure 5.4.
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Figure 5.4: Inverse kinematics numerical simulations: Cartesian speeds (left); angular speeds (center); and
limb’s contact point positions (right).

5.3 Robot’s posture kinematic model

The global robot’s locomotion is contributed by all limbs’ movement configuration4,5. Depend-ing on the limbs angles of phase and their synchronous motion, the robot’s angular and linearvelocity (figure 5.5), both are impacted. The models in the previous sections were obtainedfrom the leg inertial systems, based on those will get the kinematic control models for therobot. Previous sections analysis considered solely the limb kinematics, hence the limbs

Figure 5.5: Cartesian limb’s kinematic in robot’s fixed inertial space.

speed vector might be transformed into the robot’s inertial frame system by,
ṗRi = R(γi) · ṗi + ti (5.36)

where the index i represents the leg number; γi is the z-axis rotation angle for each leg, andthe vector ti is the position of each limb around the robot’s body. Thus, ṗRi is the limb’s speedvector w.r.t. the robot’s centroid (see figure 5.5). Hence, the following proposition is stated:
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Proposition 5.3.1 (robot’s linear velocity). The robot’s instantaneous linear velocity is

modelled as an averaged limbs’ Cartesian speed, such that

v = 16 6∑
i=1 vi = 16 6∑

i=1
2√ẋ2

i + ẏ2
i + ż2

i (5.37)

In fact, as 2√ẋ2
i + ẏ2

i + ż2
i = ‖ṗRi ‖ and by substituting that direct kinematic model to representeach leg’s velocity in terms of the Jacobians, it is also assumed that ‖ṗRi ‖ = ‖JRi ·Φ̇R

i ‖. Hereafter,the super index R is omitted and we will assume the the limbs contact points are in representedin robot’s fixed inertial frame2. Thus, the robotic platform with averaged absolute velocity isdefined by,
v = 16 6∑

i=1 ‖Ji · Φ̇i‖ (5.38)
Similarly, by approaching a differential velocity approach, from a top view the right-hand sidelegs have positive sense of motion, while the left-hand side have negative values, thus,

v̂ = 3∑
i=1 vi −

6∑
j=4 vj (5.39)

By establishing a model for the robots angular velocity ωt w.r.t. an averaged radius ` obtainedby the robot’s geometric centre, and the limbs contact point positions, thus the instantaneousangular velocity ωt = v̂/`. Where,
` = 16 ∑

i
li (5.40)

Each limb distance to the robot’s centroid li has an angle αi , and an instantaneous averagevalue that represent all angles,
α̂t = 16 ∑

i
αi (5.41)

Given that, each αi can be obtained by,
αi = arccos( xcr

||xcr + ycr ||

) (5.42)



5.4. OPTICAL FLOW ANALYSIS 171Where the positions of the contact points w.r.t. the robot inertial space are,
x = r cos(θi) + (x2 + z2)1/2 cos(θ + φi0) (5.43)

and,
y = r sin(θi) + (x2 + z2)1/2 sin(θ + φi0) (5.44)

Therefore, it follows that, the transversal velocity component is stated as the numerator of thefollowing equation,
ω = v̂ cos(α̂t)

` (5.45)
And by substituting the whole terms in order to have the complete model equation (5.46),

Proposition 5.3.2 (robot’s yaw speed). The robot’s angular velocity is inversely propor-

tional to the distance of the limbs’ contact point w.r.t. the robot’s centroid, and directly

proportional to the transversal Cartesian component of the limbs’ differential speed v̂,

equation (5.39).
ω = 16 ∑6

i=1 ||J · Φ̇i|| cos(αi)16 ∑6
i=1(r + (x2

i + y2
i + z2

i )1/2) (5.46)

Now the input vector to control the robotic platform in terms of linear and angular speeds isdefined by equation (5.47), which is comprised of the equations (5.38) and (5.46).
u = (v, ω

)> (5.47)
5.4 Optical flow analysis

The optical flow vectors represent the apparent motion of the objects in the scene w.r.t. thevisual sensor perspective, where the sensor is the local observer7–9. Thus, it is of interest tomeasure the optical flow of the feature points that are invariant to scale and rotation (SIFT)detected in the scene (feature extraction). In order to measure the optical flow, the image
I(c, r, t1) is sensed and it is established data correspondence with the next consecutive image
I(c, r, t2).
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I(cf + udt, rf + vdt, t + dt) = I(cf , rf , t) (5.48)

Previous expression represents the small differential values of columns cf , and rows rf w.r.t.dt between two successive image frames. We refer to feature points (SIFT) with valid corre-spondences in order infer their optical flow speed components.
∂I
∂c

dcf
dt + ∂I

∂r
drf
dt + ∂I

∂t = 0 (5.49)
For the key points correspondence, we present the nearest-neighbour method that minimizesdifferences among the feature vectors. Each SIFT key-point10,11 detected with its optic flowcomponents are comprised of the features vector f ∈ R6 defined next,

f = (ċf , ṙf , θf , vf , cf , rf )> (5.50)
or as the following definition,

Definition 5.4.1 (feature vector). The feature vector is f ∈ R6, where a given fi(t) is anyfeature vector detected in image frame at actual time t
f = ( ∂I∂c dcfdt , ∂I∂r drfdt , arctan( ṙfċf

)
, 2√(ċf )2 + (ṙf )2, cf , rf)> (5.51)

Figure 5.6 illustrates the optic-flow-based feature vectors f, and depicts a set of correlatedkey points measured during experimental navigation12. Such feature points are detected bydeploying the SIFT algorithm because of its suitability and reliability for the present application.Furthermore, the descriptors obtained in the present context are the optical flow of the SIFTpoints because those poses invariance of scale and rotation.
Therefore, one of the main interest of this data association approach is to establish approx-imated displacement speeds of the legged robot w.r.t. to the approaching objects13 . Thisinformation allows to infer how the robot may quickly avoid collisions by directly involvingsuch motion information in the robot’s navigation equations.
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Figure 5.6: Optic flow of invariant features (SIFT). Real scene (left); optic flow vectors extraction (right).

5.5 Navigation control

For the sake of the robot’s safe navigation, the critical areas of consideration to detect obstaclesmoving towards a collision generally converge in the visual feature centre (figure 5.7). Thearea of convergence is depicted as a circular region that is of critical interest in order to detectthe collisions that might occur as the nearest objects empirically scoped by the radius re . Theextrinsic parameters depicted in figure 5.7 are explained in the subsequent paragraphs of thissection, provided as postulates that comprise an inference engine for safe navigation2.

Figure 5.7: Image frame with area of critical interest of a motion feature point.



174 CHAPTER 5. MULTI-LEGGED OBSTACLE AVOIDANCEThe optic flow vectors falling within the encircled area are deployed as elements that con-tribute to take decisions in order to yield changes of speeds for evasion, according to the nextcoordinates criterion,
Postulate 5.5.1 (evasion distance). When the distance in focal plane of a feature vector

is less than the magnitude re , the optic flow feature vector representing an obstacle in

the local scene is in close proximity to the robot.

√(rf − rc)2 + (cf − cc)2 < re (5.52)

Besides, the optic flow vectors with direction to the robot are defined by the angles criterion
Postulate 5.5.2 (direction of collision). The obstacle angle of direction θf is leading to-

wards the robot, if the following criterion occurs.

γ1 < θf < γ2 (5.53)

Furthermore, in order to determine the magnitudes of speed displacements, the inequality(5.54) is a criterion to discriminate whether or not a motion feature vector f in image frame
t −1 w.r.t. its correlated one g in image frame t produces a relevant motion toward a collision.

Postulate 5.5.3. The magnitude of motion f at time t − 1, and at time t called g of an

object, indicates whether a relevant motion toward a collision has been produced or not.

∑
i

∑
j
‖fi − gj‖

 ≶ εf (5.54)

With equations (5.52)-(5.54) it is possible to establish a condition, which indicates that there is afeature motion vector within an emergency proximity area,
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Postulate 5.5.4 (near object detection). There exist is a near object in possibility of colli-

sion, when the feature motion vector is within an emergency proximity area, and there

is a considerable speed magnitude greater than a speed threshold εf .

(√(rf − rc)2 + (cf − cc)2 < re
)
∧

∑
i

∑
j
‖fi − gj‖ > εf

 (5.55)

Similarly, it also possible to state a condition criterion to establish that there exist a free collisionpath in front of the robot by the next postulate,
Postulate 5.5.5 (free-collision path). There is not any object collision when any optic

feature vector is out of the scope re , and angle θf is out of criteria γ1, γ2.(√(rf − rc)2 + (cf − cc)2 > re
)
∧
(
γ1 > θf > γ2) (5.56)

Likewise, it is possible to determine whether or not there are obstacles toward the directionthe robot is moving along, by using the next criterion
Postulate 5.5.6 (potential collision detection). There are obstacles within the critical cir-

cular area, and in close direction to the robot.

(
γ1 < θf < γ2) ∧

∑
i

∑
j
‖fi − gj‖ > εf

 (5.57)

In addition, in order to know along which side of the robot the feature vectors are moving, theangle γ3 is analysed. The obstacles moving to the right side of the robot the next criterion isused,



176 CHAPTER 5. MULTI-LEGGED OBSTACLE AVOIDANCE
Postulate 5.5.7 (right-hand side object avoidance). An obstacle is right-hand side avoided,

if this criterion occurs:

(
γ3 < θf < γ1) ∧

∑
i

∑
j
‖fi − gj‖ S εf

 (5.58)

Similarly, analysing when the feature vectors are moving to the left side of the robot,
Postulate 5.5.8 (left-hand side object avoidance). An obstacle is left-hand side avoided, if

this criterion occurs:

(
γ2 < θf < γ3) ∧

∑
i

∑
j
‖fi − gj‖ S εf

 (5.59)

Therefore, from previous definitions of the avoidance criteria, it follows to propose the robot’svelocity models that will provide suitable navigation behaviours14. Starting from a first kine-matic definition adt = dv, let us complete the integrals for each differential dt and dv respec-tively, thus
a
∫ t2
t1 dt = ∫ v2

v1 dv (5.60)
hence by performing the integrations in both sides of the equation,

a(t2 − t1) = v2 − v1
the recursive model for vt+1 is stated by

vt+1 = vt + a(t2 − t1) (5.61)
Similarly, the kinematic equations a = dv/dt, and v = ds/dt are true for our model, and bothare set for a second kinematic model,

vdv = ads (5.62)



5.5. NAVIGATION CONTROL 177thus, the change of velocity w.r.t. the change of position is described by the next expression,∫ v2
v1 vdv = a

∫ s2
s1 ds (5.63)

and by solving the defined integrals,
v22 − v212 = a(s2 − s1) (5.64)

Hence, exchanging the sub-index v1,2 and s1,2 by the time counters, a non linear recursivesolution for the robot’s instantaneous velocity is stated by the following expression,
v2
t+1 = v2

t + 2a(st+1 − st) (5.65)
Therefore, by combining the expressions of the optic-flow feature vectors stated as criteriafrom previous postulates, the new control input velocity models are proposed as theorems.The velocity model theorems comprise the inference engine, which is fundamental for thecontrol vector û = (v, ω)> that combines the acting-sensing models in terms of the linear andangular velocities. Therefore, the robot’s instantaneous linear velocity behaviour is given bythe following expression,
Theorem 5.5.9 (linear velocity model). The robot’s acting-sensing behaviour of its linear

velocity model is stated by the present inference engine:

vt+1 =


√
v2
t + 2a(st+1 − st), (√(rf − rc)2 + (cf − cc)2 > re

)
∧
(
γ1 > θf > γ2)

vt − a(t2 − t1), (
γ1 < θf < γ2) ∧ (∑i

∑
j ||fi − gj || < εf

)
0, (√(rf − rc)2 + (cf − cc)2 < re

)
∧
(∑

i
∑

j ||fi − gj || < εf
)

(5.66)
Likewise, the robot’s acting-sensing behaviour of its angular velocity is stated by the nexttheorem,
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Theorem 5.5.10 (angular velocity model). The robot’s acting-sensing behaviour of its

angular velocity model is stated by the present inference engine:

ωt+1 =



ωt + θ̈(t2 − t1), (
γ3 < θf < γ1) ∧ (∑i

∑
j ||fi − gj || < εf

)
ωt − θ̈(t2 − t1), (

γ2 < θf < γ3) ∧ (∑i
∑

j ||fi − gj || < εf
)

0, (√(rs − rc)2 + (cs − cc)2 > re
)
∧
(
γ1 > θf > γ2)

(5.67)

Thus, a state space linear equation that controls the robot motion in global inertial frame isdefined by
ẋ = Ax + Bu (5.68)

Then, by defining the state vector x = (xg , yg , θg )>, it is also presented the state transition andinput matrices1 to complete the state equation
ẋg
ẏg
θ̇g

 =


1
t 0 00 1

t 00 0 1
t




xg
yg
θg

+


cos θg 0sin θg 00 1

 v

ω

 (5.69)

The feedback robot’s displacement16 arising from the optical flow observations are used tocontrol the navigation model, it deploys the position information provided by the optical flowvectors. With the flow vector (cf , rf )> on the focal plane17, the angular factor fc is obtainedfrom the horizontal angle of view of the visual sensor by
fC = cf

φh
C (5.70)

likewise, for a numerical factor related to the vertical angle is given by
fR = rf

φv
R (5.71)



5.5. NAVIGATION CONTROL 179The optical parameters of the sensor are depicted in figure 5.8. In addition, the sensor heightposition is provided in metric units, such parameter is used in next equation to obtain metricdata about the feature points sensed in world-space w.r.t. the robot’s local inertial system,
xrc = ± hcos(φ − φv/2 + ∆φv) tan(fC) (5.72)

likewise, for the position along the y metric component,
yrc = h tan(φ − φv/2 + fR) (5.73)

Figure 5.8: Robot’s plane, and sensor coordinate systems.

From previous metric definitions, the feature points metric locations18 are used to infer therobot’s yaw variation in times t − 1 and t by
φv = arctan(y1(t − 1)− y2(t − 1)

x1(t − 1)− x2(t − 1)
)
− arctan(y1(t)− y2(t)

x1(t)− x2(t)
) (5.74)

It follows that, a type of visual odometry is to estimate the robot’s displacement, as the position19
variates incrementally over time, and is transformed onto previous observation inertial frameby the Euler orthogonal matrix R(φv), ∆x∆y

 = R(φv) ·
x1

y1
−x2

y2
 (5.75)

Therefore, the navigation control law that projects the velocity vector in t + 1 is defined inproposition (5.5.11),
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Proposition 5.5.11 (positioning control law). The reference model based positioning mo-

tion control is proposed by

vt+1 = ξ̇t + ∫
t

1
τ (v̂u− vr)dt (5.76)

where the state vector is defined by ξ̇ = (ẋ, ẏ)>, and it comes from the state equation in actualtime t. The relaxation time τ is the time required to reach a velocity change. And v̂ is areference velocity model described by,
ṡ = v + at + 3aωt2 (5.77)

Hence, given a reference velocity, the unit vector u only provides the directions of the referencevelocity vector,
u = xt+1 − xt

||xt+1 − xt||
; x =  x

y

 (5.78)
In addition, by substituting the visual feedback planar displacement equation (5.75) in the pro-posed navigation control law11, the observed speed vr is obtained:

vt+1 =  ẋg
ẏg

+ 1
τ

∫ t2
t1

(v + at + 3aωt2) ( xt+1 − xt
||xt+1 − xt||

)
− 1
t

φv
 x1 − x2

y1 − y2
dt (5.79)
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Chapter 6

NAVIGATION USING EXPONENTIAL

DERIVATIVES

Edgar A. Martínez García

Laboratorio de Robótica, Institute of Engineering and Technology
Universidad Autónoma de Ciudad Juárez, Mexico.

In this chapter, an autonomous navigation algorithm for wheeled mobile robots (WMR)for operating in dynamic environments (indoors or structured outdoors), and based on fieldvectors1–9 is formulated. The planning scheme is of critical importance for autonomous navi-gational tasks in complex dynamic environments. To avoid potential crashes, reliable planningalgorithms must be computationally efficient while considering important WMR and motiondynamic effects. The focus concerns a model for autonomous navigation with capabilities thathelp to avoid collisions. This chapter presents a framework that includes the kinematics andmotion dynamics model in continuous-time merged with a general model to solve the motion-planning problem. The model approaches a general velocity-based motion framework thatmodels causes and effects of motion. The speed control considers the functional form of mo-tors rotational speed rate, and the robot’s size to determine the vehicle yaw speed, and withsuch basis the actual and posterior position vectors are formulated. The combined scheme al-lows any forward kinematics, and allows weighting factors to yield motion effects from multiplesensed features.
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Figure 6.1: Multiple wheeled mobile robots using the proposed navigation scheme.

The topic of this chapter consist of given a WMR µ with fixed inertial frame xµt = (x, y)T , andheading to θt , it should pass through a sequence of local goals at xt with direction mt each. Andeventually the robot must reach a global goal destination γ. The Cartesian distance betweentwo points is generally defined by the norm of their geometric difference ‖~δµα‖ = ‖xµt − xαt ‖(distance between robot µ and obstacle αt). Goals are established to exert attractive accelerativefields Fγt which easily conduct the robot. Detected obstacles α exert repulsive accelerative fields
Fαt . Both types of fields in combination form an enriched directional map.
6.1 General navigation model

The navigation models begins by introducing a general control equation to govern the robot’sspeed (6.1). This relationship keeps the robot around a safe ideal velocity vo , while navigatingalong the direction θt . The factor η is the gain value that if adjusted, defines the controlconvergence of the speed.
Proposition 6.1.1 (controlled velocity). vt is proportionally controlled by the feedback

error w.r.t. the reference vot , and magnitude limit h,

vt = (v̂t−1 + η(vot − v̂t))h(vmax‖v̂t‖

) (6.1)

The velocity vector vt is proportionally adjusted using the feedback velocity error w.r.t. areference speed, which in particular happens when the magnitude reduction function h(·) = 1.The non-stationary ideal velocity is denoted by vo = vo(cos(θt), sin(θt))>. When an unexpected



6.1. GENERAL NAVIGATION MODEL 185collision suddenly occurs, very short periods of time are generally taken. As a result, the model(6.1) controls the velocity peaks exceeding maximal allowable velocities when the function valueis in the range 0 < h(·) < 1, as modelled by equation (6.2).
Definition 6.1.2 (velocity limit). The limit conditions factor h allow three behaviors of v̂t ,

h (vmax , ‖v̂t‖) =


0, ‖v̂t‖ = 0
1, 0 < ‖v̂t‖ ≤ vmax
vmax
‖v̂t‖ , vmax < ‖v̂t‖

(6.2)

The velocity model (6.1) recursively controls the real velocity fluctuating around vo , andremoves divergent magnitudes overpassing the maximal allowable velocity. The real velocityvector v̂t at actual time t is defined in (6.3). The real velocity model in this context involves thecauses and effects of motion, as well as random fluctuations perturbing acceleration compo-nents. The real velocity vector v̂t is expressed in terms of two global accelerative componentsthat yield dv̂dt as in equation (6.3). One term is the directional field vector Ft = (fx , fy)> thatexpresses the internal and external causes of motion by Newton’s 2nd law of motion F/m with
m = 1. The second term at = (ax , ay)> is the general accelerative behaviour for any inertialsystem (global aI , or local aR). dv̂dt = Ft − aIt (6.3)
The real motion model v̂t expresses the robot’s global behaviour yielded by external causes ofmotion. We encompass three external causes of motion (sensors are deployed in the processfor detection), next desired goals at sight, obstacles position, and final goal destinations. Theequation (6.4) models the directional fields described in terms of global accelerations Ft . Causesof motion: internal (Fot ), and external (Fαt and Fγt ).

Ft = Fot +∑
α

Fαt +∑
γ

Fγt (6.4)
Since the robot’s navigation depends on sensor observations, only sensor data feature are usedas regions of interest to exert weighted navigation functions. Each acceleration is defined with



186 CHAPTER 6. NAVIGATION USING EXPONENTIAL DERIVATIVESan adaptive numeric weight w(mt , ft) yielded by the bearing location of the targets (local goaldestination, or obstacles) within the sensors field of view as defined in equation (6.5).
Proposition 6.1.3 (Vector field).

Ft = Fot +∑
α
w(mt , −fαt )fαt +∑

γ
w(mt , fγt )fγt (6.5)

The repulsive and attractive behaviour, which affect the robot’s behaviour accentuate themagnitudes of the motion functions given in expressions (6.6) and (6.7), where ~δµ = xαt − xµtis a distance vector between the positions of a goal/obstacle and the actual robot µ. mt =(xµt+1−xµt )/‖xµt+1−xµt )‖ is a unit vector expressing the direction towards a next desired location
xt+1. Thus, the weighting factor wt will affect the repulsive acceleration behaviour accordingto,

Definition 6.1.4.

Fαt (m, ~δµα) = w(mt , −fαt )f(~δµα) (6.6)
similarly the weighting factor will affect the attractive acceleration by,

Fαt (m, ~δµγ) = w(mt , fγt )f(~δµγ) (6.7)
The influence of the weight wt depends on the sensing direction φt of a goal/obstacle andthe actual acceleration f, as defined by the equation (12.2). If the actual orientation of thevector acceleration f is about the same as the actual desired orientation mt , then no changeof direction is required for the robot. It is expected that the orientation of the goal/obstaclesensed at bearing φt is approximately along the direction of the next desired position. But,if the orientations of vectors mt and φt are different, then the component ft cosφ must bedecreased by the yaw changes.

wt =
1, mt · ft ≥ ‖ft‖ cos(φit)
λt , otherwise (6.8)



6.2. INERTIAL FRAMES 187The influence of rotations that the robot must carry out is given by an influence term λt whichis an average of the fusion of all multi-sensory observations. As we established that the robot isinstrumented with sn different sensor devices i. Thus, λt is valued within the range 0 ≤ λ ≤ 1based on an effective angle of view φt ,
λt = sin( 1

sn

∑
i

φit
π

) (6.9)
Where sn is the total number of sensors involved in the perception of the objective (goal/obstacle),and (φt)sni are the angles at which each sensor i detected the same objective. Expression (6.9)defines a greater numeric weight to objectives located nearly along the longitudinal robot’s axis(fixed-frame, defined at π/2). The sensing modality for environment mapping is by deploying alaser range finder. The important features, which the robot is able to perceive are very criticalbecause on this issue, the robot defines the numeric weighting factors to impact significantlythe navigation functions.

6.2 Inertial frames

The definition of the robot’s motion is described in local and global Cartesian frames to rep-resent the accelerations map (figure 6.5). Such scheme is useful to model accelerative motionbehaviour denoted by at , already described by equation (6.3) to describe part of the real accel-eration dv̂dt . Let us consider the linear velocity components of a robot with averaged velocity
vt . By defining the velocity vector vRt = (vx , vy)T in the robot fixed-frame, the components XYrepresent the 2D plane of motion and is given by the expression equation (6.10),

vRt = vt

cos(θt)sin(θt)
 (6.10)

Where θt is the robot’s angle of motion w.r.t. robot’s initial posture. By transforming theoriginal robot fixed-frame using a transformation matrix R with rotation angle ψ betweenthe robot’s frame, and the global system. The new expression for the global frame becomesas expressed by equation (6.28), which is the velocity behaviour without wheels kinematicconstraints. The Euler rotation matrix R and its inverse are critical in most mathematical



188 CHAPTER 6. NAVIGATION USING EXPONENTIAL DERIVATIVESdefinitions of this manuscript. Because of R is a non-singular matrix according to R−1R = Ior RR−1 = I, and since R is an orthogonal matrix, hence R−1 = RT . Thus, let us demonstrateit (see 1.2.3),
R(ψt) = cosψt − sinψtsinψt cosψt

; R−1(ψt) =  cosψt sinψt
− sinψt cosψt

 (6.11)
If cosψt cosψt − (− sinψt) sinψt 6= 0, then R is invertible, if only if det R 6= 0, where det R =cosψt cosψt − (− sinψt sinψt).

R−1 = 1det R

 cosψt −(− sinψt)
−(sinψt) cosψt

 (6.12)
and,

R−1 = 1
cosψt cosψt − (− sinψt) sinψt

 cosψt −(− sinψt)
−(sinψt) cosψt

 (6.13)
Thus, from previous definitions, R as well as R−1 will be used to describe motion in both in-ertial frames accordingly. Two ways to formulate an equation for aRt are presented. Firstly, withlinear matrix algebra (see 1.2), inversely transform the acceleration into the robot coordinateframework by,

aRt = R−1
Z (ψt)aIt (6.14)

Thus, substituting terms in previous equations,
aRt =  cos(ψt) sin(ψt)

− sin(ψt) cos(ψt)
vt(θ̇t + ψ̇t)

− sin(θt + ψt)cos(θt + ψt)
+ v̇t

cos(θt + ψt)sin(θt + ψt)
 (6.15)

Algebraically expanding,
aRt = vt(θ̇t + ψ̇t)

− cos(ψt) sin(ψt + θt) + sin(ψt) cos(ψt + θt)sin(ψt) sin(ψt + θt) + cos(ψt) cos(ψt + θt)


+v̇t
 cos(ψt) cos(θt + ψt) + sin(ψt) sin(θt + ψt)
− sin(ψt) cos(ψt + θt) + cos(ψt) sin(ψt + θt)

 (6.16)



6.2. INERTIAL FRAMES 189By substituting trigonometric identities, our expression is simplifyied,
aRt = vt(ψ̇t + θ̇t)

sin(ψt − (ψt + θt))cos(ψt − (ψt + θt))
+ v̇t

cos(ψt − (−ψt + θt))sin(ψt + (−ψt + θt))
 (6.17)

Thus,
aRt = vt(ψ̇t + θ̇t)

sin(−θt)cos(−θt)
+ v̇t

cos(−θt)sin(−θt)
 (6.18)

Using the identities sin(−θt) = − sin(θt) and cos(−θt) = cos(θt). Thus, without lost of gen-erality, the resulting simplified mathematical expression is now written as in equation (6.19),where in the first term, ψ̇t is still existing, nevertheless it does not yield any impact becausewithin the robot’s motion frame ψt is always zero.
aRt = vt θ̇

− sin(θt)cos(θt)
+ v̇t

cos(θt)sin(θt)
 (6.19)

Secondly, another way to find a functional form for aRt is from equation vRt = R−1vIt and itsderivative is as it follows,
aRt = v̇Rt = R−1v̇It + Ṙ−1vIt (6.20)

By algebraically developing the second term in the right side of previous equation,
aRt = R−1aIt +− sinψt cosψt

− cosψt − sinψt
 ψ̇tvt

cos(ψt + θt)sin(ψt + θt)
 (6.21)

arranging terms and signs
aRt = R−1aIt − ψ̇tvt

sinψt − cosψtcosψt sinψt
cos(θt + ψt)sin(θt + ψt)

 (6.22)
thus,

aRt = R−1aIt − ψ̇tvt
sinψt cos(θt + ψt)− cosψt sin(θt + ψt)cosψ cos(θt + ψt) + sinψt sin(θ + ψt)

 (6.23)
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aRt = R−1aIt − ψ̇tvt

sin(ψt − θt − ψt)cos(ψt − θt − ψt)
 (6.24)

and
aRt = R−1aIt − ψ̇tvt

− sin θtcos θt
 (6.25)

Now, developing the first term of right-side of equation,
aIt = vt(θ̇t)

− sin θtcos θ
+ v̇t

cos θtsin θt
− ψ̇t tvt

− sin θtcos θt
 (6.26)

Finally,
aIt = vt θ̇t

− sin θtcos θt
+ v̇t

 cos θt
− sin θt

 (6.27)

vIt = vt

cos(θt + ψt)sin(θt + ψt)
 (6.28)

Now, the acceleration vector in global frame is obtained by equation (6.29),
aIt = vt(θ̇t + ψ̇t)

− sin(θt + ψt)cos(θt + ψt)
+ v̇t

cos(θt + ψt)sin(θt + ψt)
 (6.29)

Inversely transforming the acceleration into the robot’s coordinate framework, and withoutlost of generality, the resulting simplified mathematical expression is now written in equation(6.30) as the robot’s local frame, hence ψ̇ = 0.
aRt = vt θ̇

− sin(θt)cos(θt)
+ v̇t

cos(θt)sin(θt)
 (6.30)

Equation (6.29) is about the same as equation (6.30). In the former, the rotation frame angle ψis being considered for transformation into the global frame. Latter expression has no rotatedinertial frames, hence ψ = 0. Hereafter, equation (6.29) may be used as the general framesolution. Being ψt 6= 0 when global inertial Cartesian frame is required.
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6.3 Navigation model derivation

Based on the Newton’s law of motion, the next equation establishes that the sum of all acceler-ations in the system is equal to a global acceleration,
at = 1

m
∑
i

2√fx2
i + fy2

i ≡
∑
i

2√fx2
i + fy2

i (6.31)
For the sake of analysis, we define an unitary mass m = 1; and by simplifying it, equation (6.31)it becomes (6.32). The acceleration at is known as the robot’s global behaviour at any inertialframe, and Ft is defined as the descriptive equations of dynamic effects. The approximatedreal acceleration model is denoted by the next equilibrium condition,

aRt = Fµt (6.32)
The equation (6.32) describes the boundary case of equilibrium for at = 0 constrained by thefollowing statements,
Theorem 6.3.1. (equilibrium conditions)

1. when dv̂t/dt = 0, v̂t is constant.

(a) therefore for equation (6.1), v̂t−1 ≡ v̂t , and η = 1, then vt = 0
2. the condition for equation (6.1), v̂t = 0, when the robot is initially stopped, or when

it reached its final goal destination.

(a) therefore for equation (6.1), v̂t = 0 and η = 1, then vt = 0
when such limit case condition occurs, sum of all accelerations will meet the condition

for the equilibrium case when, dv̂dt = Ft − aRt = 0
The equilibrium condition of global accelerative model is then demonstrated by algebraicdevelopment to validate the expression (6.32).



192 CHAPTER 6. NAVIGATION USING EXPONENTIAL DERIVATIVESBy substituting (6.29) and (6.4) in (6.3) with ψt = 0 (both described in common inertial frame)as follows,
vt θ̇t

− sin θtcos θt
+ v̇t

cos θtsin θt
 = Fot +∑

α
Fαt +∑

γ
Fγt (6.33)

The term Fot is the robot’s internal motivation with functional form in (6.34), which makes therobot move along multiple local goals. Where δ = ‖xt+1−xt‖ is the distance between the actualrobot location xt and the next desired goal xt+1.
Fot = 1

τ

(
vo

‖~δt‖
(xt+1 − xt)− vt

) (6.34)
The ideal linear speed vo sets a desired speed in xy components. There is a vector of actualmeasured velocity vt , and a relaxation time τ that defines the time taken for speeds change.

Arranging (6.33) by dropping off the velocity measurement, the next algebraic steps aredeveloped
vt θ̇t

− sin θtcos θt
+ v̇t

cos θtsin θt
 = 1

τ

(
vo

‖~δt‖
(xt − xt+1)− vt

)+∑
α

Fαt +∑
γ

Fγt (6.35)
therefore,

τ

vt θ̇t
− sin θtcos θt

+ v̇t

cos θtsin θt
−∑

α
Fαt −

∑
γ

Fγt

 = vo

‖~δt‖
(xt − xt+1)− vt (6.36)

We are treating the usual condition where both vt and θ̇t are approximately uniforms insmall periods of time τ (with very small variations for τ), where in our context we definethat ∫t vt θ̇t sin θtdt ≈ vtθt sin θt , since sin θt−1 ≈ sin θt .
vtθt

− sin θtcos θt
+ vt

cos θtsin θt
−∑

α
vαt −

∑
γ

vγt = vo

‖~δt‖
(xt − xt+1)− vt (6.37)

Hence, due to units of time of τ , left-sided equation terms changed from m/s2 into m/s, forwhich there is an integrable functional form for v̂t .



6.4. POSITION MODEL 193Thus, by dropping off the real approximated velocity vector,
v̂t = vo

‖~δt‖
(xt − xt+1) +∑

α
vαt +∑

γ
vγt − vt

θt
− sin θtcos θt

−cos θtsin θt
 (6.38)

Our equation has now been solved in (6.40) as to have a model of motion that combines therobot’s fixed-frame, with external dynamic constraints,
v̂t = vo

‖~δt‖
(xt − xt+1) +∑

α
vαt +∑

γ
vγt − vt

 sin θt cos θ
− cos θt sin θt

 ·−θt1
 (6.39)

Proposition 6.3.2 (The navigation model). A model of motion for any inertial frame.

v̂t = −dτ(θ̇ + ψ̇)− sin θtcos θt
− vt

cos θtsin θt
+ ∑

α
vαt +∑

γ
vγt + vo

‖~δt‖
(xt+1 − xt) (6.40)

Where dτ = τvt , it is defined as a short robot’s displacement during the relaxation period oftime. The expression (6.34) will be developed in next sections, as it involves the robot’s actualand posterior position vectors.

6.4 Position model

The robot position vector xt = (x, y)T is a summation of all estimated positions overtimew.r.t. a common inertial frame from its starting position up to the actual time. The positionvector is calculated based on the actuators rotational kinematic model to quantify displacements.We propose a solution to deduce xt based on controlling the wheels actuator. Although, thekinematic parameters are fundamentals for any planning algorithm as reported7,11, we providea general solution that only consider any robot’s angular velocity ωt equation.
ωt = v±x

l (6.41)



194 CHAPTER 6. NAVIGATION USING EXPONENTIAL DERIVATIVESThe distance l from robot’s centroid to any wheel’s contact point with surface is a numericconstant value that is geometrically inferred from the robot’s size, as in (6.42),
l = √W2 + L22 (6.42)

With W as the robot width, and L the robot’s length. On such basis, it is formulated that,
cos(α) = W/2

l (6.43)
As we are interested on the linear differential velocity projected over X-axis, we call it v±xto satisfy the equation (6.41), we defined the following relation between the differential linearvelocity and its x-component

cos(α) = v±x
vr − vl = v±x

v± ; v± cos(α) = v±x (6.44)
The equations (6.43) and (6.44) are equivalent, thus expressing (6.45) and then dropping off v±x

v±x
v± = W/2

l (6.45)
We substitute v±x into (6.41) and algebraically arranging we deduce the following expression,

Proposition 6.4.1. Robot’s instantaneous angular velocity model.

ωt = (vrt − vlt)W
l(W2 + L2) = r(φ̇rt − φ̇lt)W

l(W2 + L2) = K(φ̇rt − φ̇lt) (6.46)

For simplicity in this approach, we assume equivalents all wheels nominal radius, so thatlet K be defined as a constant numeric value by
K = rW

l(W2 + L2) (6.47)
For the case of two-wheel (dual asynchronous velocities) instead of four-wheel, L = 0 and thesame proposition applies.

ωt = Kg(φ̇1
t , . . . , φ̇kt ) (6.48)



6.4. POSITION MODEL 195Where K is a constant, and the function g(·) represents the yaw rate model with wheels ro-tational velocities φit as input parameters (its number will depend on the type of kinematicstructure). In equation (6.48), the angular velocity is directly controlled by the wheels rotation.It is worth highlighting that the framework allows integration of other kinds of kinematic con-straints by changing the ωt model accordingly, such as the Ackerman type, synchronised type,differential drive, or the platforms studied in11.
The approach to infer xt and xt+1 is by quantifying the wheels angular displacement directlyby the speed drivers. We take advantage of the control hardware (motor drivers) which worksunder asymptotic functions (although a non-linear motor speed curve will vary from productto product). A general relationship between actuator’s angular speed φ̇t and a digital controlvariable Ωt kinematics is given by

φ̇t(Ω) = ( a1 + e−ΛΩ−µ
)
− b (6.49)

Where a and b are constants that adjust the non-linear angular velocity behaviour curve, Λis the constant of fast asymptotic fall, Ω is a control digital word which is associated with anangular speed given directly by a user program, and µ is the central value of the velocity curve.By solving (6.49), we integrate the equation to obtain the next expression (6.50) en terms ofwheels instantaneous angle of rotation,∫ b

a
φ̇(Ω)dΩ = φ(Ω) = (a − b)Ω + aΛ ln(1 + eΛ(µ−Ω)) (6.50)

We synthesize the robot’s direction and deduce a formal position model equation as expressedin the vector form by (6.51) with the k rotation velocities φ̇it .
xt = x0

y0
+ ∫ tn

t0

v0 + ∫ tn

t1 v̇tdtcos(θ0 +K
∫ t g(φ̇1

t , . . . , φ̇kt )dtsin(θ0 +K
∫ t g(φ̇1

t , . . . , φ̇kt )dt
dtdt (6.51)

Nevertheless, the problem of robot skid/slip is overcome by combining with the method re-ported in7 that deploys an in-house made inertial unit. It works reasonable because yaw ratescan directly be controlled by using low level commands. Thus, by simplifying previous expres-sion, Φt = K
∫ tn

t1 g(φ̇1
t , . . . , φ̇nt )dt (6.52)



196 CHAPTER 6. NAVIGATION USING EXPONENTIAL DERIVATIVESSubstituting (6.50) in (6.52) and algebraically solving,
Φt = K

((a − b)Ωr + aΛ ln(1 + eΛ(µ−Ωr ))− (a − b)Ωl + aΛ ln(1 + eΛ(µ−Ωl))) (6.53)
then, Φt = K

((a − b)(Ωr −Ωl) + aΛ ln(1 + eΛ(µ−Ωr )1 + eΛ(µ−Ωl)
)) (6.54)

Hence, the actual position vector is written as,
xtn = x0

y0
+ ∫ tn

t0 (v0 + ∫ tn

t1 v̇tdtcos(θ0 + Φt)sin(θ0 + Φt)
dt)dt (6.55)

The orientation θt is solved by integration w.r.t. the time interval [t0, tn], in which wheelsrotations are controlled rather than collecting absolute odometry measurements (as commonlyproposed by other approaches). Thus, reformulating the robot’s angle by
θt = θ0 +K

∫ t

t1 g(φ̇1
t , . . . , φ̇nt )dt (6.56)

and solving for the instantaneous angle,
θt = θ0 + Φt (6.57)

We assumed that the magnitude of the robot’s angular acceleration dω/dt at every controlloop is much smaller than the magnitude of the angular velocity. Arranging the actual positionvector to be implemented in terms of the robot kinematic structure,
xt = ẋt+1

ẏt+1
∆t + r2g (φ̇rt , . . . , φ̇lt)∆tcos(θ0 + Φt)sin(θ0 + Φt)

 (6.58)
According to figure 6.2, in order to alter the robot’s orientation towards a next desired destina-tion xt+1, the motion control is based on the collection of consecutive sensor data that feedbackthe controller. The next desired position xt+1 defines a Cartesian objective, either attractiveor repulsive, which will depend on the nature of the objective. Rather than a single Cartesianpoint, this objective is referred as a territorial section, or area scoping the ideal Cartesianposition ()no accuracy is required.



6.4. POSITION MODEL 197Furthermore, the next position vector model arises from a function f′t that uses the actualorientation θt .
xt+1 = xt + ∫

t
wt(mt , f′t)f′t(δµ)dt (6.59)

In this approach we alter the actual orientation θt by weighting the accelerative navigationfunction wt(·)fγ,αt previously given in equation (6.6) and equation (6.7). The fundamentals ofthis algorithm is focused on equation (12.2) describing mt · ft . This expression quantifies thealignment of perpendicularity between yaw rate and a desired orientation mt . If mt and ft areapproximately aligned, then it means that the velocity orientation is projected along the actualdesired goal and altering direction is not required. However, ‖ft‖ cos(φt) is the acceleration

Figure 6.2: Geometric definition of f′t .

magnitude along the horizontal axis (common frame) respect to objective angle φ. A verysmall value of ‖ft‖ cos(φ), signifies that practically no change in direction is required. If suchmagnitude is too large, an important correction in orientation must be established throughthe weighting factor λ. The objective (attractive or repulsive) is represented by sensor datafeatures, the more sensors detect the same feature, the more certainty about the dirtectionobjective will improve the weighting factor λ. If φ is very near or along the robot headingaxis (about 90o), then λ = 1 approximately (see equation (6.9). The actual accelerative force ftis altered and defined as f′t , there is an objective angle correction (φ − θt), thus, the directionof ‖ft‖ is rotated by equation (6.60),
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f′t = R(φi − θt)ft (6.60)

where R(φ−θt) an Euler rotation matrix that corrects the yaw. Thus, extending the expression,we now have,
f′t = fx cos(φi − θ)− fy sin(φi − θ)

fx sin(φi − θ)− fy cos(φi − θ)
 (6.61)

by developing in the vector form f′t = (fx , fy)T , the new next-position vector,
xt+1 = xt

yt

+ ∫∫
t
f′t d2t = xt

yt

+ ∫∫t
fx cos(φ − θt)− fy sin(φ − θt)
fx sin(φ − θt)− fy cos(φ − θt)

d2t (6.62)
The new desired direction w.r.t. the actual orientation is given by the vector f′t , which is atransformation into the global coordinate frame, since observations are locals.

6.5 Exponential derivatives

A gradient vector field assigns the direction of a function leading to each Cartesian point. Thegradients can be viewed as accelerations acting on a positive sense, attracted to the negativegoal. Obstacles have a positive sense that forms a repulsive acceleration leading the robotaway from the obstacles. The combination of repulsive and attractive accelerations directs therobot from a starting location to the goal location while avoiding obstacles.

Figure 6.3: Exponential derivatives in 1D. Attractive (left); Repulsive (right).



6.5. EXPONENTIAL DERIVATIVES 199A vector field is a set of vectors or potential functions, which are differentiable real-valuedfunctions; where the gradient of the potential is the acceleration.
The gradient is a vector with components that point out along a direction that locally maximisesthe function.

Definition 6.5.1 (Repulsive exponential derivative).
fαt = −∇µαuoαR

e‖xα−xµ‖/R

‖xα − xµ‖
(6.63)

The denominator is determined by the factor (R−1‖xα − xµ‖) and defines the function torespond fast against situations in too close interaction with obstacles. Solving for its gradientoperator, we obtain that fαt ≡
( ∂f
∂x ,

∂f
∂x
). The equation (6.64) is a general function with the gradientoperator, where uoα is a constant defining the acceleration amplitude, and R is a stationary valuedefining the asymptotic potential falling value.
fαt = −∇µαuoαR

e‖xα−xµ‖/R

‖xα − xµ‖
(6.64)

Differentiating w.r.t. ∂fα/∂x and ∂fα/∂y,
(
∂ft
∂x ,

∂ft
∂y

) =


Ruoα
‖(xα − xµ)‖e‖xα−xµ‖/R( 12R )‖xα − xµ‖−12(xα − xµ)

Ruoα
‖(xα − xµ)‖e(xα−xµ)1/2/R( 12R )‖xα − xµ‖−12(yα − yµ)

+
e‖xα−xµ‖/RuoαR(−12 )‖xα − xµ)‖−32(xα − xµ)
e‖xα−xµ‖/RuoαR(−12 )‖xα − xµ‖−32(yα − xµ)


(6.65)

Arranging and ordering the terms,
(
∂fα
∂x ,

∂fα
∂y

) =

uoαR(x − x)e‖xα−xµ‖/R

‖xα − xµ‖3 − uoα(x − x)e‖xα−xµ‖/R(xα − xµ)
uoαR(y − y)e‖xα−xµ‖/R

‖xα − xµ‖3 − uoα(y − y)e‖xα−xµ‖/R(xα − xµ)
 (6.66)



200 CHAPTER 6. NAVIGATION USING EXPONENTIAL DERIVATIVESThus, algebraically arranging and factorising common terms,
(
∂fα
∂x ,

∂fα
∂y

) =
uoα(x − x)e‖xα−xµ‖/R( 1(xα − xµ) − R(xα − xµ)3/2
uoα(y − y)e‖xα−xµ‖/R( 1(xα − xµ) − R(xα − xµ)3/2

 (6.67)
in order to facilitate let us use notation fαt instead, and let us define too ‖δµα‖ = ‖xα − xµ‖,

fαt = uoαe‖xα−xµ‖/R

‖~δµα‖

xα − xµ
yα − yµ

( 1
‖~δµα‖

− R(xα − xµ)
) (6.68)

Finally, some terms of the derived equation may be substituted and simply expressed as,
fαt = uoα

e‖~δµα‖/R

‖~δµα‖

( 1
‖~δµα‖

− R
~δµα

)xα − xµ
yα − yµ

 (6.69)
Previous expression if defined in terms of a velocity vector,

vαt = ∫
t
fαt dt (6.70)

fαt = uoα
e‖~δµα‖/R

‖~δµα‖
( 1
‖~δµα‖

− R
~δµα

)xα − xµ
yα − yµ

 (6.71)
Previous expression is defined in terms of velocities by (6.72), where such term will satisfy thereal velocity of equation (6.40),

vαt = ∫
t
fαt dt (6.72)

Similarly, equations controlling the robot course to a global goal destination yield motion be-haviour as depicted by figure 6.3-left. The set of goals γs are defined a priori as intersectionpoints along the full course path. The general 1D artificial potential equation is defined by,
Definition 6.5.2 (Attractive exponential derivative).

fγt = −∇µγuoγe−‖
~δµγ‖/R (6.73)



6.5. EXPONENTIAL DERIVATIVES 201Where R represents the radius of a goal’s territorial scope. The distance vector betweenthe robot µ and the goal γ is defined by ~δ = xγt −xµt . The constant factor uoγ scales the attractiveaccelerative forces amplitude. Solving for its gradient operator the attractive potential functiongeneral equation is defined by,
fγt = −∇µγuoe−‖

~δµγ‖/R (6.74)
Thus, by deriving the function w.r.t. x and y, it yields,

(
∂fγt
∂x ,

∂fγt
∂y

) =
−uoe−‖xγ−xµ‖/R(−12 )‖xγ − xµ‖

R 2(xγ − xµ)
−uoe−‖xγ−xµ‖/R(−12 )‖xγ − xµ‖

R 2(yγ − yµ)
 (6.75)

simplifying the expression it now becomes
fγt = uoe−‖xγ−xµ‖/R

 xγ−xµ
R‖xγ−xµ‖
yγ−yµ

R‖xγ−xµ‖

 (6.76)
Algebraically arranging, the 2D potential function becomes as follows,

fγt = uo e
−‖~δµγ‖/R

R‖~δ‖

xµ − xγ
yµ − yγ

 (6.77)

fγt = uoγ
e−‖~δµγ‖/R
R‖δ‖

xµ − xγ
yµ − yγ

 (6.78)
Finding a general solution for equation (6.40), previous expression is rather defined in termsof velocities, than accelerations (6.79), as a term that partially satisfies (6.40),

vγt = ∫
t
fγt dt (6.79)

By combining both directional fields Fαt +Fγt , figure 6.4 illustrates an obstacle and a goal gradi-ents interaction of robot accelerations. Experimentally, a set of known goal destinations γi wereestablished and the robot was able to reach them all. The robot built up a map of accelerativeinteractions between attractive and repulsive directional fields (figure 6.5). Furthermore, dur-ing outdoor sensing experiments, numerous features of critical interest for system feedback
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Figure 6.4: 3D potential fields combining Fγ + Fα, at < −5, 0 > γ is located, and at coordinates (4, 5) an
obstacle is located.

were detected. Such features are the directions to local goals (mt) . Each sensor observation iscomprised of a high density repulsive local map, but concurrently combined with a priori attrac-tive directional fields12. The resulting experimental directional fields map is depicted in figure6.5. The nearer the obstacle, the larger becomes the accelerative potential force magnitudeexerted by the proposed model. In further experimental simulations, figure 6.6 shows how

Figure 6.5: Robot’s directional fields dynamic interaction of accelerations. Left: repulsive accelerations; Right:
attractive and repulsive.

functions evolve to safely avoid two obstacles. There exist two obstacles at xα = (15, 50)T and
xβ = (−2, 20)T . The robot parameters for this experiment are vo = 0.5m/s from 0m to 100malong the vertical Y -axis. In figure 6.6(top-left), the robot navigates vertically from xµt0 = (0, 0)Tup to xµtn = (0, 100)T , where location of γ is denoted by a triangle. Figure 6.6 (top-right) depicts



6.5. EXPONENTIAL DERIVATIVES 203the robot’s attractive accelerations towards the goal. As the distance ‖γ − µ‖ is getting shortergradually, the rate of motion behaviour is decreasing until the robot reaches γ. In figure 6.6(middle left-right), the acceleration components yielded by the presence of both obstacles aredepicted versus the distance respect the actual robot positions. It is worth noting at figure 6.6(down left and right) how the acceleration components evolve (dots x-component, and crosses
y-component) along the y-axis. In particular at y-coordinate 20m and 50m to avoid obstacles
β, and subsequently α, and then return to the desired trajectory.

Figure 6.6: Robot’s initial position xµ = (0, 0)T ; goal at xγ = (0, 100)T ; obstacles at xα = (15, 50)T , and
xβ = (−2, 20)T .
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Chapter 7

EXPLORATION AND SEARCH ROBOT

NAVIGATION

Edgar A. Martínez García

Laboratorio de Robótica, Institute of Engineering and Technology
Universidad Autónoma de Ciudad Juárez, Mexico.

The process of a mobile robot exploring an environment to search for a goal, might be acommon robotic mission in numerous applications. Assuming this process as a generalisedengineering problem, we may assume that the unknown goal emits an arbitrary form of energy,and by deploying a mobile robot instrumented with a suitable sensing device, it will explore inorder to found the goal. Hence, the robot’s sensing device requires a calibration process to fitthe data with the robot’s Cartesian location. In this chapter, it is assumed that a mobile robotis instrumented with although general sensing device, but appropriate to search an objectivegoal. A general navigation model for exploring and searching is formulated for any typeof mission, considering the sensor’s measurements Ê minimally informative for the robot tohave a good estimation of the goal location. Where Ê represents the general measurement ofa type of energy (active or passive) by the goal destination. In next sections we will establisha mathematical approach to fit an empirical measurement model with a theoretical model tocalibrate our equations assuming that the distance is a universal variable of interest for manyresearchers.
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7.1 Fitting a theoretical-empirical model Et-rt

A calibration process between the instantaneous experimental measurement Et and the theo-retical distance rt will yield a non-linear relation for generalised conditions.

Postulate 7.1.1. The actual measurement Êt has close relationship with actual distance
‖ξξξt −ξξξ0‖, and actual magnitude arising from an unknown destination. The general modelof instantaneous distance rt is,

rt = 2√(x0 − xt)2 + (y0 − yt)2 + z20 = ‖ξξξt −ξξξ0‖
When ‖ξξξt −ξξξ0‖ = 0, the goal is reached. It denotes the robot at ξξξt , and the unknown goallocation at ξξξ0 = (x0, y0, z0).

The postulation is sustained by an empirical model to calibrate the theoretical model, usingmeasurement data. The data representing distance measurements r̂, versus a measured typeof energy Ê is approached by a polynomial regression. The sum of quadratic residuals sr =∑n
i e2 is defined by the ith empirical observation of n measurements of r̂i as a function of

Êi. The error e = r̂i − ri , is given by the observation r̂i , and a theoretical model ri(Ei) =
a0 + a1Ei + a2E2

i + · · · + akEki . Substituting a cubic model that may fit suitable for numerousphysical systems (see sec. 1.6.3),
sr = n∑

i
(r̂i − ri)2 = (r̂i − a0 + a1Êi + a2Ê2

i + a3Ê3
i

)2 (7.1)
The partial derivations w.r.t. unknown parameters are led to find cubic model1 parametersnext,

∂sr
∂a0 = 2 n∑

i

(
r̂i − a0 + a1Êi + a2Ê2

i + a3Ê3
i

) (−1) (7.2)
∂sr
∂a1 = 2 n∑

i

(
r̂i − a0 + a1Êi + a2Ê2

i + a3Ê3
i

) (−Ei) (7.3)
1Nevertheless, the degree of the polynomial may be determined according to the practical problem.
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∂sr
∂a2 = 2 n∑

i

(
r̂i − a0 + a1Êi + a2Ê2

i + a3Ê3
i

) (−E2
i ) (7.4)

∂sr
∂a3 = 2 n∑

i

(
r̂i − a0 + a1Êi + a2Ê2

i + a3Ê3
i

) (−E3
i ) (7.5)

Then, we arrange algebraically,
n∑
i
r̂i = a0(n) + a1 n∑

i
Êi + a2 n∑

i
Ê2
i + a3 n∑

i
Ê3
i (7.6)

n∑
i
r̂iÊi = a0 n∑

i
Êi + a1 n∑

i
Ê2
i + a2 n∑

i
Ê3
i + a3 n∑

i
Ê4
i (7.7)

n∑
i
r̂iÊ2

i = a0 n∑
i
Ê2
i + a1 n∑

i
Ê3
i + a2 n∑

i
Ê4
i + a3 n∑

i
Ê5
i (7.8)

n∑
i
r̂iÊ3

i = a0 n∑
i
Ê3
i + a1 n∑

i
Ê4
i + a2 n∑

i
Ê5
i + a3 n∑

i
Ê6
i (7.9)

it follows to arrange and simplify in matrix form,
∑n

i r̂i∑n
i r̂iÊi∑n
i r̂iÊ2

i∑n
i r̂ni Ê3

i

 =


n
∑n

i Êi
∑n

i Ê2
i

∑n
i Ê3

i∑n
i Êi

∑n
i Ê2

i
∑n

i Ê3
i

∑n
i Ê4

i∑n
i Ê2

i
∑n

i Ê3
i

∑n
i Ê4

i
∑n

i Ê5
i∑n

i Ê3
i

∑n
i Ê4

i
∑n

i Ê5
i

∑n
i Ê6

i

 ·

a0
a1
a2
a3

 (7.10)

As the main matrix is of squared size, we applied the theorem of Cramer to solve for the cubicpolynomial coefficients (see sec. 1.2.4). Thus, the solution for coefficient a0 is,

a0 =
det

∑n

i r̂i
∑n

i Êi
∑n

i Ê2
i

∑n
i Ê3

i∑n
i r̂iÊi

∑n
i Ê2

i
∑n

i Ê3
i

∑n
i Ê4

i∑n
i r̂iÊ2

i
∑n

i Ê3
i

∑n
i Ê4

i
∑n

i Ê5
i∑n

i r̂iÊ3
i

∑n
i Ê4

i
∑n

i Ê5
i

∑n
i Ê6

i



det


n
∑n

i Êi
∑n

i Ê2
i

∑n
i Ê3

i∑n
i Êi

∑n
i Ê2

i
∑n

i Ê3
i

∑n
i Ê4

i∑n
i Ê2

i
∑n

i Ê3
i

∑n
i Ê4

i
∑n

i Ê5
i∑n

i Ê3
i

∑n
i Ê4

i
∑n

i Ê5
i

∑n
i Ê6

i



(7.11)



210 CHAPTER 7. EXPLORATION AND SEARCH ROBOT NAVIGATIONthe solution for coefficient a1,

a1 =
det


n
∑n

i r̂i
∑n

i Ê2
i

∑n
i Ê3

i∑n
i Ê

∑n
i r̂iÊi

∑n
i Ê3

i
∑n

i Ê4
i∑n

i Ê2
i

∑n
i r̂iÊ2

i
∑n

i Ê4
i

∑n
i Ê5

i∑n
i Ê3

i
∑n

i r̂iÊ3
i

∑n
i Ê5

i
∑n

i Ê6
i



det


n
∑n

i Êi
∑n

i Ê2
i

∑n
i Ê3

i∑n
i Êi

∑n
i Ê2

i
∑n

i Ê3
i

∑n
i Ê4

i∑n
i Ê2

i
∑n

i Ê3
i

∑n
i Ê4

i
∑n

i Ê5
i∑n

i Ê3
i

∑n
i Ê4

i
∑n

i Ê5
i

∑n
i Ê6

i



(7.12)

the solution for coefficient a2,

a2 =
det

∑n

i
∑n

i Êi
∑n

i r̂i
∑n

i Ê3
i∑n

i Êi
∑n

i Ê2
i

∑n
i r̂iÊi

∑n
i Ê4

i∑n
i Ê2

i
∑n

i Ê3
i

∑n
i r̂iÊ2

i
∑n

i Ê5
i∑n

i Ê3
i

∑n
i Ê4

i
∑n

i r̂iÊ3
i

∑n
i Ê6

i



det


n
∑n

i Êi
∑n

i Ê2
i

∑n
i Ê3

i∑n
i Êi

∑n
i Ê2

i
∑n

i Ê3
i

∑n
i Ê4

i∑n
i Ê2

i
∑n

i Ê3
i

∑n
i Ê4

i
∑n

i Ê5
i∑n

i Ê3
i

∑n
i Ê4

i
∑n

i Ê5
i

∑n
i Ê6

i



(7.13)

the solution for coefficient a3,

a3 =
det

∑n

i
∑n

i Êi
∑n

i Ê2
i

∑n
i r̂i∑n

i Êi
∑n

i Ê2
i

∑n
i Ê3

i
∑n

i r̂iÊi∑n
i Ê2

i
∑n

i Ê3
i

∑n
i Ê4

i
∑n

i r̂iÊ2
i∑n

i Ê3
i

∑n
i Ê4

i
∑n

i Ê5
i

∑n
i r̂iÊ3

i



det


n
∑n

i Êi
∑n

i Ê2
i

∑n
i Ê3

i∑n
i Êi

∑n
i Ê2

i
∑n

i Ê3
i

∑n
i Ê4

i∑n
i Ê2

i
∑n

i Ê3
i

∑n
i Ê4

i
∑n

i Ê5
i∑n

i Ê3
i

∑n
i Ê4

i
∑n

i Ê5
i

∑n
i Ê6

i



(7.14)



7.2. MODEL FOR DIRECTIONAL DERIVATIVES 211Thus, the new adjusted theoretical model r(E) is a cubic polynomial of the general form,
r(Et) = a0 + a1Et + a2E2

t + a3E3
t (7.15)

7.2 Model for directional derivatives

To establish a math form for the directional fields in terms of distances and potentials, thefollowing postulate is stated,
Postulate 7.2.1. The equilibrium condition is stated as Êt = 0, when ξξξt = ξξξ0, through itscontinuous search by −∇rtQ.

‖ −∇Qt‖ = ∥∥∥∥∥
(
∂Q(Êt , rt)

∂x + ∂Q(Êt , rt)
∂y

)∥∥∥∥∥ = 0 (7.16)

We apply the gradient operator to derive Et w.r.t. x and y, so we obtain an analyticalsolution on how the energy of Et behaves w.r.t. the instantaneous Cartesian position ξξξt . Froma mobile robotics planning approach, the problem to be solved is to yield the automatic searchof the unknown Cartesian location ξξξ0, which is a constant position. The general robot motionequation is given by (7.17), its derivative w.r.t. t yields the linear velocity vector vQ exertedby the integration w.r.t. time of the gradient −∇Q. Where uo is a constant value that setupvelocity amplitude.
vQ(t) = uo

∫
t

(
∂Qt
∂x i + ∂Qt

∂y j
)dt (7.17)

Let us define x = xt1 − x0, and y = yt1 − y0, and substituting the functional form of Q(Ê, rt) asa function of the actual measurement, and the non linear fitted model rt(Ê),
vQ(t) = −uo ∫

t

(
Ê rt x i + Ê rt y j

)dt (7.18)
algebraically re-arrange and group terms,

vQ = −uo Êt ∫
t
(rtx i + rty j) dt (7.19)



212 CHAPTER 7. EXPLORATION AND SEARCH ROBOT NAVIGATIONbefore integrating w.r.t. time, we substitute the Cartesian displacements by averaged compo-nent accelerations rt = att2, so that,
vQ = −uoÊt ∫

t

(
at t2ẍ t2 i + at t2 ÿ t2 j

) dt (7.20)
Hence, integrating the equation in time,

vQ = −uoÊt (at ẍ t55 i + at ÿ
t55 j
)+ c (7.21)

backing to original distance variables, and algebraically arranging,
vQ = −uo Êt (rtx t5 i + rty

t5 j
)+ c (7.22)

and finally, our velocity vector is given by a directional derivative equation,
vQ = uo5 t Êt rt ((xt1 ± ε1) i + (yt1 ± ε2) j) + c (7.23)

Where, ε1 and ε2 are discussed in next section. The potential behaviour of Et w.r.t. Cartesianpositions is the function of attractive potential field to find the goal destination.
7.3 System of non linear equations for searching tasks

Finding a solution to reach the goal or equilibrium point from a vector field perspective, ξξξ0is postulated as a search problem (see figure 7.1). In principle, this postulate states that it ispossible to infer the Cartesian values ξξξ0 automatically by iteratively feed-backing the Q(Ê, rt)measurements. The distance rt is calculated by measuring Ê, which is the key-issue to pro-gressively lead the robot towards ξξξ0.
Postulate 7.3.1. The distance rt = ‖ξξξ(t)−ξξξ0‖ is a relationship of time, and a measurementthat is modelled by the equation of the measurement model,

δt = M u(t) + z0 (7.24)



7.3. SYSTEM OF NON LINEAR EQUATIONS FOR SEARCHING TASKS 213Where, M is an arbitrary measurement factor, z0 is a known vertical height of the goal position,and f (Q, t) is any non linear potential function associated to the measurement,
u(t) = f (Q, t)

In figure 7.1-a) the robot is depicted at two different Cartesian locations at temporal framebounded by times t1 and t2. In time frame of length |t2 − t1|, a two-dimension robot’s dis-placement ∆x and ∆y between ξξξ0 and the robot actual position occurs. At time t1 the robotis as far/near of ξξξ0 as (∆x1,∆y1)T . Subsequently at time t2 the robot is as far/near of ξξξ0 as(∆x2,∆y2)T . The robot’s absolute distance w.r.t. ξξξ0 changes from δ1 to δ2 at t1 and t2 re-spectively. The robot’s wandering-like motion is remarkably non linear, however the robot iscontinuously attracted to ξξξ0 according to the motion behaviour of the potential function.

a) b)
Figure 7.1: a) Search and exploring parameters; b) attractive directional field.

It is desired to find a solution for the vector ξξξ0. Thus, it is assumed that ξξξ(t) is iterativelyknown online just by analysing pairs of sensor measurements with consecutive spatio-temporaldifferences. Thus, a system of non linear equations with quadratic terms are proposed, whichconsider pairs of consecutive sensor observations, and pairs of robots’ postures combinedwithin the same system of non linear equations. Hence, it gradually approach the robot to thepipe underground fail (parameters are illustrated in figure 7.1),
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Postulate 7.3.2. ‖ξξξ(t) −ξξξ0‖ → 0 as the measures approach to the goal, and by linearisingthe attractive motion by δ(m) = M u(t)2 + z20. The figure 7.1 is formally described by thenext non-linear equations system,

δ2
t1 = (x0 − xt1 )2 + (y0 − yt1 )2 (7.25)

and,
δ2
t2 = (x0 − xt2 )2 + (y0 − yt2 )2 (7.26)

Proof 7.3.2 Analytic solution of the system of non linear equations: To reduce terms, we define
ε1 = x0 − xt1 and ε2 = y0 − yt1 , as to have now both equations as,

δ21 = ε21 + ε22 (7.27a)
δ22 = (ε1 −∆x)2 + (ε2 −∆y)2 (7.27b)

by developing the quadratic terms, we have now both equations as,
− δ21 = −ε21 − ε22 (7.28)

thus,
δ22 = ε21 − 2ε1∆x + ∆x2 + ε22 − 2ε2∆y + ∆y2 (7.29)

quadratic terms are eliminated, and in order to simplify the equations, it is defined a knownterm ∆t = ∆x2 + ∆y2, now equation (7.29) becomes (7.30)
δ22 − δ21 = ∆t − 2(ε1∆x + ε2∆y) (7.30)

algebraically reordering (7.30),
−
(
δ22 − δ21 −∆t2

) = ε1∆x + ε2∆y (7.31)



7.3. SYSTEM OF NON LINEAR EQUATIONS FOR SEARCHING TASKS 215simplification is by grouping the known factors,
h = −(δ22 − δ21 −∆t2

) (7.32)
so then,

ε1 = h − ε2∆y∆x (7.33)
Subsequently by substituting ε1 to solve for ε2,

δ21 = (h − ε2∆y∆x
)2 + ε22 (7.34)

developing the quadratic term,
δ21∆x2 = h2 − 2ε2∆yh + ε22∆y2 + ε22 (7.35)

ε22(∆y2 + 1)− ε2(2∆yh2) + (h2 − δ21∆x2) = 0 (7.36)
from previous expressions, we now have a general quadratic form equation, and by solving
δ21 = ε21 + ε22 to have a general solution,

ε2 = −∆yh ±√(∆yh)2 − (∆y2 + 1)(h − δ21∆x2)∆y2 + 1 (7.37)
It follows that in next equation, the term (∆yh)2 > 0 always because of its quadratic exponent.Only real root are of interest because they represent Cartesian displacements that provideclues on how the mobile robot must navigate.

f1 =

√(∆yh)2 − (∆y2 + 1)(h − δ21∆x2), (∆yh)2 > (∆y2 + 1)(h − δ21∆x2)√(∆yh)2 + (∆y2 + 1)(h − δ21∆x2), (∆yh)2 < (∆y2 + 1)(h − δ21∆x2)
0, (∆yh)2 = (∆y2 + 1)(h − δ21∆x2)

(7.38)

Hence, by substituting expression f1 in (7.39), the new equation form is given by,
ε2 = ±−(∆y h)± f1∆x2 + ∆y2 (7.39)



216 CHAPTER 7. EXPLORATION AND SEARCH ROBOT NAVIGATIONThus, a decision engine is formulated for ε2 to apply it during searching process,

ε2 =


minf1 (−∆y h±f1∆x2+∆y2
)
, (−b + f1 > 0) ∧ (−b − f1 > 0) ∧ (yt2 < 0)

(−b + f1 > 0) , (−b + f1 < 0) ∧ (−b − f1 > 0) ∧ (yt2 > 0)
(−b − f1 > 0) , (−b + f1 > 0) ∧ (−b − f1 < 0) ∧ (yt2 > 0)
maxf1 (−∆y h±f1∆x2+∆y2

)
, (−b + f1 < 0) ∧ (−b − f1 < 0) ∧ (yt2 > 0)

(7.40)

Thus, for ε1, if it happens that ∀ δ21 ≥ 0, then calculate two function values g1(xt , ε2) and g2(xt , ε2),

g1(xt1 , ε2) =

−
√
δ21 − ε2, xt1 > 0

+√δ21 − ε2, xt1 < 0
0, xt1 = 0

; g2(xt1 , ε2) =

−
√
δ21 + ε2, xt1 > 0

+√δ21 + ε2, xt1 < 0
0, xt1 = 0

(7.41)

Therefore ε1(g1, g2) is given in terms of ε2 and functions g1 and g2,

ε1 =

g1, δ21 > ε2
g2, δ21 < ε20, δ21 = ε2

(7.42)

The model for prediction of next posture approaching ξ0 with terms ε1, an ε2 is denoted bynext equation,
yt2 =


yt1 − ε2, yt1 > 0
yt1 + ε2, yt1 < 0
yt1 , yt1 = 0

xt2 =

xt1 − ε1, xt1 > 0
xt1 + ε1, xt1 < 0
xt1 , xt1 = 0

(7.43)
Therefore, the theorem 7.3.1 is stated as,

Theorem 7.3.1. The solution for the equilibrium point ξξξ0 = (x0, y0, z0)> is found by therecursive system, xt+1 = xt + ε1, and yt + ε2; until the boundary distance ε is reached by(x2
t+1 + y2

t+1)1/2 ≤ ε.



7.4. ROBOT KINEMATICS 217It follows that behaviours of ε1 and ε2 given by equations (7.39) and (7.42) respectively, aredepicted in Cartesian space by figure 7.2. Vertical axes represent the distances given by ε1,2,which are calculated at each control loop. ε1 solves for the x-axis, while ε2 solves for y-axis.Nevertheless, ε1 depends on ε2, according to previous formulation. Depictions in figure are7.2 left-sided for ε1, and 7.2 right-sided for ε2, respectively.
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Figure 7.2: Behaviours of ε1 (left), and ε2 (right) are plotted in Cartesian space. Both values are non
stationary calculated at every control loop, automatically leading the robot to the goal ξ0.

7.4 Robot kinematics

With the magnitude of ε1,2 overtime, the robot trajectory is controlled through a sequence oflocations, until reaching the end of each ε1,2. Once the distance is reached, new values of ε1,2are recursively computed, and again a set of line segments must be navigated by the robot.Any geometrical trajectory can be modelled by a sequence of segments of curves. Where,a straight line may be considered as a segment of curve with infinite radius, where suchradius coordinates is known as instantaneous centre of rotation. Thus, a model to compute theinstantaneous centre of rotation is required.The sequence of Cartesian locations tracked between the segments namely ∆x = |ε1 − xt |and ∆y = |ε2 − yt |. The instantaneous robot’s speed is defined by v = ‖vQ‖ as well as itsdirection angle θt = arctan(ε2 − yt/ε1 − xt),
ωt = dθtdt = (∆y − yt)ẋ − (∆x − x)ẏ

x2
t + y2

t
(7.44)



218 CHAPTER 7. EXPLORATION AND SEARCH ROBOT NAVIGATIONThus, projecting at t+ 1, and combining the velocity vQ , the controlled trajectory model is,
ξξξt+1 = ξξξt + v

ω


− sin(θt) + sin(θ + ω∆t)cos(θt)− cos(θ + ω∆t)

ω2∆t
v

 (7.45)
We refer to a non-holonomic four-wheeled driven robot for all-terrain navigation, figure 7.3.Four asynchronous wheels speed lead the mobile robot to be controlled by a skid-steer modal-ity, providing less kinematic restrictions for robot’s manoeuvrability6 7.
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b)
Figure 7.3: a) 4WD mobile robot kinematic parameters with z-turn axis. b) Different trajectories of the robot
toward ξ0 produced by the proposed search approach.

The depiction shows that ddt {φi(t)} is the ith wheel’s rotational velocity. ω(t) is the robot’syaw rate. The ability of the robot to steer itself through slippage/skid motion effects has itsfundamentals on inferring a Z-turn axis at (xR, yR)T . The square region scope of figure 7.3 isdefined by the wheels’ contact point as the boundaries for (xR, yR)T . We state that the Z-turnaxis can be modelled as a movable axis point, according to the inertial effects suffered by therobot’s body by the wheels’ velocity configuration. The property of skid-steering that dependson the point (xR, yR) gives the robot the ability to change its turning axis, in accordance tothe wheels lateral slippages. The authors took advantage of this effects, by calculating a pointcoordinate called (xR, yR). During preliminary motion tests, variations occurred in the motionpatterns. A kinematic restriction of this effect establishes that the rover turning Z-axis onlymoves within a squared area bounded by the wheels’ contact point (as depicted in figure 7.3). By



7.4. ROBOT KINEMATICS 219modelling the observed effects when parametrizing different angular speeds on the front andthe rear wheels, its manoeuvrability equilibrium point is changed. The derivatives to calculate
ẋR and ẏR (in ms−1) are formulated to model such inertial effects.

ddt {yR(t)} = r l4vmax
( d2dt2 {φ4(t)}+ d2dt2 {φ2(t)} − d2dt2 {φ3(t)} − d2dt2 {φ1(t)}) (7.46)

Where ẏR is the turning Z-axis displacement along its longitudinal axis; L is the distancebetween the rear and front side wheels (units m). vmax is the maximal allowed robot velocityreached up to a contact point.

ddt {xR(t)} = r W4vmax
( d2dt2 {φ1(t)} − d2dt2 {φ3(t)} − d2dt2 {φ2(t)}+ d2dt2 {φ4(t)}) (7.47)

Similarly, ẋR is the displacement or shift of the robot reference through its transverse Xaxis. It follows that a solution for the inverse kinematic parameters depends on four controlvariables φ̈1(t), φ̈2(t), φ̈3(t) and φ̈4(t) with physics units rad/s2. Four linearly independentequations are established to solve the control motion system. The equations of v̇t , ω̇t , ẋR and
ẏR meet this requirement, and we just have to rearrange the equations terms to simplify thesolution process. If we arrange the linear equation in terms of the wheels parameter (rotationalvelocities), we found out the following set of equations, also known as the direct kinematicsmodel. As for the 4WD kinematic structure the transition matrix has the following parameters
k1 = r/4, k2 = r W√

W2+l2 , k3 = r W4vmax , and k4 = r l4vmax . Thus, the forward kinematics equation systemmodel is as follows,
ddt {v(t)}ddt {ω(t)}ddt {xR(t)}ddt {yR(t)}

 =

k1 k1 k1 k1
k2 −k2 k2 −k2
k3 −k3 −k3 k3
−k4 −k4 k4 k4

 ·


d2dt2 {φ1(t)}d2dt2 {φ2(t)}d2dt2 {φ3(t)}d2dt2 {φ4(t)}

 (7.48)

By rearranging the equations system it is analytically solved by an algebraic method. Now, thesolution represents the inverse kinematics control vector namely Ω̇t = r(φ̈1(t), φ̈2(t), φ̈3(t), φ̈4(t))T
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ddt {Ω(t)} =

k−11 k−12 k−13 −k−14
k−11 −k−12 −k−13 −k−14
k−11 k−12 −k−13 k−14
k−11 −k−12 k−13 k−14

 ·


ddt {v(t)}ddt {ω(t)}ddt {px(t)}ddt {py(t)}

 (7.49)

The variable ddt {Ω(t)} is the vector inverse kinematics solution, which contains the wheelslinear velocities, used to control the in-wheels actuator. The first term (dξξξt+1/dt)τ−1 leads therobot to local goals. It is the internal robot’s search motivation, which refers to the robot’smotion exerted through a sequence of small increments between the robot’s actual postureuntil reaching the end of ε1,2 magnitude. The term (dξξξt+1/dt)τ−1 yields a motion behaviourconstrained by the non-holonomy of the robot’s four-wheel four-drive (4W4D) kinematics.As ae is given in terms of acceleration (units of m · s−2), the first term yields a set of smallconsecutive displacements that are tied to a relaxation time τ , which is the robot’s time framerequired to develop velocity changes. The second term dvQ/dt gradually yields the robot to aglobal goal. It exerts large motion displacements, and it refers to accelerative directional fields.The second term dvQ/dt is implicitly effected by calculations of ε1,2. dvQ/dt establishes largerdisplacements to the goal.
ae = 1

τ

(
ddt ξξξt+1

)+ ddt vQ (7.50)
our final equation for the goal searching is,

ae = τ−1 ddt
ξξξt + v

ω


− sin(θt) + sin(θ + ω∆t)cos(θt)− cos(θ + ω∆t)

ω2∆t
v


+ ddt uo5 t

(
∂Q
∂x i + ∂Q

∂x i
) (7.51)

Some results from potential equations and analysis discussed along the chapter are illustratedin figure 7.3-B). Where, five different search routes were yielded towards the target (source ofenergy to be found). The nearer the robot approaches, the larger the number of measurements
Ê the robot gets (rt vs Ê. The increased number of measurements near the goal is because thevalues of ε1,2 magnitudes gradually decrease, allowing the robot to obtain more measurementsat smaller displacements.
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Chapter 8

MULTI-ROBOT PATH/TASKS PLANNING

Nilda G. Villanueva Chacón and Edgar A. Martínez García

Laboratorio de Robótica, Institute of Engineering and Technology
Universidad Autónoma de Ciudad Juárez, Mexico.

In this chapter a highly concurrent tasks planner for a distributed multi-robot systems is for-mulated. Unlike other works1–4, the present approach discusses two issues: a) a path-planningmodel; and b) a robotic-tasks scheduler. A set of kinematic control laws based on directionalderivatives allow us to model the robots interaction for dynamic environments. Distributedwheeled mobile robots perform the execution of diverse autonomous tasks concurrently andsynchronized just in time. Distributed tasks planning reconfigures and synchronizes the roboticactions throughout exponential functions which dynamically change the priority primitives:sense, plan, and act. The objective is to formulate an automatic planning system using multiplemobile robots to manage the material supply, rubbish recollection for industrial transportationtasks. The task-oriented approach concerns carry-and-fetch, and material collecting, as wellas the robots’ ability to navigate for battery charging at dock-stations. A diversity of task sce-narios such as traffic congestion peaks, orders arrival during the execution of tasks and ordermodifications have to be considered. When the system is modified, the flow of material duringthe process differs from the previously used routes.Mathematical formulation and numerical simulation experiments illustrate the parallel com-puting performance, and the distributed robots behaviour. Simulation results depict how therobots deal with highly concurrent robotic tasks, and dynamic events by a parallel scheme. A



224 CHAPTER 8. MULTI-ROBOT PATH/TASKS PLANNINGkinematic model for a differential drive robot is formulated. In addition, an acceleration-basedmodel is proposed to provide the messenger robot the ability to navigate and perform trans-portation tasks. To deal with the computational cost involved in this work, the effect of varyingthe number of processors executing a job, have been examined. Parallel computing is a capa-bility to manage threads broadcast to different physical processors. The available processingpower utilization is maximized to accommodate as many tasks as possible while satisfying therequired deadline of each task. Simulations demonstrated the feasibility and efficacy of theproposed task/path planner.

8.1 Robotic tasks scheduler

The tasks and motion actions are synchronized and coordinated by a scheduler designed tobe able to synchronize tasks in real-time. The tasks scheduler has the ability to assign multi-threads to different physical processors. All tasks are classified into three types of roboticprimitives as traditionally known: planning fP , sensing fS , and acting fA. The real-time systemdevelops online synchronization through shared-memory, execution of multiple threads, andthreads priorities are dynamically assigned, depending on which task type fP , fS and fA hasmore statistical demand.
The function fS acquires, decides, sorts and stores environmental data to be available forthe tasks of planning and acting. The planning task function fP reads collected sensor data forgenerating a plan of actions in accordance to the type of event that is occurring at actual time,and fP prioritizes sensing/acting tasks.
For instance, the presence of multiple dynamic obstacles blocking the actual direction to-wards the desired goal, online path generation are usually non linear. Each robot re-plan a newlocal route when new dynamic obstacles block its actual pathway. The Lagrange interpolationpolynomial of cubic order arising from numerical Cartesian points (xi, yi) that comprise thedesired pathway. The interpolation gives a polynomial (see section 1.6.2) with origin at robot’sfixed inertial frame by,

y(x) = k∑
j=0
yj k∏

j=0
x − xj
xi − xj

 (8.1)
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y(x) = ( x − x1

x0 − x1
)(

x − x2
x0 − x2

)(
x − x3
xo − x3

)
y0 +( x − x0

x1 − x0
)(

x − x2
x1 − x2

)(
x − x3
x1 − x3

)
y1+(

x − x0
x2 − x0

)(
x − x1
x2 − x1

)(
x − x3
x2 − x3

)
y2 +( x − x0

x3 − x0
)(

x − x1
x3 − x1

)(
x − x2
x3 − x2

)
y3

(8.2)
Eventually, the developed algebraic polynomial expression becomes

y(x) = a0 + a1x + a2x2 + ...+ akxk (8.3)
hence, the segment of distance to navigate is represented by si ,

s1 = √x21 + y21 (8.4)
Similarly, in order to reach the goal just-in-time, a new non linear interpolation representingthe exact time as a function of the segment of distance si is stated by

Γ = t(s) = 3∑
j=0
tj 3∏

j=0
s − sj
si − sj

 (8.5)
by substituting the mathematical form of s into Γ,
Postulate 8.1.1. The segment of distance to be displaced just-in-time

Γ =∑t1∏ s −
√
x21 + y21√

x20 + y20 −
√
x21 + y21

 (8.6)

Re-writing the polynomial equation Γ(s) by a third order polynomial,
Γ = b0 + b1s + b2s2 + b3s3 (8.7)

In all situations, time is a factor that is conditioned by the battery timing supply. By using thedischarging battery curve of Peukert’s Law, it is possible to validate the just in time polynomialspreviously defined as applicable models.
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tP = H

(
C
IH

)k (8.8)
Where:

t Time that the battery will last given a particular rate of discharge (hours).
H The discharge time in hours that the Amp Hour specification is based on.
C The battery capacity in Amp Hours based on the specified discharge time.
I Discharging rate (Amp).
k Peukert number for the battery.

A period of time limit (tη) that is safe for a robot to reach the charging dock station is definedfor each robot based on the distance to the goal Γ. Thus, the robots already charging energyawait for the going discharged robots in order to exchange work duties each other.
mr =

 mrβ, tP < tη
mrγ , tP ≥ tη

(8.9)
8.1.1 Tasks scheduling

The scheduler is an algorithm that synchronises the tasks fPfPfP , fSfSfS and fAfAfA, as elements of the set(U).
U = {fSfSfS , fAfAfA, fPfPfP} (8.10)

In order to automatically select a type of task to be performed, the function f (x) = λe−λxdescribes the external events behaviour that activates the tasks of U. Therefore, in order toestimate the possible external event occuring at actual time, the inverse solution is defined by
F (x) = −1

λ ln (xλ )
It is assigned as a numerical weight, or as a probability value depending on the time that thetasks is occurring.

f (x) =
 λe−λx , x ≥ 00, x < 0 (8.11)
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F (x) = ∫ x

0 λe−λxdx = 1− e−λx (8.12)
The distribution function models occurrences for automatic selection of fS , fP by defining auniform random distribution in interval [0, 1] to produce the number R.

1− e−λx = R (8.13)
and

R =


1
b − a, a ≤ x ≤ b0, other

(8.14)
Solving for x,

x = −1
λ ln(R) (8.15)

The next variable Sem is used for controlling access and indicates if the system is available toexecute the acting or sensing task. In this way Sem tracks the status of the resources beingassigned, through a status value associated,
Definition 8.1.2. The tasks controlling access has four states

Sem =


0, wait

SemP , τττP = g−1(R > τP)
SemS , τττS = g−1(τA < R < τP)
SemA, τττA = g−1(τA > R)

(8.16)

The scheduler P selects a task from a list of waiting tasks, signals the communicationcenter to begin execution of that task, and calls the resource manager to update the dynamicresources list.
P =


fP(τP)fP(τP)fP(τP), (g−1(R > τP)⇐Ñ B ∧ ¬C

fS(τS)fS(τS)fS(τS), SemS

fA(τA)fA(τA)fA(τA), (∆tk ≤ tj ) ∧ ¬C
(8.17)
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Postulate 8.1.3. B and C create a condition to satisfy the just-in-time constraint.

B = (∆ti−1 − ti) ∨ (∆tj−1 < tj ) ∨ (∆tk−1 − ti)
and

C = ¬SemP ∧ ¬SemA ∧ ¬SemS

Figure 8.1: Scheduler function for the messenger-type robot.

8.1.2 Dispatchers

For dispatching, a mobile robot collects amounts of types of materials from a queue5–8. Thequeue is managed by a group of dispatcher robots, where their goal is to maintain availablematerial for the messenger robots. D defines the set of dispatching robots (dr, and let M bethe set of messenger robots (mr), and LR a subset of M with the messenger robots loadingmaterial. RR is a subset of M that containing the robots ready for transporting material.
D = {dr1, dr2, ..., drn} (8.18)

Where n defines the number of dispatcher robots available.
M = {mr1,mr2, ...,mrn} (8.19)
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LR = {mr1...mrj} RR = {mrj+1...mrk} (8.20)

The following conditions have to be met,
RR ⊂ M LR ⊂ M RR ∩ LR = {} (8.21)

In addition Semd is defined as a constraint to access raw material or semi-finished parts,
Semd =

 0, loadingRobot ∨ dispatching1, other
(8.22)

The loadingRobot function supplies the robot with raw material, and dispatching is thecontinued activity of robots dispatchers.
DispatchingTask =


loadingRobot, (mat 6= 0) ∧ (loaded < cap) ∧ Semd

dispatching, LR 6= {0} ∧ (mat = 0) ∧ Semd

pause, else

(8.23)
By using the DispatchingTask function, it possible to create a complete scenario for theprocess of delivery and loading raw material (Figure 8.2).

Figure 8.2: Simulation of dispatching activities. Three mobile robots taking different quantities of two types
of materials. Simultaneously, two dispatcher-robot put raw materials in holding position.
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8.1.3 Parallel Tasks

Clusters computing has emerged as a new paradigm for solving large-scale problems. Acluster of computers is generally defined as a collection of interconnected stand-alone comput-ers working together as a single, integrated computing resource. The most critical softwarecomponents of the cluster are the allocation and scheduling algorithms. Allocating tasks ofa real-time application on a certain processor is the most critical step towards achieving theoptimal schedule for the application. Figure 8.3 shows times taken to perform a series of 60tasks distributed and executed as real-time tasks into different number of processors.

Figure 8.3: Time to complete 60 real-time tasks using a parallel computing scheme.

8.2 Robot’s motion model

In this section we formulate the kinematic models of four-wheel robotic structures with dualdifferential drives. Thus, inverse and forward kinematics models are provided as functionsof the rotational wheels’ speed. The robotic platforms are depicted in Figure 8.4. Based ona dead-reckoning approach wheels’ speed are directly measured from proprioceptive sensors(rotary encoders). Thus, the robot’s displacement ∆s is inferred by
∆s = πr

fn
(nr + nl) (8.24)
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Figure 8.4: Wheel angular position with dual asynchronous velocities (left and right).

Where r is an ideal wheels’ radius, fn is the encoder resolution in pulses per revolution, and
nr,l is the number of pulses sensed of the right/left wheel overtime. The tangential velocity
vr,l , and the angular φ̇r,l of the wheels are defined by:

vr,l = r ddtφr,l (8.25)
and

φ̇r,l = ∫ t2
t1

2π
fn
n dt (8.26)

Because of the instantaneous robot’s velocity approximates an averaged speed along a distance
s, velocity and acceleration are described as functions of time,

v = dsdt (8.27)
as well as

a = dvdt (8.28)
Thus, by equating both expressions through the common term dt, and by integrating thedifferentials ds and dv.

a
∫ sf

s0 ds = ∫ vf

v0 vdv (8.29)
Hence, the next non linear expression with averaged acceleration is obtained,

a(sf − s0) = v2
f − v202 (8.30)
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a = v22s = (vr + vl)28s (8.31)

Since a solely depends on the variations of v for this functional form, its vector form is:
v =  ẋ

ẏ

 = v

 sin θ
− cos θ

 (8.32)
likewise,

θ = arctan( ẏẋ
) (8.33)

and the magnitude of v is defined by
‖v‖ = √ẋ2 + ẏ2 (8.34)

Describing the robot’s model as depicted in figure 8.4
vr = v1 + v2 (8.35)

and
vl = v3 + v4 (8.36)

The wheeled mobile robots forward kinematics is described next,
Proposition 8.2.1. The wheeled robot’s direct and inverse kinematic solutions are provided

by  v

ω

 =  1/2 1/22b
a2 + b2 − 2b

a2 + b2
 · vr

vl

 (8.37)
and by solving for the inverse solution of equation (8.37), the functional form in terms of vr
and vl is  vr

vl

 =
 1 a2 + b24b1 −a

2 + b24b
 ·

 v

ω

 (8.38)
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8.3 Robots acceleration models

For the messenger-type robots, their navigation control equation3 is proposed by expression(8.39). The acceleration term am speeds up/down in order to reach the zones where theynavigate from the warehouse to the recharging dock-station, shipping and station areas.
Proposition 8.3.1. The robot’s general navigation control law is defined by

am = −∇s am(t) = −∇s

(
v22s + [aWt + α(aref − aWt )] + acaled + aavoid

) (8.39)

Where the term v22s guides the robot to the shipping area, the term aWt + α(aref − aWt)controls the robot’s motion directing it towards the warehouse, and the term aavoid yields amotion behaviour to avoid near static/dynamic obstacles. The tasks are accomplished in timeframe constrained by inequality (8.40),
v̂(t)
‖am‖

≤ teps1 (8.40)
Where teps1 represents the maximum allowed time in reaching to execute the material trans-port task successfully on-time. Likewise, v̂ is the robot’s translation velocity.

Acceleration to warehouse aW typically develops as the starting robots’ motion, reachingthe warehouse zone to collect raw material that is transported to the workstations. Expression(8.41) describes the robot acceleration to warehouse,
aWt+1 = aWt + α(aref − aWt ) (8.41)

Where 0 < α ≤ 1, and aWt+1 is the next desired controlled acceleration. aWt is the actualmeasured acceleration, and aref is a reference acceleration model used to track a desiredmagnitude together. In addition, an adjustable constant gain factor α is used to attenuateconvergence. Likewise, the acceleration to shipping area aK is provided by equation (8.42) thatdefines the robot’s acceleration required to reach the shipping area.
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aK = v22s (8.42)

Figure 8.5 depicts the behaviour of the acceleration aK with respect to distance and speed. Theacceleration model acts like an attraction acceleration.

a) b) c)
Figure 8.5: a) Distance vs acceleration. b) Acceleration vs velocity (constant distance). c) Acceleration as a
function of distance and velocity.

Considering the distance s as the norm or Cartesian distance of the x and y points the nextexpression is stated,
s = ((xo − xr)2 + (yo − yr)2)1/2 (8.43)

Where xo, yo is the x and y position of a reachable point on the global plane, and xr , yr isthe global position on x and y of the robot. We replace the Cartesian differences x = (xo−xr)and y = (yo−yr) in order to summarize in next mathematical expressions. Thus, by rewriting,
a = v22(x2 + y2)1/2 (8.44)

Considering that the sensor measurement of the distances that might arise from different typesof ranging sensors (i.e. LiDAR, ultrasonic sonar),then distance model in Cartesian space is
si = δi

 cosφisinφi
 (8.45)



8.3. ROBOTS ACCELERATION MODELS 235Where φi defines the direction of each sensor’s beam w.r.t. the local fixed robot’s plane.Therefore, by replacing the distance model in (8.46)
a =∑

j

v22(x2
j + y2

j )1/2 (8.46)
Figure depicts two maps created by using range sensors and odometry, the left-sided map hasinconsistencies due to the non linear trajectory of the robot. Please notice that at the right-sidedmap, it prevails quite consistent due to the robot’s simpler trajectory motion.

Figure 8.6: Top view of environment model using a ring of sonar on board the robot to build the map. Non
linear robot’s trajectory (left). Linear robot’s trajectory (right).

The scenario is a workspace constrained by walls and corridors. The acceleration towardsstation aE is constrained by a route, if no route exists, bottlenecks or stoppages may occur. Bydefining a general vector field with components of distance to the station x = |xr − xg | and
y = |yr − yg |, let fE(x, y) be an equation of mobility to assure the robot to reach the station.Where x and y are the displacements by Cartesian components required to reach the stationzone.

fE(x, y) = √x2 + y2 − e−√x2+y2 (8.47)
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fE = −∇‖~δ‖κEfE(x, y) (8.48)

with ‖δ‖ = √x2 + y2, a deriving w.r.t. x, then the x-component function is denoted by,
∂f
∂x = − x√

x2 + y2
(1− e−√x2+y2) (8.49)

Likewise, for the y-component the function is given by,
∂f
∂y = − y√

x2 + y2
(1− e−√x2+y2) (8.50)

and
v = ‖ −∇fE(x, y)‖ (8.51)

Velocity magnitude to the station is provided by (8.51), and the angle equation provided by (8.52),
θ = θr − arctan(∂f/∂y∂f/∂x

) (8.52)
Finally multiple mobile robots navigation toward the station are controlled by the equation(8.53) of next proposition.
Proposition 8.3.2. The robot’s navigation vector function to reach the station:

fE(x, y) = −
(1− e−√x2+y2)√

x2 + y2
 x

y

 (8.53)
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Chapter 9

NON-LINEAR REFERENCE MODEL

TRAJECTORY CONTROL

Omar Ramírez and Edgar A. Martínez García

Laboratorio de Robótica, Institute of Engineering and Technology
Universidad Autónoma de Ciudad Juárez, Mexico.

Service robotics is strongly tided to highly accurate navigational tasks where pathway track-ing is a practise commonly carried out through control algorithms. This study proposes the-oretical model references of non-linear pathways presented as kth-degree polynomials. Thisstudy establishes proportional controls using variable reference models at the level of secondorder derivatives, in order for the robot’s motion to be adapted on-line. Initially, a Cartesiantrajectory model is inversely transformed into wheels’ angular acceleration component equa-tions, which function as the ideal reference models. Although, our proposal may be applied toany type of robot’s kinematic structure, we are presenting an example for dual asynchronousdifferential active wheels. Obtained results raised from successful experimental practise, andnumerical simulations as well. In order to complete a navigation task, a robot must be capableto follow a desired pathway. The pathway complexity may vary depending on the environmen-tal geometry. In recent years, numerous research have been realised upon the path-followingproblem1–8. From control schemes combining conventional integral terms and fuzzy logic forthe adjustment of proportional gains, up to control schemes using path following algorithms



242 CHAPTER 9. NON-LINEAR REFERENCE MODEL TRAJECTORY CONTROLwith back-stepping schemes9. As a difference from cited approaches, in the present study weintroduced an adaptive non-linear path following control using second order derivatives as areference model changing overtime, as a scheme for the wheel’s acceleration control.
9.1 Polynomial pathway models

Let us assume any non-linear function s(t) defined as the trajectory that a wheeled robot willfollow. Firstly stating that a non-linear function represented by a polynomial form fits a set ofCartesian points (i.e. pathway). Such pathway points are fitted by accomplishing a polynomialinterpolation approach. Thus, considering that the set of points are given by
{(x0, y0, t0), (x1, y1, t1), . . . , (xn, yn, tn)} (9.1)

every single coordinate of the pathway is reached by the robot to follow it in a certain time tn.The Lagrange-based interpolation for polynomials (see section 1.6.2) is developed in order toobtain a functional form of the distances travelled in terms of the two Cartesian components
x(t) and y(t), which are given by
Postulate 9.1.1 (pathway components). Path generation is provided by the Cartesian com-

ponents as functions of time.

x(t) = n∑
i=0
 n∏

j=0,i6=j
t − tj
ti − tj

x(ti)
 (9.2)

and

y(t) = n∑
i=0
 n∏

j=0,i6=j
t − tj
ti − tj

y(ti)
 (9.3)

Higher than second order derivatives (accelerations), our equations would be formalised asJerks. However, our interest is solely on the second order derivative equations, because the pro-portional model references are treated as linear systems. Hence, the path generation approachconsists of a maximal of four Cartesian points, which comprise third degree polynomials.
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x(t) = a0 + a1t + a2t2 + a3t3 (9.4)

and
y(t) = b0 + b1t + b2t2 + b3t3 (9.5)

The speed components along the trajectory positions are described by their first derivatives asthe travelling speeds, modelled by the general expressions
ẋ = d

dt x(t) = a1 + 2a2t + 3a3t2 (9.6)
and

ẏ = x ddt y(t) = b1 + 2b2t + 3b3t2 (9.7)
By expressing previous expressions in terms of the cylindrical form of motion (υ, θ) for eachCartesian point,

υ2 = ẋ2 + ẏ2 (9.8)
hence,

θ = arctan( ẏẋ
) (9.9)

These speed models are easily transformed (roto-translated) into any arbitrary desired refer-ence model. Thus, the acceleration linear polynomial is useful to represents the functional formof the robot’s kinematic of motion, and subsequently to obtain an inverse kinematic analyticalsolution.
9.2 Robot’s kinematics

The robot’s kinematics is developed approaching a dead-reckoning modality, where the inputvector is defined by u = (υ, ω)>, and their components are described as functions of the wheels’speed φ̇i.



244 CHAPTER 9. NON-LINEAR REFERENCE MODEL TRAJECTORY CONTROL

Figure 9.1: Differential speed control wheeled robot Franky.

9.2.1 Forward kinematics

Let us consider a differential wheeled robot with ideal wheels’ radius r (figure 9.1). Each wheel’scontact region keeps a metric separation by fixed a baseline, namely d. The kinematic modelfor this structure is described by,υ
θ̇

 =  r/2 r/22r/d −2r/d
 ·φ̇r

φ̇l

 (9.10)
The equation (9.10) describes the robot’s linear speed υ, and the angular speed θ̇ as mathemat-ical functions of the wheels rotational speed, right and left respectively (φ̇r , φ̇l). The robot’stranslation velocity is decomposed on its speed components ẋ and ẏ, the angle θ as in shownby equation (9.11),

ẋ
ẏ

 = υ ·

cos θsin θ
 (9.11)

By substituting the functional form of υ, we may express previous equation with the speedcomponents, and evaluated in terms of the angular speed of the wheels (matrix form).
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ẏ

 = cos θsin θ
 · (r/2 r/2) ·

φ̇r
φ̇l

 (9.12)
The complete direct kinematic model is described by (9.13) as a function of the input vector ofwheels velocities. This model has its fundamentals on the robot’s geometric configuration interms of first derivative of the actuators’ motion.

ẋ

ẏ

θ̇

 =


cos θ 0sin θ 00 1
 ·

 r/2 r/22r/d −2r/d
 ·φ̇r

φ̇l

 (9.13)

9.2.2 Backward kinematics

The inverse kinematic model is obtained by solving previous equation for the wheels speedvector by equation (9.13), so that we have the inverse kinematic model given by,
φ̇r
φ̇l

 = 1/r d/4r1/r −d/4r
 ·cos θ sin θ 00 0 1

 ·

ẋ

ẏ

θ̇

 (9.14)
noi This model represents the basis to obtain the second order (acceleration) referencemodel given a path functional form (arising from Taylor’s theorem, sec. 1.3). By assumingthat the wheel speed reference model has been computed with constant period of time τ. It isrequired a precise as possible observation of the real wheels speed. Thus, by using the finitecentral differences method (see section 1.7) as a wheels sensing model, an inferred numericalversion of the angular velocities is enhanced to approach a measure of the wheels acceleration.Described by

φ̈w = φ̇wt+1 − φ̇wt−12τ (9.15)
where w = {l, r} represents any of left/right wheel. The wheel acceleration referencemodel is obtained from its direct velocity measurement. Hence, the wheel speed referencemodel has foundations on the inverse transformation of the first derivative of the polynomialfunction of the original desired pathway.
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9.3 Fitting the actuators model

A common problem found when controlling rotary actuators is the non-linear response, whichis yielded by different engineering factors such as the speed-driver electronics. Usually, such de-vices are manufactured with optoelectronic components that inherently add non-linear powerresponses. Besides, its output differences are given from commercial product to product. Nev-ertheless, in our approach a suitable digital set of commands has to fit the desired angularspeeds. The theoretical model to control the actuators are not explicitly given; and even if itwould exist, it would change with the presence of small loads variation (i.g. frictions, loads).Thus, under such circumstances a manner to model the real actuator’s behaviour is to obtain itsan empirical model of φ̇r,l as a function of the digital control commands δ. Nevertheless, evenwhen having the actuator’s empirical model available, the theoretical model is determined by afitting numerical method (see section 1.6.3). To control the real output speed of the wheels, wefitted a theoretical equation with an experimental motor’s model. We highlight the importanceon finding a mathematical relationship between digital control commands, with an analyticaloutput speed. Thus, for our home-made robotic platform, the next model fitting the real motorsbehaviour was calculated.
The theoretical model linking the set of digital control commands to output the rollingspeeds is based on the empirical speed measurements. They were inferred by sweeping therange of computer control commands (from -100-0, and 0-100) w.r.t. averaged observed sam-ples. The response of the actuators resulted as depicted by figure 9.2. Because the actuatorsrotation’s sense were similar, the waveforms were approximated by a unique function.

φ̇ = aecδ + b (9.16)
where δ corresponds to the actuator’s digital output control command, φ̇ corresponds to theoutput speed, and a, b, c were used to make convergence of the function into the empiricalresponse. Finding the inverse solution for δ(φ̇), we obtained the desired output speed digitalcommand (9.17).

δ(φ̇) = 1
c ln( φ̇ − ba

) (9.17)
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Figure 9.2: Empirical model based of wheels speed measurements.

The theoretical solution depicted in figure 9.3 matches accurately the empirical modelsshown in figure 9.2, including the inherent perturbations (i.e. frictions).

9.4 Trajectory tracking

The acceleration control model is introduced by equation (9.18) as φ̈t+1 that is recursivelycalculated as a function itself φ̈wt−1, with proportional gain β. The instantaneous error iscalculated by the difference between a reference model (9.15), and the actual observation ˆ̈φ.
φ̈t+1 = φ̈t−1 + β

(
φ̇t+1 − φ̇t−12τ − ˆ̈φ) (9.18)

Hence, the theoretical model φ̇ is produced as a function of the independent digital variable δ,and the speed control scheme (9.19), which is iteratively used to satisfy the controlled acceler-ation (9.18) by means of the theoretical model (9.17).
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Figure 9.3: Simulation of wheels speed theoretical model.

φ̇t+1 = φ̇t−1 + α
(
d
dt s(t)−

∫ t

0 φ̈t+1dt
) (9.19)

where φ̇t+1 is the wheel’s controlled angular velocity, recursively calculated as function of past
φ̇t−1, and proportional gain is 0 < α ≤ 1. The desired path model is represented by d

dt s(t), andthe real velocity observation is obtained by integrating φ̈t+1 in the time domain.Numerous experiments were realized to obtain real-time actuators’ response with foundationsupon (9.18) - (9.19), and including different non-linear reference models. The first sets ofexperiments involved ideal paths that when inversely transformed into the wheels’ referencemodel, they represented constant numeric values (figure 9.4-left). Likewise, a second set ofexperiments involved pathways modelled by second degree polynomials, which when inverselytransformed, they represented linear speed models (figure 9.4-right). Moreover, the controlledspeed vector is compounded of the left and right angular speeds, as defined by
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Figure 9.4: Wheels actuator’s angular velocity response over time w.r.t. the wheel’s reference model.

Proposition 9.4.1 (inverse trajectory tracking vector). The robot wheels controlled velocity

vector is a function of the reference model Cartesian components.

φ̇r
φ̇l


t

= φ̇r
φ̇l


t−1

+ α
r

(ẋ cos θ + ẏ sin θ) + d4 θ̇ − ∫ t0 φ̈rt+1dt
(ẋ cos θ + ẏ sin θ)− d4 θ̇ − ∫ t0 φ̈lt+1dt


(9.20)

Previous mathematical proposition states that the inverse solution, or wheels angular veloc-ity is obtained from knowing the reference model, which is obtained from actual segment ofpathway. The pathway at hand usually (for this work) is generated as third degree polynomials.Therefore, by substituting the controlled speed of equation (9.19) into equation (9.17), the com-plete control expression (9.21) given as an inverse function of the digital control command isprovided.
δt+1 = 1

c ln
 φ̇t−1 + α

(
d
dt s(t)− ∫ t0 φ̈t+1dt)− b

a

 (9.21)
The complete control vector involves the left and right wheels’ angular speed, which is obtainedthrough an inverse decomposition that obtains the following reference model,
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δr
δl


t+1

= 1
c ln



 φ̇rt−1 + α
(1
r (ẋ cos θ + ẏ sin θ) + d4r θ̇ − ∫ t0 φ̈rt+1dt

)
− b

a

 φ̇lt−1 + α
(1
r (ẋ cos θ + ẏ sin θ)− d4r θ̇ − ∫ t0 φ̈lt+1dt

)
− b

a




(9.22)

Figure 9.5: Wheels’ actuator angular velocity response over time w.r.t. each wheel’s reference model, high
slope (left), and low slope (right).

Experiments involved theoretical and empirical paths of second degree polynomials, withhigh slopes reference models. The robot’s weight, and its mechanisms friction perturbed therobot trajectory tracking. However the proposed control algorithm acted fast and reliable. Thesecond order adaptive reference model control was tested experimentally with a dual velocitydifferential robot, and through numerical simulations. Third degree polynomials representedpathways with the minimal degree required. Their second order derivative produce linearfunctions as acceleration reference models. Second degree polynomials yield linear but con-stant value reference model with the best performance. Higher than third degree polynomialswith low magnitude slopes perform acceptable. The proposed approach is a general solutionfor any type of wheeled robotic structure of dual or greater asynchronous speeds.
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Chapter 10

ALL-ACTIVE 4-WHEEL KINEMATICS

Erik Lerín García and Edgar A. Martínez García

Laboratorio de Robótica, Institute of Engineering and Technology
Universidad Autónoma de Ciudad Juárez, Mexico.

Wheeled mobile robots (WMR) are rolling devices capable of performing locomotive taskson surfaces solely through the actuation of wheels in contact with the surfaces of displacement.Some link assemblies contain passive suspension, while others contain active suspension6,8.In this chapter a general kinematic control law for multi-configuration of four-wheel activedrive/steer robots is discussed. This work models four-wheel drive and steer (4WDS) roboticsystems1 where all wheels drive and steer simultaneously. The control variables are wheel yaw,wheel roll, and suspension pitch by active/passive damper systems. The latter implies that awheel’s contact point translates its position over time collinear with the robot’s lateral sides. Wepresent a suspension mechanical system featuring three DOF per wheel. We define wheel’s yaw
β, wheel’s roll angle φ, and an uncommon characteristic regarding mobility based on the wheelcontact point location controlled by the suspension angle γ. A possible manner for navigatingground surfaces and avoiding obstacles is to use holonomic or kinematic redundant vehicles ? .The WMR’s degree of holonomy is determined by the value of mobility and manoeuvrability(how quickly the direction of travelling can be changed). This value is measured by the wheels’restriction, and WMRs are classified as systems with holonomic and non-holonomic propertiesaccording to their degrees of mobility m and steerability. The holonomic WMRs are able tomove in all degrees of freedom available in the workspace, thus this kind of robot does not



254 CHAPTER 10. ALL-ACTIVE 4-WHEEL KINEMATICShave mechanical constraints that limits mobility. Accordingly, the non-holonomic robots arenot able to move in all directions because they have kinematic constraints in their locomotionstructure (one example of this mechanical structure are the like-car robots). In all-terrainWMRs, use of odometry to obtain distance and direction displacement usually is not enough;to improve distance and direction estimations, the addition of inertial measurement units, GPSand optical speed sensors are needed.
10.1 4W kinematic structures

Full active rolling systems explicitly need a function that models for each control variable5,10.With combined passive drive and active steer, the degree of controllability is poorer than full-active driving because wheels lose the ability to move forward/backward at individual contactpoint speeds. With all-active drive/steer DOF, wheeled systems behave in a nearly fully holo-nomic manner. Full-active systems have advantages over combined partial-passive systemswhen feasibility and reliability in manoeuvrability3,4 are demanded to navigate complex terrainsurfaces. Because all-active drive-steer systems allow multiple kinematic configurations, theyprovide diverse advantages for self-adaptation to different geological surface features. In all-active 4WD/4WS there are a number of possible locomotive configurations that the kinematics7
may yield. Some locomotive configurations are illustrated in figure 10.1.

Driven wheel

a) b) c) d) e)

Driven steerable wheel

Figure 10.1: 4W locomotion modes. a) dual differential drive; b) asynchronous fix-driven wheels; c) differential
drive/steer; d) 4W synchronous drive/steer; e) 4W asynchronous drive/steer.

Figure 10.1 matches the 4W categories described in table 10.1. It shows the different config-uration modes of 4W systems9 and shows how driven wheels and steer wheels are configured.
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Table 10.1: 4WD4S main configuration modalities (NH: Nonholonomic, H: Holonomic).4WD configuration modesHolonomy Speeds Description Steer Figure 10.11 NH φ̇r , φ̇l 2 differential drives. - a)2 NH φ̇1, .., φ̇4 4 differential drives. - b)3 H φ̇f , φ̇r Rear-wheels, front-wheels steer/drive. βf , βr c)

4 H φ̇ 1 speed, 1 steer. β d)5 H φ̇1, .., φ̇4 4 drives, 4 steers. β1, . . . , β4 e)
According to the categories laid out in table 10.1 we have different locomotive configurationmodalities with respect to wheel rolling speeds φ̇, and steer β. This chapter introduces amechanical design of a wheeled mobile robot, in the category of a 4WD4S displayed in figure10.2. The kinematic design possesses 12 DOF, being 3-DOF by wheel, which includes a spring-mass-damper angle (γ), a wheel rolling angle (φ), and a wheel steering angle (β). Depending ofthe locomotion configuration mode adopted, when the number of this variables in use are largerthan three (x, y, θ), the resulting mathematical system is considered with kinematic redundancy.An advantage of this complex structure, is that its wide degree of freedom capability allowsdifferent holonomic configuration modes to be featured.

Figure 10.2: Design of the 4W robot mechanical prototype, and one wheel suspension assembly.

Figure 10.2 depicts several suspension elements proposed for the wheel-suspension assembly.The platform is instrumented with two DC motors with encoders, one for the steer (β), another



256 CHAPTER 10. ALL-ACTIVE 4-WHEEL KINEMATICSto drive (φ). One slip ring to transmit electrical signals between the robot, the motors and theencoders. Articulated arms with a sensor angle measurement (γ). The lateral mobility restric-tions of the robot’s wheels (orthogonal forces) are also called the non slip kinematic condition.Figure 10.3 depicts a top view of the 4W structure kinematics. The wheel’s instantaneous an-gular velocities are denoted by φ̇1, . . . , φ̇4. Likewise, the wheels’ steering angle are defined by
β1, .., β4, which represent its value within the robot’s attached coordinate frame. The wheels’contact points locations are given in cylindrical form by α1, .., α4, with their respective distances
li, ∀ i = {1, · · · , 4} w.r.t. robot’s geometric centre. Thus, the orthogonal kinematic componentsconstraints s 2 for fixed and centred wheels is described by,

[cos(α+ β)sin(α+ β)l sin β]R(θ)ξ̇ = 0 (10.1)
where ξ̇ is the robot’s posture, and R(θ) is the rotation Euler matrix. This is the kinematicrestriction given by a single wheel yielded to the robot’s entire motion behaviour.
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Figure 10.3: Top view of a 4W drive-steer robot’s kinematic configuration.



10.1. 4W KINEMATIC STRUCTURES 257We started our reasoning following the reported method of non-slip kinematic conditions, andthe notation established. Thus, working from equation (10.1), the kinematic restrictions matrixis defined by K1

K1 =


cos(α+ β1) sin(α+ β1) l sin(β1)
− cos(α − β2) sin(α − β2) l sin(β2)
− cos(α+ β3)− sin(α+ β3)l sin(β3)cos(α − β4) − sin(α − β4)l sin(β4)

 (10.2)
The fixed-wheels matrix K1 is obtained from the orthogonal kinematic restrictions of all in-volved fixed conventional wheels in a 4WDS structure. In addition, the kinematic conditionsfor the centred steerable wheels are given in matrix K2. The resulting mobility capability usingthe non slip conditions yields a mobility degree of δm=0, and a steering degree of δs=3

δm = 3− rank{K1}
and

δs = rank{K2}
The numeric value 3 arises from the number of degrees of freedom in the robot’s plane ofmobility x,y, θ. In our particular case (i.e. 4WDS structure), this factor uniquely includes centredsteerable wheels. Thus, both matrices are K1 = K2. This is because the rank(K1)=3. Moreover,hereafter u(t) is the control input vector, so the general formulation for the posture kinematicmodel is ż = B(z)u(t), obtained from the product of transposing the orthogonal rotation matrix
R(θ)T and the vector solutions (the null space vectors) of K2, described by Σ(K2) as

ż = R(θ)TΣ(K2)u (10.3)
Since the rank(K2)=3 it is not possible to obtain the posture kinematic model because thenull-space vector for K2 has dimension zero.

Σ(K2) = 0 (10.4)
Therefore, a real mathematical solution for this algebraic problem is tackled from a differ-ent kinematic approach in the next sections.
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10.2 Damper kinematic constraints

We model pure rolling conditions affected by the suspensions damper effects. Figure 10.4depicts the suspension’s mechanical parameters. xwi is the wheel position along the robot’slongitudinal axis this value refers to the wheels’ contact regions, also defined by equation (10.5).
xwi varies as the suspension’s angle γi changes overtime. Such wheel variations in translationaffects the robot’s global controllability and manoeuvrability. The wheels’ coordinates alongthe robot’s fixed longitudinal axis are xi , as depicted by figure 10.4. Coordinate values alongthe robot’s transversal axis are yi , and for each wheel such values prevails as a constant, asdenoted by equation (10.6).
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Figure 10.4: Left: robot suspension system (side view). Right: kinematic parameters (top view).

Definition 10.2.1. The robot’s wheel position is (xwi , ywi )∀ i = {1, . . . , 4}.
xwi = d1 + d2 + d cos(γi) (10.5)

with parameters d, d1, d2, and
ywi =

−
W2 , π < αi < 2π

W2 , 0 < αi < π
(10.6)



10.2. DAMPER KINEMATIC CONSTRAINTS 259In addition, the model for γi is given by the active suspension system. Let us define thefollowing parameters, ∆s is the suspension offset that sets the device’s fixed height (given in m).
m is the spring mass (in kg). κr and κv are the restitution and viscous coefficients, respectively.
g is the gravity acceleration constant (m/s2). Finally, ẏs and ÿs are the instantaneous velocity(m/s) and acceleration (m/s2) of the spring-mass elongation. Wheel contact points prevail withno change when steer angles are |βi| ≥ π4 and no damper effects exist. κr = 1, and κv = 0.Gravity force exerts no affects over wheel contact points.

γi = arcsin(∆s
d

) (10.7)
Proposition 10.2.2. With no damper effects, it is assumed the z-turn axis is placed

on the robot’s geometric centre. Hence, this location is taken as a common reference

through li.

li sin(αi) = xwi (10.8)
Thus, three linear equations that project xwi are stated. Since the model is already

known from a wheel plane perspective, then the expression (10.5) is substituted. A first

equation approach is proposed:

li sin(αi)− d1 − d2 − d cos(γit ) = 0; (10.9)
A second equation approach is defined,

ywi tan(αi)− d1 − d2 − d cos(γi) = 0 (10.10)
And a third mathematical approach,

ywicos(αi) − d1 − d2 − d cos(γi) = 0 (10.11)

The robot’s global motion behaviour is given critically by the instantaneous value of γi.An electric adjustable resistance (potentiometer) is used as a linear measurement device toobtain direct measurements γ̂i. Nevertheless, a set of functional forms for γi are proposed, in



260 CHAPTER 10. ALL-ACTIVE 4-WHEEL KINEMATICSaccordance with the actual terrain and manoeuvrability situation. Thus, two more propositionsfor γi behaviour are stated, suited to different situations. The following propositions assumemagnitudes of li as variables and converge to the z-turn location (xz, yz).
Proposition 10.2.3. Damper effects are restricted to vt = vt−1, ∀ t, steer angles βi = 0, ∀ i,
and (xz, yz) is located at the robot’s centroid as a consequence of ÿ = 0.

γi(ẏ) = (mg− κv ẏs + ∆s
κrd

) (10.12)

Proposition 10.2.4. Damper effects have no restrictions, and vt 6= vt−1 ∀ t, at 6= 0, βi 6= 0,

and (xz, yz) varies its location.

γi(ÿs, ẏs) = arcsin(mg−mÿs − κv ẏs + ∆s
κrd

) (10.13)

10.3 Instantaneous z-turn axis model

In this section, a mathematical model is proposed to infer the z-turn axis location. The z-turn is a virtual axis that implicitly governs the robot’s body yaw speed w.r.t. its rotationpoint. There is not any existing sensor device to measure (xz, yz). However, we introducean approach to infer this on-line by deploying 2-axis accelerometer devices on board (figure10.5). This is a contribution approach where the z-axis location is used to control the robot’smanoeuvrability, forcing it to reach a desired posture regardless of slip/skid effects. We state inthis manuscript that the z-turn region of translation is scoped by the wheels’ location (xwi , ywi ).Inertial accelerometer devices at fixed locations are deployed to infer (xz, yz), by means oftheir instantaneous acceleration measurements overtime. Velocities in local inertial systemsare deduced by numerical integration w.r.t. time. Let us define a velocity vector υ = (ẋ, ẏ)> foreach robot’s inertial device on board. In accordance with figure 10.4, let us represent the twoaccelerometer devices a1 and a3 as they match the wheel number.



10.3. INSTANTANEOUS Z-TURN AXIS MODEL 261The general model of average acceleration is
adt = dυ (10.14)

Thus, integration w.r.t. time in interval ∆t = t2 − t1, and highlighting that acceleration â is thesensor measurement, ∫ v2
v1 dυ = â

∫ t2
t1 dt (10.15)

Developing and algebraically arranging previous equation for two dimensions:
υ = ẋt

ẏt

 = ẋt−1
ẏt−1

+ˆ̈xtˆ̈yt
∆t (10.16)
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Figure 10.5: a) The z-axis location is displaced from the robot’s centroid; b) robot’s direction (green arrow)
effected by the z-turn and wheels’ behaviour.

The instantaneous acceleration â is the sensor’s measurement with two components â =(ˆ̈x, ˆ̈y)>. As depicted by figure 10.5, two accelerometers a1 and a3 were fixed to robot’s body. aithe reference of a given inertial device. To find an exact solution for two dimensions, we settwo equations as a minimum requirement.
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Proposition 10.3.1. The trigonometric ratio between accelerometer, z-turn axis, and

measured speeds defines the next relationship.

yz − yaj
xz − xaj

= ∫
t

(
ÿaj
ẍaj

)dt (10.17)

This proposition satisfies the stipulation that the jth accelerometer location (xaj , yay ) w.r.t.(xz, yz) has the same geometric ratio as the accelerometer readings ∫ ÿaj /ẍajdt, if and only ifit is aligned with the robot’s fixed frame. Thus, from this proposition, the next theorem ispresented, which states that an equation system allows description of a behavioural z-turn axislocation.
Theorem 10.3.2. One linear equation describe a single accelerometer, and at least

two speed measurements are required as a necessary and sufficient condition to infer(xz, yz).
yz − xz

∫
t

(
ÿa1
t
ẍa1
t

)dt = ya1 − xa1
∫
t

(
ÿa1
t
ẍa1
t

)dt (10.18)
and

yz − xz
∫
t

(
ÿa3
t
ẍa3
t

)dt = ya3 − xa3
∫
t

(
ÿa3
t
ẍa3
t

)dt (10.19)

This particular set of equations is algebraically rewritten and integrated w.r.t. time, accord-ing to equation (10.16). Thus, for device a1,
yz −

(
ẏa1
t−1 + ˆ̈ya1

t ∆t
ẋa1
t−1 + ˆ̈xa1

t ∆t
)
xz = ya1 −

(
ẏa1
t−1 + ˆ̈ya1

t ∆t
ẋa1
t−1 + ˆ̈xa1

t ∆t
)
xa1 (10.20)

Likewise the equation for device a3 is
yz −

(
ẏa3
t−1 + ˆ̈ya3

t ∆t
ẋa3
t−1 + ˆ̈xa3

t ∆t
)
xz = ya3 −

(
ẏa3
t−1 + ˆ̈ya3

t ∆t
ẋa3
t−1 + ˆ̈xa3

t ∆t
)
xa3 (10.21)

Hereafter, by substituting some terms for the sake of easy when treating the equations systemalgebraically, let us define ζi = (ẏait−1/ẋait−1), ηi = yai , and ρi = xai .



10.3. INSTANTANEOUS Z-TURN AXIS MODEL 263The system of linear equations is therefore arranged in the matrix form, and it is solvedfor an analytical solution: 1−ζ11−ζ3
 ·xz

yz

 = η1 − ρ1ζ1
η3 − ρ3ζ3

 (10.22)
The solution for planar coordinates of the z-axis is expressed through the next corollary,

Corollary 10.3.3. Given a squared matrix, the Cramer theorem yields the z-turn model

solution stated by

xz = −ζ3(η1 − ρ1ζ1) + ζ1(η3 − ρ3 − ζ3)
−ζ3 + ζ1 (10.23)

and

yz = η3 − ρ3ζ3 − η1 + ρ1ζ1
−ζ3 + ζ1 (10.24)

In addition to theorem (10.3.2) and corollary (10.3.3), this idea is complemented by thekinematic effects yielded by the suspension angle behaviour γi through the factor li.
li = √(∆xi)2 + (∆yi)2 (10.25)

defined by the terms, ∆xi = xwi − xz (10.26)
as well as the magnitude, ∆yi = |ywi − yz| (10.27)
The angles αi denote the angular relationship between li w.r.t. the x-axis (counter clockwise)as depicted by figure 10.4. Each αi angle value varies according to li values, which are effectedby the suspension oscillations. For −y, a negative arcsin sign is obtained with α1 = 2π +arcsin(∆y1/l1), and α2 = π − arcsin(∆y2/l2). For −y, a positive arcsin sign is obtained with
α3 = arcsin(∆y3/l3), and α4 = π − arcsin(∆y4/l4). In addition, we may obtain a simplifiedexpression for α by replacing the terms,

δi = arcsin(∆yi
li

) (10.28)



264 CHAPTER 10. ALL-ACTIVE 4-WHEEL KINEMATICSHence, α1 = 2π + δ1, α2 = π − δ2, α3 = δ3, α4 = π − δ4 Likewise, the formulation of βi tocontrol the wheels’ steering is β1 = −α1 +φ1, β2 = −α2 +φ2, β3 = −α3 +φ3, β4 = −α4 +φ4 wherethe variables φi are the direct angle measurement given by the encoders to quantify steeringangles. For instance, when the wheels are set fixed with no steer, then φi = 0. Without loss ofgenerality, by applying theorem 6.2 and corollary 2, figure 10.6 depicts the robot’s pose withits instantaneous z-turn axis relocation during a trajectory.
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Figure 10.6: Z-turn axis displacement (circles), with respect robot’s pose (vectors).

10.4 Motion stability analysis

When the inertial effects exceed the friction force between the four wheels contact points
pi = (xi, yi)> and the ground surface, the wheels may lose physical contact with the terrainsurface and manoeuvrability efficiency and stability are disturbed. The wheels’ contact pointseparation from the surface occurs due to exceeding magnitudes of z-axis moments of inertia
Iz w.r.t. its farthest instantaneous wheel contact point, namely pc and obtained by,



10.4. MOTION STABILITY ANALYSIS 265
df = max1≤i≤4 ‖pz − pi‖

Hence, the angle αi is maximized with df and is given by αf
pc = df

cos(αf )sin(αf )
 (10.29)

In figure 10.7 depiction of the turning point pz = (xz, yz)> is given (also represented by circlesin figure 10.6), in which an instantaneous moment of inertia Iz is yielded. Considering only thestrongest angular moment magnitude M = Izα, among the four wheels’ contact points unlikeother vehicle’s mass point is meaningful.

f 

df 

M 

pz 

pc 
b 

a 

c1 c2 

Figure 10.7: Dynamic variables and parameters related to the moment of inertia w.r.t. pz.

This is assumed to be the case when wheels strike no obstacles on the terrain surfacethat would forcibly separate the wheels from the ground. Nevertheless, our concerns is withthe magnitudes of inertial effects that may yield instability. A vehicle’s swift actions mightcontinuously yield strong inertial moment effects. As a consequence, instability rises as |γi|increases in magnitude. Thus the case that better suits the situation was previously given inproposition 10.2.4, for the angle γi as a function of ẏ and ÿ.
γi(ÿs, ẏs) = arcsin(mg−mÿs − κv ẏs + ∆s

κrd

)



266 CHAPTER 10. ALL-ACTIVE 4-WHEEL KINEMATICSVariations of Iz and |γi(ẏ, ÿ)| contribute to separating the robot’s centre of gravity from theground, and damper effects occur more frequently impacting the contact points’ friction withthe ground’s surface. Thus, wheels vector point location pi is given,
pi = (d cos(γi(ẏ, ÿ, ))2 , b2

)> (10.30)
hence, according to figure 10.7 the vehicles geometric parameters are defined as

c1,3 = ‖pz − p1,3‖ cos(α1,3) (10.31)
and

c2,4 = ‖pz − p2,4‖ cos(α2,4) (10.32)
Likewise, considering that the vehicle’s height a(γi) changes overtime in terms of γi ,

a(γi) = r + d cos(γi) + ∆s (10.33)
The robot’s inertial moment is a mass property of a rigid non-uniform body, in which itsinertial moment is located around its z-turn axis pz. Thus, the parallel theorem is applied foran arbitrary axis.

I = ∫ c1
−c2
(
b212
)
m
c dc (10.34)

Then, after integrating the general expression,
I = m12(b2 + c2) (10.35)

Hence, substituting the variable limits, c = c1 + c2 (from figure 10.7), the z-turn axis inertialmoment is given by,
I = m12 (b2 + (‖pz − p1‖ cos(α1) + ‖pz − p2‖ cos(α2))2) (10.36)

Since the angular moment is equivalent to the torsional moment M = Izdω/dt, we refer to thetangential effects on pc ,
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Proposition 10.4.1. For the farthest wheel contact point pc from the instantaneous spin-

ning point pz, the tangential force fT has the equivalence Izdω/dt ≡ fTdf .
Iz

dωcdt = m · aT‖pz − pc‖ (10.37)
The tangential acceleration aT of the wheel point w.r.t. z-turn point ‖pz − pc‖ is,

aT = Izω̇c
m‖pz − pc‖

(10.38)

Furthermore, a second proposition terms of the energies associated with the tangential force
fT is defined,

Proposition 10.4.2. The instantaneous torsional moment Mz yielded w.r.t. pz as a func-

tion of the kinetic and potential energies,

Mz = fT‖pz − pc‖ (10.39)
The torsional moment expressed in terms of the Euler-Lagrange form,

Mz = ddt
(
∂L
∂q̇

)
− ∂L
∂q (10.40)

The generalized coordinate vector q = (vc, ωc)> represents actual wheel’s contact point

pc whith highest inertial value. vc and omegac are tangential and angular velocities

respectively.

L = 12mv2
c + 12 Izω2

c

Therefore, the tangential force fT of pc if defined by,

fT = ‖ ddt
(
∂L
∂q̇

)
− ∂L
∂q ‖

‖pz − pc‖
(10.41)



268 CHAPTER 10. ALL-ACTIVE 4-WHEEL KINEMATICSTherefore, from propositions (10.4.1) and (10.4.2), the inertial equilibrium conditions arises,and its defined in lemma (10.4.3),
Lemma 10.4.3. The system has inertial stabillty when either of following equilibrium

conditions occur:

a) If ac < εa , pc remains in contact with the ground’s surface. Where εa is the limit

acceleration magnitude, in terms of moment of inertia (Prop.10.4.1).∣∣∣∣ Izω̇
m‖pz − pc‖

∣∣∣∣ < εa (10.42)
b) If fT < εf , pc remains in contact with the ground’s surface. Where εf is the limit

force magnitude, in terms of energies (Prop.10.4.2).

‖Mz‖
‖pz − pc‖

< εf (10.43)

10.5 Wheels kinematic control law

This section concerns the robot’s kinematic analysis on the wheels’ degrees of freedom (DOF)not yet discussed in φ̇i and β̇i , and how they contribute in effecting the robot’s posture. Figure10.4 depicts a description of the wheels steer angle βi ∀ i = {1, . . . , 4}.
Lemma 10.5.1. The robot’s body motion (ẋi, ẏi, θ̇i) is partially contributed to by each

ith with wheel tangential velocity rφ̇i , of nominal radius r, and of angular speed φ̇i. A

single-wheel contribution to the robot’s motion is described by equation (10.44),

ẋi
ẏi
θ̇i

 = r4


cos(αi + βi)
sin(αi + βi)

sin(βi)
li

φi (10.44)



10.5. WHEELS KINEMATIC CONTROL LAW 269However, the whole robot’s translational and rotational velocities ξ̇ = (ẋ, ẏ, θ̇)> are given as anaverage of all wheels fixed to the system. The four wheel restrictions along the centred wheelplane are described by expressions (10.45)-(10.47).
ẋ = r4 4∑

i=1 cos(αi + βi)φ̇i (10.45)
ẏ = r4 4∑

i=1 sin(αi + βi)φ̇i (10.46)
In addition, see the model for θ̇ in terms of li , the latter discussed in previous section,

θ̇ = r4 4∑
i=1

sin(βi)
li

φ̇i (10.47)
Thus, in stating the wheels kinematic constraints in vector form for a 4W4D system, the wheel’splane restriction is governed by the vectors κi.
This is described in the following equations (10.48)-(10.51).

κ1 = (cos(α1 + β1), sin(α1 + β1), sin(β1)
l1

)> (10.48)

κ2 = (cos(α2 + β2), sin(α2 + β2), sin(β2)
l2

)> (10.49)

κ3 = (cos(α3 + β3), sin(α3(t) + β3), sin(β3)
l3

)> (10.50)

κ4 = (cos(α4 + β4), sin(α4 + β4), sin(β4)
l4

)> (10.51)
Such that, the four wheels rolling condition vectors comprise the transition non-squared matrix
K containing all-wheel restrictions, given by,

K = (κ1 κ2 κ3 κ4) (10.52)



270 CHAPTER 10. ALL-ACTIVE 4-WHEEL KINEMATICSSimilarly, we define a vector of rotational velocities Φ̇ to simplify the four-wheel system,
Φ̇ = r (φ̇1 φ̇2 φ̇3 φ̇4)> (10.53)

The functional form for each wheel speed φ̇i is described by the third degree polynomial,
φ̇i(di) = a0 + a1di + a2d2

i + a3d3
i (10.54)

Obtained from the response curve of the actuator device (DC motor), with calibrated coefficientterms a0, . . . , a3. di , the ith digital control variable at computer level is associated to its rotationalspeed φ̇i(di). Thus, without loss of generality, we state the next corollary:
Corollary 10.5.2. The control vector of a 4W active system is described by

u = K · Φ̇4 (10.55)

Furthermore, the K matrix is not a square and, except for the fixed suspension and syn-chronous and differential steering mode the matrix inverse does not have a trivial solution,and for this reason the inverse matrix K−1
A is obtained numerically. The inverse kinematic so-lution for the generalized system is given through a general inverse form of the non-squaredtransition matrix K, namely pseudo-inverse for linearly independent columns, where,

Φ̇ = 4K> · (K ·K>)−1 · u (10.56)
where the Moore - Penrose pseudo-inverse exists and is unique K+ ·K = I. Such that, K+ =
K> · (K ·K>)−1.

Moreover, regarding the robot’s forward kinematics solution, it is in principle given withina local inertial system. Nevertheless, its enhanced description of a global system may bedescribed by,
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Theorem 10.5.3. The posture ξ̇ of a 4W system with active φ̇, β̇, and γ̇ variables is

controllable through the state equation (10.57),
ξ̇t+1 = R(θ) · ξ̇t + B(θ)ut + t (10.57)

where t = (tx , ty , 0)> is a translation vector, and R the squared orthogonal Euler rotation

matrix, R(θ)> = R(θ)−1.

R(θ) =


cos(θ)− sin(θ)0sin(θ) cos(θ) 00 0 1
 (10.58)

Hence, the squared transition matrix B is defined by,

B(θ) =


cos(θ)00sin(θ)000 01
 (10.59)

For instance, the recursive form to calculate the robot’s position at time t + 1, expanding thecontrol vector u is stated. By assuming t = (0, 0, 0)>, which means the common coordinatesystem origin is given at the robot’s initial posture, we have
ξ̇t+1 = R · ξ̇t + 14B(θ) ·K(α, β) · Φ̇ (10.60)

Thus, by algebraically expanding the expression (10.60), the general equation (10.61) for a four-wheel robot rises to allow multi-configuration of a diversity of four-drive/four-steer kinematicmodalities:

ξ̇ I
t+1 = R ·


ẋt
ẏt
θ̇t

+ r4B(θ) ·


cos(α1 + β1)cos(α2 + β2)cos(α3 + β3)cos(α4 + β4)sin(α1 + β1) sin(α2 + β2) sin(α3 + β3) sin(α4 + β4)sin(β1)
l1 sin(β2)

l2 sin(β3)
l3 sin(β4)

l4

 ·

φ̇1
φ̇2
φ̇3
φ̇4

 (10.61)



272 CHAPTER 10. ALL-ACTIVE 4-WHEEL KINEMATICSFinally, the next statement (10.5.4) is an inverse general solution, which is consequent of theprevious theorem.
Corollary 10.5.4. The wheel velocity ∆φ̇ required to displace the robot from ξt to ξt+1
in a global inertial system is modelled by (10.62),

Φ̇ = 4K> · (K ·K>)−1 ·B−1 · (ξ̇t+1 − ξ̇t − t) (10.62)

This last equation (10.62) provides the wheels speed magnitudes required between the pos-tures ξ̇t+1 and ξ̇t . However, the major contribution of this mathematical solution is that wenow can manipulate the variables αi , and βi to associate their configuration with different4-drive/4-steer kinematic modalities as will be discussed in next section.
10.6 Kinematic multi-configuration

In this section, we deduce the kinematic control law transition matrix K for some structuresto describe their locomotive modalities. To provide a better understanding, figure 10.1 depictssome related kinematic variables and parameters. Configuration with fixed suspensions andwheels. Lateral velocities are v1 = v2 = vr , and v3 = v4 = vl . For fixed suspensions, as well asthe z-turn axis aligned in the robot’s centre, the magnitudes of ∆xi = ∆x, ∆yi = ∆y and thevalues of li = l are set as constants.The values are set as α1 = 2π − α, α2 = π + α, α3 = α, and α4 = π − α. In order to alignthe wheels’ orientation with the robots local reference axis X, the value of the β angles areequal to the negative value of the respective αn angles (with this assumption, it is not necessaryto consider clockwise rotation of the left-side wheels). Thus, β1 = −α1, β2 = −α2, β3 = −α3,and β4 = −α4. By replacing the values β, α angles, the kinematic control matrix is obtainedaccordingly. Additionally, if we assign the value of α = π2 , the resultant equation yields akinematic model for a 2W differential-drive robot. This locomotion and steering configurationis depicted in Figure 10.1-a), and is included in table 10.1 in the non-holonomic group 1:NH.The values αn , βn angles and l used for differential mode, are restricted to fixed suspensionand steering angles. Thus, α1 = 1/4π , α2 = 7/4π , α3 = 3/4π , and α4 = 5/4π , andβi = −αi.



10.6. KINEMATIC MULTI-CONFIGURATION 273For this configuration mode the vector of velocities for the right (wheels 1 and 2) and left(wheels 3 and 4) is described by the wheels’ speed vector Φ = r(φ̇r , φ̇l)>. Through equation(10.52), a simplified restriction matrix (10.63) is obtained.

K =


2 2
0 0
√2
l −

√2
l

 (10.63)

Furthermore, the matrix K is conversely described with its inverse solution K−1 provided bythe next expression (10.64),
K−1 = 14

10 l
√2

10−l√2
 (10.64)

For simulation purposes, the wheels’ tangential speed ranged from 0 to 0.2m/s in alternatedirections on sides of the 4WD4S. The trajectory obtained in the global plane is depicted infigure 10.8 for two types of robotic structures: a two-differential speeds, and a four-differentialspeeds.
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Figure 10.8: Two-differential drive locomotion configuration trajectory; and 4W-differential drive (four asyn-
chronous speeds) trajectory.

The change of kinematic properties from 2WD to 4WD, improves the robot manoeuvrabilityby reducing kinematic mobility constraints, as depicted by previous figure, accordingly.



274 CHAPTER 10. ALL-ACTIVE 4-WHEEL KINEMATICSAnother numerical analysis case is depicted by figure 10.1-b), which concerns case 2 of table10.1, 4W four drive, and fixed wheels with no steering control. A simplified restriction vectorsmatrix (10.65) is algebraically obtained:

K =


1 1 1 1
0 0 0 0

12 √2
l

12 √2
l −

12 √2
l −

12 √2
l

 (10.65)

Likewise, the inverse matrix K is described by (10.66). An issue with the differences betweenthis configuration mode and the previous one already depicted by figure 10.1-a) is the differencein the wheel’s velocities vector. For this case, all-wheel systems are explicitly described in
Φ̇ = r(φ̇1, φ̇2, φ̇3, φ̇4)>.

K−1 = 14



10 √2l
10 √2l
10−√2l
10−√2l


(10.66)

For the sake of simplicity in obtaining the matrix solution, we again considered the case withfixed suspension, with no variations of αi and βi angles 10.8-right.

The values for li , αi , and βi in each wheel are the same over time. The angle βt was theonly angle showing synchronization of all wheels. Again for the sake of algebraic simplicityin the solution form, the suspension is considered fixed. Thus, αi and li have the followingconstant values α1 = 1/4π , α2 = 7/4π , α3 = 3/4π , α4 = 5/4π , and βi = −αi + φi. The transitionmatrix of four wheels kinematic restriction for an asynchronous robotic structure is given ina simplified form by equation (10.67).

K =


cos(βt) cos(βt) cos(βt) cos(βt)
sin(βt) sin(βt) sin(βt) sin(βt)
sin( π4 +βt )

l
cos( π4 +βt )

l − cos( π4 +βt )
l − sin( π4 +βt )

l

 (10.67)



10.6. KINEMATIC MULTI-CONFIGURATION 275Likewise, the inverse matrix K is described by (10.68).

K−1 = 14



cos(βt)sin(βt) 2 sin(π4 + βt)l
cos(βt)sin(βt) 2 cos(π4 + βt)l
cos(βt)sin(βt)−2 cos(π4 + βt)l
cos(βt)sin(βt)−2 sin(π4 + βt)l


(10.68)

The figure 10.9 a numerical simulation of trajectory obtained by the synchronous steer/drivelocomotion configuration, starts at a steering angle of −90o , with increments of 15o/s, and all-wheel speed of 0.2m/s. The robot’s initial location is x0 = 0.5m, y0 = 1.0m, θ0 = 0 degrees.
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Figure 10.9: Robot’s synchronous mode (above); trajectory simulation (below).
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Chapter 11

CONTROL OF A SELF-CONFIGURABLE

QUADRUPED

Manuel Vega Heredia and Edgar A. Martínez García

Laboratorio de Robótica, Institute of Engineering and Technology
Universidad Autónoma de Ciudad Juárez, Mexico.

This chapter describes the mechanical design, an Euler-Lagrange analysis, and the mo-tion model of a self-reconfigurable quadruped robot. The quadruped robot changes its limbslocomotive configuration through different kinematic configurations. The proposed limb mech-anism poses 5 independent rotational control variables, and are discussed through a kinematic,and an energy-based analysis. The design of a leg-wheel that is self-reconfigurable allowsthe robot to change its locomotive settings according to the type of terrain. Thus, the ba-sic approach of this chapter is on the dynamic modelling of the limb required for control oflocomotive functions. In recent years there have been a series of rules based on space tech-nologies, among the most recognizable is the Athlete robot of NASA2, which is a hybrid robotwith limbs and wheels, it uses both forms of locomotion found simultaneously. Likewise, a tele-operated hybrid reconfigurable robot6 with limbs was developed where the wheel becomes a 4degrees of freedom mechanism. In previous reported work artificial locomotion control withhuman-robot interaction has been developed1. Applications of industrial inspection deployinghexapod robots with laser range and vision as been reported4. The kinematic control play



280 CHAPTER 11. CONTROL OF A SELF-CONFIGURABLE QUADRUPEDa fundamental roll in redundantly actuated robots5,6, as well as the slip measurement controlof leg/wheel mobile robots7. Realization of biped leg-wheeled robots8, and leg-wheel hybridquadruped9 has been reported.

11.1 Limb’s mechanism description

In this section the design of a self-reconfigurable leg-wheel mechanism is disclosed. The limbsystem has the ability to drive the links through the joints to adopt positions as depicted infigure 11.1-right. Figure 11.1-left depicts the limb’s kinematic diagram, which consists of 5rotational driven joints, providing the capability to configure as wheel, leg, hook, foot, andaquatic fin.

Figure 11.1: Kinematic diagram of the proposed limb (left.) Locomotive limb’s configurations (right).

Some of the rotational servomotors allow 2πrad of motion, while other servomotors onlywork within a range of motion of πrad, accordingly as required. According to figure 11.2, theposition of the wheel configuration depends on the ensemble secured by a magnetic dockingdevice located at the end-point of each rigid link forming a kinematic chain, which may beclosed with the rear section of the first link. Likewise, the mechanical design of the limbincludes a magnetic device that allows a safe posture capable to support loads, connecting thecore with the middle of the third link.
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Figure 11.2: Self-reconfigurable limb’s mechanism design.

11.2 Limb kinematic analysis

The mobility of a mechanism is defined by the number of independent variables known asdriven joints. Each structure component is considered a rigid link (ideally non deformable).The analysis is developed with foundations on a generalized coordinate system for the entirelimb, shown in figure 11.1-left. The general kinematic vector equation with inclusion of allactive joints represent the limb’s contact point with the surface p ∈ R3, such that p = (x, y, z)>,
Axiom 11.2.1 (Limb’s position model). The algebraic limbs model with all active joints is

p =


{la + lb cos(θ2) + lc sin(θ2) + l3 cos(θ2 + θ3) + l4 cos(θ2 + θ3 + θ4)+l5 cos(θ2 + θ3 + θ4 + θ5)} cos(θ1)
lb sin(θ2) + lc + l3 sin(θ2 + θ3) + l4 sin(θ2 + θ3 + θ4) + l5 sin(θ2 + θ3 + θ4 + θ5)
{la + lb sin(θ2) + lc sin(θ2) + l3 cos(θ2 + θ3) + l4 cos(θ2 + θ3 + θ4)+l5 cos(θ2 + θ3 + θ4 + θ5)} sin(θ1)


(11.1)



282 CHAPTER 11. CONTROL OF A SELF-CONFIGURABLE QUADRUPEDBy deriving the position equations w.r.t. time, the following equations are obtained:
ṗ = d

dt p (11.2)
and

ẋ = d
dt x; ẏ = d

dt y; ż = d
dt z (11.3)

Therefore,
ẋ = (la + lb cos(θ2) + lc sin(θ2) + l3 cos(θ2 + θ3) + l4 cos(θ2 + θ3 + θ4)+l5 cos(θ2 + θ3 + θ4 + θ5)) sin(θ1)(θ̇1) + (−lb sin(θ2)(θ̇2) + lc cos(θ2)

−l3 sin(θ2 + θ3)(θ̇2 + θ̇3)− l4 sin(θ2 + θ3 + θ4(θ̇2 + θ̇3 + θ̇4)
−l5 sin(θ2 + θ3 + θ4 + θ5)(θ̇2 + θ̇3 + θ̇4 + θ̇5)) cos(θ1)

(11.4)

and
ẏ = lb cos(θ2)(θ̇2) + lc + l3 cos(θ2 + θ3)(θ̇2 + θ̇3) + l4 cos(θ2 + θ3 + θ4)(θ̇2 + θ̇3 + θ̇4) + l5 cos(θ2 + θ3 + θ4 + θ5)(θ̇2 + θ̇3 + θ̇4 + θ̇5) (11.5)

as well as
ż = (la + lb sin(θ2) + lc sin(θ2) + l3 cos(θ2 + θ3) + l4 cos(θ2 + θ3 + θ4)+l5 cos(θ2 + θ3 + θ4 + θ5)) cos(θ1)(θ̇1) + (lb cos(θ2)(θ̇2) + lc cos(θ2)(θ̇2)

+l3 sin(θ2 + θ3)(θ̇2 + θ̇3) + l4 sin(θ2 + θ3 + θ4)(θ̇2 + θ̇3 + θ̇4)+l5 sin(θ2 + θ3 + θ4 + θ5)(θ̇2 + θ̇3 + θ̇4 + θ̇5)) sin(θ1)
(11.6)

Figure 11.1-right shows the different kinematic configurations, where the limb’s kinematicsis reconfigured by cancelling motion in some joints, but still uses other joints that are necessaryfor a given locomotive configuration. Thus, next sections will define the kinematics of thoselocomotive configurations.
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11.2.1 Limb’s posture configured as wheel

For the wheel configuration, only steering angle and driving joint are enabled to be controlledfor each limb configured as a wheel. The rest of the joints will prevail with constant positionsover time, while the kinematic configuration is used. The next vector equation is postulatedand describes how its kinematic models a wheel.

Postulate 11.2.2 (Kinematic model for wheel configuration). The kinematic vector model for

wheel configuration is postulated by

pi =



cos θ1(la + lb sin(θ2) + lc cos θ2)
lb cos θ2 + lc sin θ2

sin θ1(la + lb cos(θ2) + lc cos(θ2))


(11.7)

By defining some expressions, the following algebraic process is simplified, l1a = (la+lb) sin(θ2),
l1b = (la + lb) cos(θ2), l2a = lc cos(θ2), and l2b = lc sin(θ2). Hence, the wheel’s velocity vector,

vivivi =

ẋ

ẏ

ż

 =



− sin(θ1)θ̇1(l1a + l2a) + cos(θ1)(l1b (̇θ2)− l2bθ̇2)
−sin(θ2)θ̇2lb + l2aθ̇2

cos(θ1)θ̇1(l1b + l2a) + sin(θ1)(−l1aθ̇2 − l2bθ̇2)


(11.8)

Equation (11.1) describes the general kinematics of the entire limb. However, by replacing theangular constant values combined along the joints, we can set special postures to exert variantsof locomotion over walking cycles. Thus, hereafter such special positions are established.
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11.2.2 Limb’s posture configured as half-wheel

Similarly, as previous section, for the half-wheel configuration, some angular values are re-quired to be defined to set the joints posture accordingly. Thus,
θa = −15 + θ2; θb = −30 + θ2; θc = −45 + θ2

And by substituting previous expressions, the vector position is stated,
Postulate 11.2.3 (Kinematic model for half-wheel configuration). The kinematic vector model

for half-wheel configuration is postulated by

pii =



cos θ1 (la + lb sin(θ2) + lc cos θ2 + l3 cos(θa) + l4 cos(θb)+l5 cos(θc))
(lb cos θ2 + lc sin θ2 + l3 sin(θa) + l4 sin(θb) + l5 sin(θc))
sin θ1(la + (lb cos(θ2) + lc cos(θ2) + l3 cos(θa) + l4 cos(θb) + l5 cos(θc))


(11.9)

Therefore, its derivation w.r.t. time produces the limb’s velocity vector,

vvvii =

ẋ

ẏ

ż

 =



− sin(θ1)θ̇1(la + sin(θ2)lb + lc cos(θ2) + l3 cos(θa)+l4 cos(θb) + l5 cos(θc)) + cos(θ1) cos(θ2)θ̇2lb
−lc sin(θ2)θ̇2 − l3 sin(θa)θ̇2 − l4 sin(θb)θ̇2 − l5 sin(θc)θ̇2)

− sin(θ2)θ̇2lb + lc cos(θ2)θ̇2 + l3 cos(θa)θ̇2+l4 cos(θb)θ̇2 + l5 cos(θc)θ̇2

cos(θ1)θ̇1(la + lb cos(θ2) + lc cos(θ2) + l3 cos(θa)+l4 cos(θb) + l5 cos(θc)) + sin(θ1)− sin(θ2)θ̇2lb
−lc sin(θ2)θ̇2 − l3 sin(θa)θ̇2 − l4 sin(θb)θ̇2 − l5 sin(θc)θ̇2



(11.10)
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11.2.3 Limb’s posture configured as walking hook

For the walking hook configuration, a different set of joints need different numerical constantangular values, which are required to be defined as to set the posture accordingly. The links
l1a = la + lb sin(θ2), l1b = la + lb cos(θ2), l2 = lc + l3 + l4. In addition, the joints’ angle θ25 = θ2 +θ5,and θ̇25 = θ̇2 + θ̇5 And by substituting previous expressions in the position vector, the followingpostulation defining positions of a walking hook in Cartesian space is stated.

Postulate 11.2.4 (Kinematic model for walking hook configuration). The kinematic vector

model for walking hook configuration is postulated by

piii =



cos θ1(l1a + (l2) cos(θ2) + l5 cos(θ25))
(lb cos θ2(l2) sin(θ2) + l5 sin(θ25))

sin θ1(l1b(l2) cos(θ2) + l5 cos(θ25)))


(11.11)

Likewise, its first order derivative vector equation is given next,

viii =

ẋ

ẏ

ż

 =



− sin(θ1)θ̇1(l1a + (l2) cos(θ2) + l5 cos(θ25)) + cos(θ1)(cos(θ2)θ̇2
lb − (l2) sin(θ2)θ̇2 − l5 sin(θ25)(θ̇25))

−lb sin(θ2)2θ̇2l2 + lb cos(θ2)2(l2)θ̇2 + l5 cos(θ25)(θ̇25)
cos(θ1)θ̇1l1bl2 cos(θ2) + l5 cos(θ25)+ sin(θ1)(−lb cos(θ2)l2 sin(θ2)θ̇2 − l5 sin(θ25)θ̇25)



(11.12)
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11.2.4 Limb’s posture configured as leg

For the leg configuration, a different set of joints need different numerical constant angularvalues, which are required to be defined as to set the posture accordingly. The links l1a =
la + lb sin(θ2), l1b = la + lb cos(θ2) l2 = lc + l3, and l45 = l4 + l5. The joints’ angle θ24 = θ2 + θ4,and θ̇24 = θ̇2 + θ̇4. Thus, by substituting previous expressions in the position vector equation,the next is obtained:

Postulate 11.2.5 (Kinematic model for leg configuration). The kinematic vector model for leg

configuration is postulated by

pv =



cos θ1(l1a + (l2) cos(θ2) + (l45) cos(θ24))
(lb cos θ2(l2) sin(θ2) + (l45) sin(θ24)))

sin θ1(l1b(l2) cos(θ2) + (l45) cos(θ24)))


(11.13)

Furthermore, the first order derivative w.r.t. time is stated by

vv =

ẋ

ẏ

ż

 =



− sin(θ1)θ̇1(l1a + (l2) cos(θ2) + (l45) cos(θ24)) + cos(θ1)(cos(θ2)θ̇2
lb − (l2) sin(θ2)θ̇2 − (l45) sin(θ24)θ̇24)

−lb sin(θ2)2θ̇2(l2)+lb cos(θ2)2(l2)θ̇2 + (l45) cos(θ24)θ̇24

cos(θ1)θ̇1(l1b(l2) cos(θ2) + (l45) cos(θ24))+ sin(θ1)(−lb(cos(θ2))(l2) sin(θ2)θ̇2 − (l45) sin(θ24)θ̇24)



(11.14)
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11.2.5 Limb’s posture configured as foot

For the leg using foot configuration, a different set of joints need different numerical constantangular values, which are required to be defined as to set the posture accordingly. Thus,
l1a = la + lb sin(θ2); l1b = la + lb cos(θ2); l2 = lc + l3

and
θ24 = θ2 + θ4; θ245 = θ2 + θ4 + θ5; θ̇24 = θ̇2 + θ̇4; ˙θ245 = θ̇2 + θ̇4 + θ̇5

By substituting previous expressions, the position vector is stated by
Postulate 11.2.6 (Kinematic model for foot configuration). The kinematic vector model for

foot configuration is postulated by

piv =


cos θ1(l1a + (l2) cos(θ2) + (l4) cos(θ24) + (l5) cos(θ245))(lb cos θ2(l2) sin(θ2) + (l4) sin(θ24) + (l5) cos(θ245))sin θ1(l1b(l2) cos(θ2) + (l4) cos(θ24) + (l5) cos(θ245)))

 (11.15)

likewise, the velocity vector is defined next,

viv =

ẋ

ẏ

ż

 =



− sin(θ1)θ1(l1a + l2 cos(θ2) + l4 cos(θ24) + l5 cos(θ245))+ cos(θ1)(cos(θ2)θ̇2lb − (l2) sin(θ2)θ̇2)− l4 sin(θ24)θ̇24
−l5 sin(θ245)θ̇245))

lb cos(θ2)l2 cos(θ2)θ̇2 + l4 cos(θ24)θ̇24
−l5 sin(θ245)θ̇245

cos(θ1)θ̇1l1bl2 cos(θ2) + l4 cos(θ24) + l5 cos(θ245)+ sin(θ1)(−lb cos(θ2)l2 sin(θ2)θ̇2)− l4 sin(θ24)θ̇24
−l5 sin(θ245)θ̇245



(11.16)
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11.2.6 Limb’s posture configured as aquatic fin

For the aquatic fin configuration, there are more active needed joints. Similarly, a differentset of joints are set with different numerical constant values to define the posture accordingly.With links l1a = la + lb sin(θ2),l1b = la + lb cos(θ2), and l2 = lc + l3. And joints’ angle definition
θ24 = θ2 + θ4, θ245 = θ2 + θ4 + θ5, θ̇24 = θ̇2 + θ̇4, θ̇245 = θ̇2 + θ̇4 + θ̇5. Therefore, by substitutingprevious expression in the next position vector,

Postulate 11.2.7 (Kinematic model for aquatic fin configuration). The kinematic vector model

for aquatic fin configuration is postulated by

pvi =


cos θ1(l1a + (l2) cos(θ2) + (l4) cos(θ24) + (l5) cos(θ245))(lb cos θ2(l2) sin(θ2) + (l4) sin(θ24) + (l5) cos(θ245))sin θ1(l1b(l2) cos(θ2) + (l4) cos(θ24) + (l5) cos(θ245)))

 (11.17)

From previous postulate, by deriving w.r.t. time the velocity vector is defined,

vvi =

ẋ

ẏ

ż

 =



− sin(θ1)θ̇1(l1b + l2 sin(θ2) + l4 cos(θ24) + l5 cos(θ245))+ cos(θ1)(cos(θ2)θ̇2lb − l2 sin(θ2)θ̇2
−l4 sin(θ24)θ̇24 − l5 sin(θ245)θ̇245)

lb cos(θ2)l2 cos(θ2)θ̇2 + l4 cos(θ24)θ̇24
−l5 sin(θ245)θ̇245

cos(θ1)θ̇1(l1bl2 cos(θ2) + l4 cos(θ24) + l5 cos(θ245))+ sin(θ1)(−lb cos(θ2)l2 sin(θ2)θ̇2 − l4 sin(θ24)θ̇24
−l5 sin(θ245)θ̇245)



(11.18)
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11.2.7 Numerical simulations

Thus, the numerical simulations of vector positions for each kinematic configuration that weremodelled previously are depicted now in figure 11.3. Each curve was plotted assuming a stepof a natural walking gait. Thus, the plots represent the limb’s contact point track in the waya given locomotive configuration would move. For instance, the wheel configuration motion(green color) only rotates, and each plotted point is the track of the limb’s contact point asshown in figure 11.3. Likewise, the half-wheel configuration rotates touching the ground onlyduring a half circumference (π rad) of the wheel, thus it is depicted by the red curve.

Figure 11.3: Limb trajectory of different kinematic configurations.

Considering the same simulated Cartesian positions depicted in figure 11.3, the gait behavioursare simulated in terms of the velocity space. The Cartesian components XYZ are illustratedseparately in figure 11.4 for the same limb’s kinematic configurations.

Figure 11.4: Distance vs. Time of the Cartesian components, X (left), Y (centre), and Z (right).



290 CHAPTER 11. CONTROL OF A SELF-CONFIGURABLE QUADRUPED
11.3 Energy-based analysis

In this section an analysis of the evolution during a cycle of displacement of a leg-wheel systemis provided. Likewise, the instantaneous kinetic and potential energy behaviour during a motiontasks is modelled. Thus, let us define the kinetic energy for a limb’s link assuming it poses acylindrical shape,
K = 12mv2 + 12mr2ω2 (11.19)

where m is the mass of the link in kg. v is the translation velocity in m/s. and ω is the linkangular velocity in rad/s. Likewise, a link potential energy is modelled by
P = mgh (11.20)

where g is the gravity acceleration constant in m/s2. h is the height of the mass of the linkin m. Hence, the total energy of the mechanical system is stated the Langrange operator L,which consider the total kinetic energies and the total potential energies of the limb.
L = 5∑

i
ki −

5∑
j
pj (11.21)

Hereafter, equivalences are indistinctly used q̇1 ≡ v and q̇2 ≡ ω. Thus, by expanding theLagrange expression,
L = 5∑

i=1
12miv2

i + 12mir2ω2 − 5∑
i=1

12mig
(
li2
) sinqi (11.22)

and
L = 5∑

i=1
12mi(x2 + y2 + z2) + 12mi( li2 )2θ̇2

i −
5∑
i=1

12mig
(
li2
) sinqi (11.23)
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11.3.1 Limb’s posture configured as wheel

Lagrangian calculation for the wheel configuration on each driven joint used. Thus, fromvelocity equation 11.8 and figure 11.3,
Li = 12miv2

i + 12mi

(
li2
)2

θ̇2
i −

12mig(li2
) sin qi (11.24)

and analysing each link separately,
Li1 = m2 l21 θ̇21 − m2 glb (11.25)

Thus, making some substitutions in order to simplify the next equations
f1 = −lb cos(θ2)θ̇2 + lc cos(θ2)θ̇2; f2 = la + (cos(θ2))lb + lc(sin(θ2))
f3 = lb(cos(θ2))θ̇2 + lc(cos(θ2))θ̇2; f4 = −lb(sin(θ2))θ̇2 + lc(cos(θ2)θ̇2)

f5 = lb sin(θ2) + lc sin(θ2)
and m = m1 +m2 +m3 +m4 +m5. Thus, substituting previous expressions in next equation,
Li2 = m2 (cos(θ1)(f1 − f2 sin(θ1)θ̇1)(cos(θ1)(f1 − f2 + (sin(θ1)f4 + f2 sin(θ1)θ̇1))(cos(θ1))θ̇1)

(sin(θ1)f4 + f2 cos(θ1)θ̇1) + f23 ) + m2 ( f22 )2(θ̇21 + θ̇22 )− m2 gf5 (11.26)

11.3.2 Limb’s posture configured as half-wheel

The Lagrangian calculation of the half wheel configuration for each DOF is developed. Itfollows from velocity equation (11.10) and figure 11.3, that
Lii = 12miv2

halfwheel + 12mi

(
li2
)2

θ̇2
i −

12mig(li2
) sin qi (11.27)

likewise,
Lii1 = m2 l21 θ̇21 − m2 g(sin(θ2)(lc + l3 cos(45) + l4 cos(45) + l5 cos(45))) (11.28)



292 CHAPTER 11. CONTROL OF A SELF-CONFIGURABLE QUADRUPEDLikewise, by defining some expressions for subsequent algebraic simplifications,
f1 = −lb(sin(θ2))θ̇2 + lc(cos(θ2)θ̇2); f2 = la + (cos(θ2))lb + lc(sin(θ2))

As well as f3 = lb(cos(θ2))θ̇2 + lc(cos(θ2))θ̇2, with m = m1 + m2 + m3 + m4 + m5, and l2 =√(l2a + l2b + l2c). Therefore,
Lii2 = m2 ((cos(θ1)(−f3 − (f2) sin(θ1)θ̇1))(cos(θ1)(−f3 − (f2) sin(θ1)θ̇1)) + ((sin(θ1))(f1)

+(f2)(cos(θ1))θ̇1)((sin(θ1))(f1) + (f2)(cos(θ1))θ̇1) + (f3)(f3) + m2 (((l2)
+l3 cos(45) + l4 cos(45) + l5 cos(45))/2) (l2)2 (θ̇21 + θ̇22 )
−12m2g(lc + l3 cos(45) + l4 cos(45) + l5 cos(45))

11.3.3 Limb’s posture configured as walking hook

Likewise, Lagrangian calculation of the hook configuration for each driven joint, the velocityequation (11.12), and figure 11.3 are considered to state the following expression,
Liii = 12miv2

Hook + 12mi

(
li2
)2

θ̇2
i −

12mig(li2
) sin qi (11.29)

and defining m = m1 +m2 +m3 +m4 +m5, and l2 = √(l2a + l2b + l2c). Hence, modelling links inmotion separately,
Liii1 = m2 l21 θ̇21 − m2 g(sin(θ2)(lc + l3 cos(45) + l4 cos(45) + l5 cos(45))) (11.30)

and m = m2 +m3 +m4 +m5, with links l2 = √(l2a + l2b + l2c) and l234 = l3 + l4 + (l2). In addition,for the following link in motion,
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Liii2 = m2 (((− sin(θ1)(θ̇1)((la + cos(θ2)lb + (l234) cos(θ2) + l3 cos(θ3) + cos(θ1)(− sin(θ2)(θ̇2))lb
−(l234) sin(θ2)θ̇2 − l3 sin(θ3)(θ̇3))(la + cos(θ2)lb + (l234) cos(θ2) + l3 cos(θ3)+ cos(θ1)(− sin(θ2)(θ̇2))lb − (l234) sin(θ2)(θ̇2)− l3 sin(θ3)(θ̇3)))) + ((((cos(θ1)(θ̇1))(la + cos(θ2)lb+(l234) cos(θ2) + l3 cos(θ3))) + sin(θ1)(− sin(θ2)(θ̇2))lb − (l234) sin(θ2)(θ̇2)− l3 sin(θ3)(θ̇3))(((cos(θ1)(θ̇1))(la + cos(θ2)lb + (l234) cos(θ2) + l3 cos(θ3))) + sin(θ1)(− sin(θ2)(θ̇2))lb − (l234) sin(θ2)(θ̇2)− l3 sin(θ3)(θ̇3)))+((lb cos(θ2)θ̇2 + (l234) cos(θ2)θ̇2 + l3 cos(θ3)θ̇3)(lb cos(θ2)θ̇2 + (l234) cos(θ2)θ̇2 + l5 cos(θ5)θ̇5))))+m2 ((l234)/2)(((l2))/2)(θ̇21 + θ̇22 )− m2 g((sin(θ2)(l2 + l3 + l4)))

and l2 = √(l2a + l2b + l2c), and l234 = l3 + l4 + (l2). Thus, for the next link in motion,

Liii3 = m52 ((− sin(θ1)(θ̇1)((la + cos(θ2)lb + (l234) cos(θ2) + l3 cos(θ5)+ cos(θ1)(− sin(θ2)θ̇2)lb − (l234) sin(θ2)θ̇2 − l3 sin(θ5)θ̇5)(la + cos(θ2)lb + (l234) cos(θ2) + l3 cos(θ5)+ cos(θ1)(− sin(θ2)θ̇2)lb − (l234) sin(θ2)θ̇2 − l3 sin(θ5)θ̇5))) + ((((cos(θ1)θ̇1)(la + cos(θ2)lb + (l234) cos(θ2) + l3 cos(θ5))) + sin(θ1)(− sin(θ2)θ̇2)lb − (l234) sin(θ2)θ̇2
−l3 sin(θ5)(θ̇5))(((cos(θ1)(θ̇1))(la + cos(θ2)lb + (l234) cos(θ2) + l3 cos(θ5)))+ sin(θ1)(− sin(θ2)(θ̇2))lb − (l234) sin(θ2)(θ̇2)− l3 sin(θ5)(θ̇5))) + ((lb cos(θ2)(θ̇2)+(l234) cos(θ2)(θ̇2) + l5 cos(θ5)(θ̇5))(lb cos(θ2)(θ̇2) + (l234) cos(θ2)(θ̇2) + l5 cos(θ5)(θ̇5))))

+m52 ( l52 2(θ̇21 + θ̇22 + θ̇25 )− m52 g(sin(θ2)(sin(θ5)(l5)))

11.3.4 Limb’s posture configured as leg

The Lagrangian calculation of the hook configuration for each driven joint starts from thevelocity equation (11.14). Please note its trajectory in figure 11.3. Thus, stating the followingexpression,
Lvi = 12miv2

Leg + 12mi

(
li2
)2

θ̇2
i −

12mig(li2
) sin qi (11.31)
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defining the mass expression, m = m1 +m2 +m3 +m4 +m5, and the links l2 = √(l2a + l2b + l2c),and l234 = l3 + l4 + (l2). Hence,

Lv1 = m2 l21(θ̇21 − m2 g sin(θ2))(√l2a + l2b + l2c + l3 + l4 + l5) (11.32)
The Lagrangian Lv1 represent the first set of links in the leg configuration that yield rotationalmotion for providing leg’s steering. Please notice that previous equation contains only a de-scription of kinetic energy that is relevant to rotational movement. As for the potential energydescription, the height model is for the leg’s first joint, which yield steering motion.

Furthermore, the mass expressions are defined to simplify subsequent algebraic processesas m = m2 +m3 +m4 +m5, and the links l2 = √(l2a + l2b + l2c), l23 = l2 + l3, and 4l45 = l4 + l5.In this leg configuration, the motion includes some joints, which are required to walk withoutfoot. Only the last link’s contact point is assumed to touch the ground with minimal to ankle’sbend.
Therefore, by substituting previous expressions of mass, and links’ length, then the secondLagrangian equation is formulated for the following set of links and joints,

Lv2 = m2 (((− sin(θ1)(θ̇1)((la + cos(θ2)lb + (l23) cos(θ2) + (l45) cos(θ4)
+ cos(θ1)(− sin(θ2)(θ̇2))lb − (l23) sin(θ2)(θ̇2)− l45 sin(θ4)θ̇4)(la + cos(θ2)lb + (l23) cos(θ2) + (l45) cos(θ4) + cos(θ1)(− sin(θ2)θ̇2)

lb − (l23) sin(θ2)(θ̇2)− (l45) sin(θ4)(θ̇4)))) + ((((cos(θ1)(θ̇1))(la + cos(θ2)lb+(l23) cos(θ2) + (l45) cos(θ4))) + sin(θ1)(− sin(θ2)(θ̇2))lb − (l23) sin(θ2)(θ̇2)
−(l45) sin(θ4)(θ̇4))(((cos(θ1)(θ̇1))(la + cos(θ2)lb + (l23) cos(θ2) + (l45) cos(θ4)))+ sin(θ1)(− sin(θ2)(θ̇2))lb − (l23) sin(θ2)(θ̇2)− (l45) sin(θ4)(θ̇4))) + ((lb cos(θ2)(θ̇2)+(l23) cos(θ2)θ̇2 + l45 cos(θ4)θ̇4)(lb cos(θ2)θ̇2 + (l23) cos(θ2)θ̇2 + l45 cos(θ4)θ̇4))))+m2 ((l23)/2)((l23)/2)(θ̇21 + θ̇22 )− m2 g((sin(θ2)(l23 + l45)))

(11.33)

For the next link in motion, the mass definition is m = m4+m5, the links l2 = √(l2a + l2b + l2c),
l23 = l2 + l3, and l45 = l4 + l5. Thus, by substituting such expressions in next equation,
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Lv3 = m2 ((− sin(θ1)(θ̇1)((la + cos(θ2)lb + (l23) cos(θ2) + l45 cos(θ4)

+ cos(θ1)(− sin(θ2)(θ̇2))lb − (l23) sin(θ2)(θ̇2)− l45 sin(θ4)θ̇4)(la + cos(θ2)lb + l23 cos(θ2)+(l45) cos(θ4) + cos(θ1)(− sin(θ2)(θ̇2))lb − l23 sin(θ2)θ̇2 − l45 sin(θ4)θ̇4)))+(((cos(θ1)θ̇1(la + cos(θ2)lb + l23 cos(θ2) + l45 cos(θ4))) + sin(θ1)(− sin(θ2)θ̇2)lb − l23 sin(θ2)θ̇2 − l45 sin(θ4)θ̇4)((cos(θ1)θ̇1(la + cos(θ2)lb + l23 cos(θ2) + l45 cos(θ4)))+ sin(θ1)(− sin(θ2)θ̇2)lb − l23 sin(θ2)θ̇2 − l45 sin(θ4)θ̇4)) + ((lb cos(θ2)θ̇2 + l23 cos(θ2)θ̇2 + l45 cos(θ4)θ̇4)
(lb cos(θ2)θ̇2 + l23 cos(θ2)θ̇2 + l45 cos(θ4)θ̇4))) + m2

(
l452
)2 (θ̇21 + θ̇22 + θ̇24 )− m2 g sin(θ2) sin(θ4)l45

(11.34)
11.3.5 Limb’s posture configured as foot

The Lagrangian model of the foot configuration is produced from the velocity equation (11.16),with trajectory depicted in figure 11.3. Thus, the Lagrangian operator is defied by the nextequation,
Liv = 12miv2

Foot + 12mi

(
li2
)2

θ̇2
i −

12mig(li2
) sin qi (11.35)

This foot configuration is actually a leg with a link functioning as foot. The last rigid linkworks as foot with active angular motion in its joint to resemble an ankle’s motion. Previousequation includes potential energy description, as well as translational and rotational kineticdescription. The set of rigid links in this linkage configuration evolves with translation andangular motions.Thus, let us define the following mass expression for further algebraic simplification m =
m1 +m2 +m3 +m4 +m5. In addition, let us define the rigid link’s distance l2 = √(l2a + l2b + l2c).Hence by substituting previous definitions in next expression,

Liv1 = m2 l21(θ̇21 )− m2 g((sin(θ2)((l2) + l3 + l4))) (11.36)
And by defining m = m2 + m3 + m4 + m5 and l2 = √(l2a + l2b + l2c), and l23 = l2 + l3, the nextequation is stated,
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Liv2 = m2 (((− sin(θ1)(θ̇1)((la + cos(θ2)lb + (l23 cos(θ2) + l4 cos(θ3) + cos(θ1)

(− sin(θ2)θ̇2)lb − (l23 sin(θ2)θ̇2 − l4 sin(θ3)(θ̇3))(la + cos(θ2)lb + (l23 cos(θ2)+l4 cos(θ3) + cos(θ1)(− sin(θ2)(θ̇2))lb − (l23 sin(θ2)θ̇2 − l4 sin(θ3)θ̇3)))+((((cos(θ1)θ̇1)(la + cos(θ2)lb + (l23 cos(θ2) + l4 cos(θ3))) + sin(θ1)(− sin(θ2)θ̇2)lb
−(l23 sin(θ2)(θ̇2)− l4 sin(θ3)(θ̇3))(((cos(θ1)(θ̇1))(la + cos(θ2)lb + (l23 cos(θ2) + l4 cos(θ3)))+ sin(θ1)(− sin(θ2)θ̇2)lb − (l23 sin(θ2)θ̇2 − l4 sin(θ3)θ̇3)) + (lb cos(θ2)θ̇2)+(l23 cos(θ2)θ̇2 + l4 cos(θ3)θ̇3)(lb cos(θ2)θ̇2 + (l23 cos(θ2)θ̇2 + l4 cos(θ3)θ̇3))))

+m2
(
l22
) (θ̇21 + θ̇22 )− m2 g((sin(θ2)(l23 + l4)))

(11.37)

Likewise, m = m4 +m5, and the links l2 = √(l2a + l2b + l2c) as well as l23 = l2 + l3. Thus,
Liv3 = m2 ((− sin(θ1)(θ̇1)((la + cos(θ2)lb + (l23 cos(θ2) + l4 cos(θ3) + cos(θ1)

(− sin(θ2)θ̇2)lb − (l2 sin(θ2)θ̇2 − l4 sin(θ3)θ̇3)(la + cos(θ2)lb+(l23 cos(θ2) + l4 cos(θ3) + cos(θ1)(− sin(θ2)(θ̇2))lb
−(l23 sin(θ2)(θ̇2)− l4 sin(θ3)(θ̇3)))) + ((((cos(θ1)(θ̇1))(la + cos(θ2)lb + (l2 cos(θ2) + l4 cos(θ3)))+ sin(θ1)(− sin(θ2)θ̇2)lb − (l3 + l2 sin(θ2)θ̇2 − l4 sin(θ3)θ̇3)(((cos(θ1)θ̇1)(la + cos(θ2)lb+(l23 cos(θ2) + l4 cos(θ3))) + sin(θ1(− sin(θ2)θ̇2)lb − (l2 sin(θ2)θ̇2 − l4 sin(θ3)θ̇3))+((lb cos(θ2)θ̇2 + (l23 cos(θ2)θ̇2 + l4 cos(θ3)θ̇3)(lb cos(θ2)θ̇2 + (l23 cos(θ2)θ̇2

+l4 cos(θ3)θ̇3))) + m2 l42 (θ̇21 + θ̇22 + θ̇23 )− m2 g(sin(θ2)(sin(θ3)l4))

(11.38)

11.3.6 Limb’s posture configured as aquatic fin

The Lagrangian modelling of the aquatic fin configuration considers starting from the velocityequation (11.18), and depiction of its trajectory in figure 11.3. Thus, the Lagrange equation isstated by
LAquatici = 12miv2

vi + 12mi

(
li2
)2

θ̇2
i −

12mig(li2
) sin qi (11.39)



11.3. ENERGY-BASED ANALYSIS 297Rather than an aquatic fin, this configuration resembles a swimmer limb. Although, gaitspatterns are not a matter of this manuscript, but a swimmer limb may be capable to performnumerous types of patters for underwater swimming. Thus, this configuration’s motion isdeveloped in 3D Cartesian space, where only the initial and final angles of motion may be setto change multiple gaits.
Let us define the following mass expression m = m1 + m2 + m3 + m4 + m5, and links

l2 = √(l2a + l2b + l2c), l23 = l2 + l3, as well as the rigid link expression l45 = l4 + l5. Thus, bysubstituting in the next expression,
Lvi1 = m2 l21 θ̇21 − m2 g(sin(θ2)(l2 + l3 + l4 + l5)) (11.40)

likewise, consider that m = m2 +m3 +m4 +m5, l2 = √(l2a + l2b + l2c), l23 = l2 + l3, and l45 = l4 + l5.Hence,

Lvi2 = m2 (((− sin(θ1)(θ̇1)((la + cos(θ2)lb + (l23))) cos(θ2) + (l45) cos(θ4)
+ cos(θ1)(− sin(θ2)(θ̇2))lb − (l23))) sin(θ2)(θ̇2)− (l45) sin(θ4)(θ̇4))(la + cos(θ2)lb + (l23)) cos(θ2) + (l45) cos(θ4) + cos(θ1)(− sin(θ2)(θ̇2))lb − (l23))) sin(θ2)(θ̇2)− (l45) sin(θ4)(θ̇4))))+((((cos(θ1)(θ̇1))(la + cos(θ2)lb + (l23))) cos(θ2) + (l45) cos(θ4)))+ sin(θ1)(− sin(θ2)(θ̇2))lb − (l23))) sin(θ2)(θ̇2)− (l45) sin(θ4)(θ̇4))(((cos(θ1)(θ̇1))(la + cos(θ2)lb + (l23))) cos(θ2) + (l45) cos(θ4)))+ sin(θ1)(− sin(θ2)(θ̇2))lb − (l23))) sin(θ2)(θ̇2)− (l45) sin(θ4)(θ̇4)))+((lb cos(θ2)(θ̇2) + (l23))) cos(θ2)(θ̇2) + (l45) cos(θ4)(θ̇4))(lb cos(θ2)(θ̇2)+(l23))) cos(θ2)(θ̇2) + (l45) cos(θ4)(θ̇4)))))+m2 ((l23)))/2)((l23)))/2)(θ̇21 + θ̇22 )− m2 g((sin(θ2)((l2) + (l45))))

(11.41)

The mass expression is formulated for the next set of rigid links,
m = m4 +m5



298 CHAPTER 11. CONTROL OF A SELF-CONFIGURABLE QUADRUPEDand the definitions of the rigid links are provided by
l2 = √(l2a + l2b + l2c)

and
l23 = l2 + l3

as well as
l45 = l4 + l5

Therefore, the last Lagrangian operator is defined by
Lvi3 = m2 ((− sin(θ1)(θ̇1)((la + cos(θ2)lb + (l23))) cos(θ2)

+(l45) cos(θ4) + cos(θ1)(− sin(θ2)(θ̇2))lb − (l23))) sin(θ2)(θ̇2)
−(l45) sin(θ4)(θ̇4)(la + cos(θ2)lb + (l23))) cos(θ2) + (l45) cos(θ4)+ cos(θ1)(− sin(θ2)(θ̇2))lb − (l23))) sin(θ2)(θ̇2)− (l45) sin(θ4)(θ̇4))))+((((cos(θ1)(θ̇1))(la + cos(θ2)lb + (l23))) cos(θ2) + (l45) cos(θ4)))+ sin(θ1)(− sin(θ2)(θ̇2))lb − (l23))) sin(θ2)(θ̇2)− (l45) sin(θ4)(θ̇4))(((cos(θ1)(θ̇1))(la + cos(θ2)lb + (l23))) cos(θ2) + (l45) cos(θ4)))+ sin(θ1)(− sin(θ2)(θ̇2))lb − (l23))) sin(θ2)(θ̇2)− (l45) sin(θ4)(θ̇4)))+((lb cos(θ2)(θ̇2) + (l23))) cos(θ2)(θ̇2) + (l45) cos(θ4)(θ̇4))(lb cos(θ2)(θ̇2) + (l23))) cos(θ2)(θ̇2) + (l45) cos(θ4)(θ̇4))))

+m2
(
l452 2) (θ̇21 + θ̇22 + θ̇24 )− m2 g sin(θ2) sin(θ4)l45

(11.42)

11.4 Limb’s configurations Euler-Lagrange analysis

In this section, an Euler-Lagrange analysis particularly describes each joint individually. Where
L1 represents the Lagrangian equation of the 1st joint used for steering. L2 is the Lagrangianof the 2nd rotational joint. L3 is the Lagrangian of the first link. Likewise, L4 is the Lagrangianof the second rigid link. AndL5 is the Lagrangian of the third rigid link. An analysis of energiesmay be observed for each driven joint without explicitly describing a particular gait trajectory.
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L1 = 12m1r1(θ̇21 )− 12m1g((l2 sin(θ2) + l3 sin(θ2 + θ3) + l4 sin(θ2 + θ3 + θ4)2

)
+( l5 sin(θ2 + θ3 + θ4 + θ5)2

)) (11.43)
And subsequently,

L2 = 12m2v22 + 12m2r2(θ̇21 + θ̇22 )− 12m2g(
l2 sin θ2 + l3 sin(θ2 + θ3) + l4 sin(θ2 + θ3 + θ4) + l5 sin(θ2 + θ3 + θ4 + θ5)2

)
and

L3 = 12m2v23 + 12m3r2(θ̇21 + θ̇22 + θ̇23 )− 12m3g(
l3 sin(θ2 + θ3) + l4 sin(θ2 + θ3 + θ4) + l5 sin(θ2 + θ3 + θ4 + θ5)2

)
and

L4 = 12m4v24 + 12m4r2(θ̇21 + θ̇22 + θ̇23 + θ̇24 )− 12m4g(
l4 sin(θ2 + θ3 + θ4) + l5 sin(θ2 + θ3 + θ4 + θ5)2

)
as well as
L5 = 12m5v25 + 12m5r2(θ̇21 + θ̇22 + θ̇23 + θ̇24 + θ̇25 )− 12m5g(l5 sin(θ2 + θ3 + θ4 + θ5)2

) (11.44)
Thus, the behaviour of the energies involved in the mechanical system of the limb for eachlocomotive configuration is described by the general Euler-Lagrange differential equation,

τττi = d
dt

(
∂Li
∂q̇i

)
− ∂Li
∂qi

(11.45)
for instance, torque calculation of the wheel configuration is provided by

τττi1 = m4 l21 θ̈1 − m2 g sin(θ1)θ̇1lb (11.46)



300 CHAPTER 11. CONTROL OF A SELF-CONFIGURABLE QUADRUPEDThe following expressions are defined, f1 = la + cos(θ2)lb + lc sin(θ2), f2 = lc cos(θ2), f3 =
lc sin(θ2), f4 = lb sin(θ2), and f5 = lb cos(θ2).And by substituting previous expressions in next equation,

τττi2 = (m2 (−4 cos(θ1)(−f5θ̇2 + f2θ̇2 − (f1) sin(θ1)θ̇1)(− cos(θ2)lb + f2) sin(θ1)θ̇1+2 cos(θ1) cos(θ1)(f4θ̇22 − cos(θ2)θ̈2lb − f3θ̇22 + f2θ̈2 − (− sin(θ2)θ̇2lb + f2θ̇2) sin(θ1)θ̇1
−(f1) cos(θ1)θ̇1θ̇1 − (f1) sin(θ1)dθ̇1)(− cos(θ2)lb + f2) + 2 cos(θ1) cos(θ1)(−f5)θ̇2+f2θ̇2 − (f1) sin(θ1)θ̇1)(sin(θ2)θ̇2lb − f3θ̇2) + (2(cos(θ1)θ̇1(−f4θ̇2 + f2θ̇2) + sin(θ1)(−f5θ̇22 − f4θ̈2 − f3θ̇22 + f2θ̈2) + (−f4θ̇2 + f2θ̇2) cos(θ1)θ̇1 − (f1) sin(θ1)θ̇1θ̇1+(f1) cos(θ1)θ̈1)) sin(θ1)(−f4 + f2) + (2(sin(θ1)(−f4θ̇2 + f2θ̇2) + (f1) cos(θ1)θ̇1))cos(θ1)θ̇1(−f4 + f2) + (2(sin(θ1)(−f4θ̇2 + f2θ̇2) + (f1) cos(θ1)θ̇1)) sin(θ1)(−f5θ̇2 − f3θ̇2) + (2(−f4θ̇22 + f5θ̈2 − f3θ̇22 + f2θ̈2))(f5 + f2) + (2(cos(θ2)θ̇2lb + f2θ̇2))(−f4θ̇2 − f3θ̇2)) +m2/4(l2)θ̈2 −m2/2(−4 cos(θ1)(− cos(θ2)θ̇2lb + f2θ̇2

−(f1) sin(θ1)θ̇1)(f4θ̇2 − f3θ̇2 − (−f4 + f2) sin(θ1)θ̇1) sin(θ1)θ̇1 + 2 cos(θ1) cos(θ1)(f4θ̇22
− cos(θ2)θ̈2lb − f3θ̇22 + f2θ̈2 − (−f4θ̇2 + f2θ̇2) sin(θ1)θ̇1 − (f1) cos(θ1)θ̇1θ̇1

−(f1) sin(θ1)θ̈1)(f4θ̇2 − f3θ̇2 − (−f4 + f2) sin(θ1)θ̇1) + 2 cos(θ1) cos(θ1)(− cos(θ2)θ̇2lb+f2θ̇2 − (f1) sin(θ1)θ̇1)(f5θ̇22 + f4θ̈2 − f2θ̇22 − f3θ̈2 − (−f5θ̇2 − f3θ̇2) sin(θ1)θ̇1
−(−f4 + f2) cos(θ1)θ̇1θ̇1 − (−f4 + f2) sin(θ1)θ̈1) + (2(cos(θ1)θ̇1(−f4θ̇2 + f2θ̇2)+ sin(θ1)(−f5θ̇22 − f4θ̈2 − f3θ̇22 + f2θ̈2) + (− sin(θ2)θ̇2lb + f2θ̇2) cos(θ1)θ̇1
−(f1) sin(θ1)θ̇1θ̇1 + (f1) cos(θ1)θ̈1))(sin(θ1)(− cos(θ2)θ̇2lb − f3θ̇2) + (−f4 + f2)cos(θ1)θ̇1) + (2(sin(θ1)(−f4θ̇2 + f2θ̇2) + (f1) cos(θ1)θ̇1))(cos(θ1)θ̇1(−f5θ̇2 − f3θ̇2)+ sin(θ1)(f4θ̇22 − cos(θ2)θ̈2lb − f2θ̇22 − f3θ̈2) + (−f5θ̇2 − f3θ̇2) cos(θ1)θ̇1

−(−f4 + f2) sin(θ1)θ̇1θ̇1 + (−f4 + f2) cos(θ1)θ̈1) + (2(− sin(θ2)θ̇22 lb + f5θ̈2 − f3θ̇22 + f2θ̈2))(−f4θ̇2 − f3θ̇2) + (2(cos(θ2)θ̇2lb + f2θ̇2))(−f5θ̇22 − f4θ̈2 − f2θ̇22 − f3θ̈2))+m2 g(− sin(θ2)θ̇2lb − f3θ̇2))
Similarly, torque analysis for the half wheel configuration may be described by

τττii1 = ml21 θ̈1 − hmg sin(θ1)θ̇1 (11.47)
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f1 = la + cos(θ2)lb + lc sin(θ2); f2 = lc cos(θ2); f3 = lc sin(θ2)

and
f4 = lb sin(θ2); f5 = lb cos(θ2)

hence,
τττii2 = (2 sin(θ1) sin(θ1)θ̇1(− cos(θ2)θ̇2 + f2θ̇2 − (f1) sin(θ1)θ̇1)(−f5θ̇2 + f2θ̇2 − (f1) sin(θ1)θ̇1)

−4 cos(θ1)(−f5θ̇2 + f2θ̇2 − (f1) sin(θ1)θ̇1) sin(θ1)(sin(θ2)θ̇2θ̇2lb − f5θ̈2 − f3θ̇2θ̇2 + f2θ̈2
−(−f4θ̇2 + f2θ̇2) sin(θ1)(θ̇1)− (f1) cos(θ1)(θ̇1θ̇1)− (f1) sin(θ1)θ̈1)− 2 cos(θ1) cos(θ1)(−f5θ̇2+f2θ̇2 − (f1) sin(θ1)θ̇1)(−f5θ̇2 + f2θ̇2 − (f1) sin(θ1)θ̇1)(θ̇1)− 6(cos(θ1))(−f5θ̇2 + f2θ̇2

−(f1) sin(θ1)θ̇1)(−f5θ̇2 + f2θ̇2 − (f1) sin(θ1)θ̇1)(f1)θ̇1((− sin(θ1))θ̇1)(−f5θ̇2 + f2(θ̇2)
−(f1) sin(θ1)θ̇1)(sin(θ2)(θ̇2θ̇2)lb − f5θ̈2 − f3θ̇2θ̇2 + f2θ̈2 − (−f4θ̇2 + f2θ̇2) sin(θ1)θ̇1

−(f1) cos(θ1)θ̇1θ̇1 − (f1) sin(θ1)θ̈1)− 2(cos(θ1))(−f5θ̇2 + f2θ̇2 − (f1) sin(θ1)θ̇1)(−f5θ̇2+f2θ̇2 − (f1) sin(θ1)θ̇1)(−f5θ̇2 + f2θ̇2 − (f1) sin(θ1)θ̇1)(−f4θ̇2 + f2θ̇2)θ̇1 − 2(cos(θ1))(−f5θ̇2 + f2θ̇2 − (f1) sin(θ1)θ̇1)(−f5θ̇2 + f2θ̇2 − (f1) sin(θ1)θ̇1)(−f5θ̇2 + f2θ̇2 − (f1) sin(θ1)θ̇1)(f1)θ̈1 + (2(cos(θ1)θ̇1(−f4θ̇2 + f2θ̇2) + sin(θ1)(−lb cos(θ2)θ̇2θ̇2 − f4θ̈2 − f3θ̇22 + f2θ̈2)+(−f4θ̇2 + f2θ̇2) cos(θ1)θ̇1 − (f1) sin(θ1)θ̇21 + (f1) cos(θ1)θ̈1))(cos(θ1)(−f4θ̇2 + f2θ̇2)
−(f1) sin(θ1)θ̇1) + (2(sin(θ1)(−f4θ̇2 + f2θ̇2) + (f1) cos(θ1)θ̇1))(− sin(θ1)θ̇1(−f4θ̇2 + f2θ̇2)+ cos(θ1)(−lb cos(θ2)θ̇2θ̇2 − f4θ̈2 − f3θ̇2θ̇2 + f2θ̈2)− (−f4θ̇2 + f2θ̇2) sin(θ1)(θ̇1)

−(f1) cos(θ1)(θ̇1θ̇1)− (f1) sin(θ1)θ̈1))
Therefore,

τττi = d
dt

(
∂Li
∂q̇i

)
− ∂Li
∂qi

(11.48)
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11.5 Quadruped kinematic motion

The robot’s global motion is an averaged value on its chassis structure provided by the contri-butions of each limb’s motion. The robot’s motion is represented in terms of its pose, velocity,and acceleration; either in fixed inertial frame, or in a global coordinates frame (figure 11.5).

Figure 11.5: Robot’s trajectory control w.r.t. a global inertial system (left). Quadruped general kinematic
configuration (right).

The robot’s instantaneous linear velocity νt is approached by an averaged model of the fourlimbs’ speed vi , as next equation (depicted in figure 11.5),
ν = 14(v1 + v2 + v3 + v4) (11.49)

Furthermore, the robot’s instantaneous angular velocity ωt is modelled approaching the robot’sdifferences of lateral velocities. The velocities are yielded by the four limbs w.r.t. the robot’scentroid, which is the origin of the coordinate system fixed to the robot’s body.
ω = 2a

a2 + b2 (v1 + v2 − v3 − v4) (11.50)
In previous equation v1,2, are positive because move counter-clockwise w.r.t. to the robot’scentroid. Likewise, v3,4 are negative as they normal sense is clockwise.



11.5. QUADRUPED KINEMATIC MOTION 303For instance, let us assume that the limbs are configured as wheels, thus it follows from vectorequation (11.7) pi = (xi, yi, zi)> that the kinematic description of one wheel is provided by
xi = cos θ1(la + lb sin(θ2) + lc cos θ2), (11.51)

and
yi = sin θ1(la + lb cos(θ2) + lc cos(θ2)) (11.52)

and
zi = lb cos θ2 + lc sin θ2. (11.53)

To solve the ith limb’s tangential velocity the norm of the three Cartesian components isobtained
vi = (ẋ2

i + ẏ2
i + ż2

i
) 12 (11.54)

which is equivalent to the following expression,
v = (( d

dt xpi
)2 +( d

dt ypi
)2 +( d

dt zpi
)2) 12 (11.55)

Therefore, the whole expression is deduced as provided by the next equation,
Corollary 11.5.1 (Quadruped’s instantaneous linear velocity). The quadruped’s instantaneous

linear speed model regardless any locomotive configuration is stated by

v = r4
((( ddt xp1 )2 + ( ddt yp1 )2 + ( ddt zp1 )2) 12 +(( ddt xp2 )2 + ( ddt yp2 )2 + ( ddt zp2 )2) 12

+(( ddt xp3 )2 + ( ddt yp3 )2 + ( ddt zp3 )2) 12 +(( ddt xp4 )2 + ( ddt yp4 )2 + ( ddt zp4 )2) 12) (11.56)



304 CHAPTER 11. CONTROL OF A SELF-CONFIGURABLE QUADRUPEDIn addition, for the robot’s angular expression a similar expression is deduced,
Corollary 11.5.2 (Quadruped’s instantaneous angular velocity). The quadruped’s instanta-

neous angular velocity model regardless any locomotive configuration is stated by

ω = 2ra
a2 + b2

((( ddt xp1 )2 + ( ddt yp1 )2 + ( ddt zp1 )2) 12 +(( ddt xp2 )2 + ( ddt yp2 )2 + ( ddt zp2 )2) 12

−
(( ddt xp3 )2 + ( ddt yp3 )2 + ( ddt zp3 )2) 12

−
(( ddt xp4 )2 + ( ddt yp4 )2 + ( ddt zp4 )2) 12)(11.57)

From previous speed models, the robot’s first and second derivative are represented in aglobal inertial system I . Thus, for the global velocity vector,
vI = −vt

cos(θ + ψ)sin(θ + ψ)
 (11.58)

by deriving w.r.t. to time and algebraically arranging, the acceleration vector w.r.t. a globalcoordinate system is obtained,
aI = v̇t

cos(θ + ψ)sin(θ + ψ)
+ v

− sin(θ + ψ)cos(θ + ψ)
 (ωt + ψ̇) (11.59)
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Chapter 12

DIRECT/INVERSE ANALYSIS OF

REDUNDANT WALKING ROBOTS

Diana R. Uribe Escalera and Edgar A. Martínez García

Laboratorio de Robótica, Institute of Engineering and Technology
Universidad Autónoma de Ciudad Juárez, Mexico.

This chapter treats a linearised navigation control law for multi-legged walking robots. Theproposed model is stated in terms of robot’s global acceleration, and formulated as an averageof the Cartesian speeds of n-extremities of k-DOFs each. The state vector is defined as ageneral solution scoping three cases of robot’s tangential acceleration: uniform, non-uniform,and constant speed. Leg’s Cartesian velocities are described by their first order Jacobian,which result in redundant kinematics systems. As particular cases of study, two differentbiological kinematic configurations were analysed in order to be adapted (DOFs reductions) aspotential kinematic functions of the navigation control law. Although, the research interest iscentralised on walking systems, the Praying-Mantis raptorial legs, as well as the Smithi ant ’slegs are analysed. Because of the kinematic redundancy, by using pseudo-inverse numericalmethods, the solution near a singularity region is unstable about these values. It was obtainedthe first-order derivative pseudo-inverse Jacobian matrix using two different numerical methodsfor multi-joint legs: the right pseudo-inverse, and by singularity properties using the singularvalue decomposition approach. Furthermore, Euler-Lagrange motion equations are defined.



310 CHAPTER 12. DIRECT/INVERSE ANALYSIS OF REDUNDANT WALKING ROBOTSHyper-static balanced multi-legged walking robots are mechatronic vehicles capable to walkon multi-joint legs (see figure 12.1). Multi-legged robots with three or more extremities arestatically stable when walking,1. However, depending on its gait configuration in use, legs mustcorrectly be synchronized while developing free-walking over all-terrain. If some legs becomedisabled, the robot may still be able to walk, since not all legs might be needed to accomplishstability. Giving other legs the ability to reach new ground placements. Looking into thebiology literature8,9,10, one can find an amazingly rich variety of insect’s combination of jointlegs. Arachnids, crickets, ants and so forth, which are invertebrate animals with eight or moredegrees-of-freedom (DOF) in each leg. Much attention has been paid to develop algorithmsfor gaits control strategies, research on insects biology discloses interesting information thatmay enrich kinematic and dynamic schemes for gaits control for insect-like artificial walkingmachines;8. Figure 12.1 depicts kinematic combinations of walking robot’s legs.

Figure 12.1: Quadruped machines with different types of legs. (a) type RRPRRRR ; (b) type PRRRRR; (c)
type RRRRRR.

This chapter is purposed to provide a generalised velocity-based navigation model of redun-dantly kinematic control law of n-leg and k-joint. Other similar approaches did not considerredundant Jacobians4,11. The state vector is defined as a function of robot’s tangential acceler-ation, and leg’s Cartesian velocities are described by their first order Jacobian, which resultsin redundant kinematics systems12. A particular interest of this study is to include into thegeneral navigation control law Jacobian matrices of different kinematic configurations. Thedirect/inverse kinematic analysis for each leg is considered in order to develop an overall po-sition control model for a robot, as to have an integral functional form of variables about thecontrol law5.
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12.1 Kinematics control law

A combination of synchronized motions of mechanisms, comprised of open-loop serial chainsare configured and coordinated to walk yielding controlled trajectories. The fixed-frame Carte-sian reference of any walking machine is ideally its centre of mass. Kinematic-based controlis critically important to describe the geometry of motion of a body3, and its kinematics givesa description of the leg’s configuration spaces. Equation (12.1) is a linearised state model tocontrol the Cartesian speed,
ξ̇ = A(t) · ξ (t) + B(t) · u(t) (12.1)

Let us define ξ (t) = (x, y, θ)T as the state vector (Cartesian position and angle orientation). The first derivative state vector w.r.t. time is defined by ξ̇ . The matrices A and B are twotransition matrices that connect two different system states, time and Cartesian components,respectively. The input vector u = (v, ω)T is compounded by the linear and angular velocities.Furthermore, the robot’s global motion direction is given by θ(t). The equation (12.2) is therobot’s angular velocity, having Cartesian components as first and second orders derivativefunctions of time.
ω(t) = (1 + ( ẏẋ

)2)−1 (ÿẋ − ẋÿ) (ẋ2)−1 (12.2)
Therefore, by having a functional form of ω(t), the linearised first order derivative control lawis described by expression (12.3),

ξ̇ =

ẋ

ẏ

θ̇

 =


1
t 000 1
t 000 1
t



x

y

θ

+


cos θ0sin θ00 1

v
ω

 (12.3)
The model of instantaneous robot’s linear velocity, for any multi-legged walking machineis expressed by the norm of its legs’ Cartesian component speeds, given by equation (12.4),
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Corollary 12.1.1. The robot’s instantaneous velocity is an averaged value of the n-leg

Cartesian speeds.

v(t) = ∥∥∥∥∥ 1
n

n∑
i=1 Ji · q̇i

∥∥∥∥∥ (12.4)

Where legs’ first derivative Jacobian Ji is involved for each ith leg. The joint angular ve-locities vector is defined by qi = (φ̇0, φ̇0, . . . , φ̇k)> of k rotational joints. Likewise, each leg’sCartesian velocity vector is defined by,
ṗi = Ji · q̇i (12.5)

where Cartesian velocity vector ṗi = (ẋ, ẏ, ż)>. With no lost of generality, the state vector
ξ (t) is constrained by three controlled equilibrium conditions given by the function g,

ξ (t) = g (ẋ, ẍ, t) (12.6)
Hence,

Definition 12.1.2 (Equilibrium conditions). The functional form of g(.) poses three equi-librium conditions:

g (ẋ, ẍ, t) =


x0 + ẋt − (ẍ) t22 , a = const

x0 + t2 (ẋ2 − ẋ1), a = f (t)(
ẋ + γ(ẋref − ẋ)) t, v = const, a = 0

(12.7)

Where x0 = (x0, y0, θ0)> is the robot’s initial position vector.
Thus, from (12.7) in previous theorem, its three constraints are described as,
1. The condition for constant acceleration means the multi-legged machine navigates at openobstacle-free terrains to keep increased its velocity usually to reach large distances.
2. the condition for varying a(t) to slow down, or speed up when dealing with obstacles (thiscondition allows path planning formulation).



12.2. KINEMATIC ANALYSIS 3133. The third condition allows keeping a controlled velocity v, with no speed changes underslopes where gravitational effects take place.
Second and third conditions are nearly linear in the presence of inherent speed perturbations.Therefore,

Theorem 12.1.3 (Kinematic control law). The linearised kinematic control model is given

by (12.8)
ξ̇ =


1
t 000 1
t 000 1
t

 · g (ẋ, ẍ, t) +


cos θ0sin θ00 1
 ·

 ∥∥ 1
n
∑n

i=1 Ji · q̇i
∥∥(1 + (ẏ2ẋ−2))−1 · (ÿẋ − ẋÿ) · (ẋ−2)

 (12.8)

12.2 Kinematic analysis

An extremity is said to be redundant when its number of DOFs is greater than the dimensionof its task space. For a 3D position task, a leg with more than six joints would be redundant6,7.A definition of what is meant by the term redundant requires that it specifies the numberof degrees-of-freedom required to perform a task. Figure 12.2 (b), (d) depict two biologicalextremities (Praying-mantis and ant)9. Figure 12.2 (a), (c) are generic drawings of their re-duced DOFs, tarsus in both legs are not considered because of their passive DOFs given forsupportive stability, rather than significant rotatory movements. The figure 12.2 depicts sixrotative motion variables to represent leg’s contact point (farthest Cartesian position from basejoint). According to figure 12.2, legs’ parameter `i and variable di are links length and prismaticdisplacement, respectively. Besides, φi are the joint’s rotation angles.
Hereafter, formulation given along this paper are just simplified to shorter mathematicalexpressions, adopting next equivalences for trigonometric functions due to limits of paperspace. Let us assume that for instance sin(φ0) is equivalent to s0, and cos(φ1 + φ2) is equivalentto c12.
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A) B)

C) D)
Figure 12.2: Biological limbs and equivalent reduced DOFs. (a) Praying mantis-like leg reduced to six joints
and three links; (b) biological Mantis Leg; (c) Ant-like leg with six rotative joints; (d) biological ant Leg.

12.2.1 Mantis-like leg kinematics

Thus, the forward kinematics calculate the contact point Cartesian instantaneous position forthe Mantis-like leg by p(t) = (xm, ym, zm)T in task space. So that, through direct analysis, itsforward kinematics is given by the three equations of components position xm , ym and zm ,then,
xm = l1s1 + d3c13s2 + d4c134s2 + d5c1345s2 + l6c13456s2 (12.9)

ym = l1s1 + d3s13 + d4s134 + d5s1345 + l6s13456 (12.10)
zm = l1c1 + d3c13c2 + d4c134c2 + d5c1345c2 + l6c13456c2 (12.11)

Homogenising trigonometric functions in such expressions by substituting identities, factorizingand algebraically rearranging, equations become further simplified,
xm = l1s1 + 12d3[s123 − s1−23] + 12d4[s1234 − s1−234] + 12d5[s12345 − s1−2345] + l6c13456s2 (12.12)
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ym = l1s1 + d3s13 + d4s134 + d5s1345 + l6s13456 (12.13)

zm = l1c1 + 12d3[c1−23 + c123] + 12d4[c1−234 + c1234] + 12d5[c1−2345 + c12345] + l6c13456c2 (12.14)
Hence, representing in vector notation form, previous expressions are now given by,

pm(t) =



l1s1 + 12d3[s123 − s1−23] + 12d4[s1234 − s1−234]+ 12d5[s12345 − s1−2345] + l6c13456s2
l1s1 + d3s13 + d4s134 + d5s1345 + l6s13456

l1c1 + 12d3[c1−23 + c123] + 12d4[c1−234 + c1234]+ 12d5[c1−2345 + c12345] + l6c13456c2


(12.15)

Without loss of generality, the first-order derivative vector ṗ of tangential velocities componentsare subsequently described. Firstly, the ẋm component given by,
ẋm = l1c1 (φ̇1) + 12d3c123 (φ̇1 + φ̇2 + φ̇3) + 12 ḋ3s123 − 12d3c1−23 (φ̇1 − φ̇2 + φ̇3)−12 ḋ3s1−23 + 12d4c1234 (φ̇1 + φ̇2 + φ̇3 + φ̇4) + 12 ḋ4s1234 − 12d4c1−234 (φ̇1 − φ̇2 + φ̇3 + φ̇4)−12 ḋ4s1−234 + 12d5c12345 (φ̇1 + φ̇2 + φ̇3 + φ̇4 + φ̇5)

+12 ḋ5s12345 − 12d5c1−2345 (φ̇1 − φ̇2 + φ̇3 + φ̇4 + φ̇5)−12 ḋ5s1−2345 + l6c13456 (φ̇1 + φ̇3 + φ̇4 + φ̇5 + φ̇6) c2 − l6s13456s2 (φ̇2)
(12.16)

Secondly, the ẏm component
ẏm = l1c1 (φ̇1) + d3c13 (φ̇1 + φ̇3) + ḋ3s13 − d4c134 (φ̇1 + φ̇3 + φ̇4) + ḋ4s134+

d5c1345 (φ̇1 + φ̇3 + φ̇4 + φ̇5) + ḋ5s1345 + l6c13456 (φ̇1 + φ̇3 + φ̇4 + φ̇5 + φ̇6) (12.17)
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żm = −l1s1 (φ̇1)− 12d3s1−23 (φ̇1 − φ̇2 + φ̇3) + 12 ḋ3c1−23 − 12d3s123 (φ̇1 + φ̇2 + φ̇3) + 12 ḋ3c123−12d4s1−234 (φ̇1 − φ̇2 + φ̇3 + φ̇4) + 12 ḋ4c1−234 − 12d4s1234 (φ̇1 + φ̇2 + φ̇3 + φ̇4) + 12 ḋ4c1234−12d5s1−2345 (φ̇1 − φ̇2 + φ̇3 + φ̇4 + φ̇5) + 12 ḋ5c1−2345 − 12d5s12345 (φ̇1 + φ̇2 + φ̇3 + φ̇4 + φ̇5)+12 ḋ5c12345 − l6s13456 (φ̇1 + φ̇3 + φ̇4 + φ̇5 + φ̇6) c2 − l6c13456s2 (φ̇2)(12.18)

Then, factorizing common terms, the joints angular velocity vector is φ̇ = (φ̇0, φ̇1, . . . φ̇6)>, andby simplifying the forward kinematics model for 3D, the equation (12.19) resulted,
ṗ = J · q̇ + ḋ3


12s123 − 12c1−23s1312c1−23 + 12c123

+ ḋ4


12s1234 − 12s1−234s13412c1−234 + 12c1234

+ ḋ5


12s12345 − 12s1−2345s134512c1−2345 + 12c12345

 (12.19)
which is the equation of direct kinematics presented as a first order derivative, which are theCartesian velocities of the leg’s contact point.

12.2.2 Ant-like leg kinematics

Figure 12.2-right shows a generic drawing of a leg’s Cartesian framework and its DOFs, in-spired by the Ant Smithi10 . It poses nine real DOF, but it was adopted only six DOF becauseof the rest of them are tarsus specifically used to keep adapted to ground texture as if theywere passive joints. The first three DOF are embedded in the same joint, so that, the equationsof direct kinematics for the three Cartesian components are as follow,
xa = l1s1 + l3c13s2 + l4c134s2 + l5c1345s2 + l6c13456s2 (12.20)

and
ya = l1s1 + l3s13 + l4s134 + l5s1345 + l6s13456 (12.21)
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za = l1c1 + l3c13c2 + l4c134c2 + l5c1345c2 + l6c13456c2 (12.22)

Therefore, in vector form the leg position is given by equation (12.23),
pa(t) =


l1s1 + l3c13s2 + l4c134s2 + l5c1345s2 + l6c13456s2

l1s1 + l3s13 + l4s134 + l5s1345 + l6s13456
l1c1 + l3c13c2 + l4c134c2 + l5c1345c2 + l6c13456c2

 (12.23)
In addition, by deriving w.r.t. time, our three first-order derivative Cartesian components,

ẋa = l1c1 (φ̇1)− l3s13 (φ̇1 + φ̇3) s2 + l3c13c2 (φ̇2)− l4s134 (φ̇1 + φ̇3 + φ̇4) s2 + l4c134c2 (φ̇2) s0−
l5s1345 (φ̇1 + φ̇3 + φ̇4 + φ̇5) c2 + l5c1345s2 (φ̇2)− l6s13456 (φ̇1 + φ̇3 + φ̇4 + φ̇5 + φ̇6) s2 + l6c13456c2 (φ̇2)(12.24)
ẏa = l1c1 (φ̇1) + l3c13 (φ̇1 + φ̇3) + l4c134 (φ̇1 + φ̇3 + φ̇4) + l5c1345 (φ̇1 + φ̇3 + φ̇4 + φ̇5)+

l6c13456 (φ̇1 + φ̇3 + φ̇4 + φ̇5 + φ̇6) (12.25)
ża = −l1s1 (φ̇1)− l3s13 (φ̇1 + φ̇3) c2 − l3c13s2 (φ̇2)− l4s134 (φ̇1 + φ̇3 + φ̇4) c2 − l4c134s2 (φ̇2)−

l5c1345s2 (φ̇2)− l5s1345 (φ̇1 + φ̇3 + φ̇4 + φ̇5) c2 − l6s13456 (φ̇1 + φ̇3 + φ̇4 + φ̇5 + φ̇6) c2 − l6c13456s2 (φ̇2)(12.26)
Therefore, the forward kinematics model is formulated. For the ant-like leg, only rotative jointswere mathematically described, and no prismatic variables are involved.

12.3 Jacobian matrix analysis

Although the general problem of inverse kinematics is not straightforward, it turns out that forextremities having six joints, with their last three DOF intersecting at a point, it is possible todecouple the inverse kinematics problem into two simpler problems6. It is known respectively,as inverse position kinematics, and inverse orientation kinematics. Thus, from the required
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q̇ = J−1 · ṗ (12.27)

The Jacobian matrix for the Mantis-like extremity in terms of first-order derivative is disclosednext,


ẋ

ẏ

ż


=

a1a2a3a4a5a6
b1b2b3b4b5b6
c1c2c3c4c5c6

 ·



φ̇1
φ̇2
φ̇3
φ̇4
φ̇5
φ̇6


+ ḋ3


12s123 − 12c1−23s1312c1−23 + 12c123

+

ḋ4


12s1234 − 12s1−234s13412c1−234 + 12c1234

+ ḋ5


12s12345 − 12s1−2345s134512c1−2345 + 12c12345



(12.28)

The Jacobian matrix terms are defined next in their functional form by,
a1 = l1c1 + 12d3c123 − 12d3c1−23 + 12d4c1234 − 12d4c1−234 + 12d5c12345 − 12d5c1−2345 − l6s13456s2
a2 = + 12d3c123 − 12d3c1−23 + 12d4c1234 − 12d4c1−234 + 12d5c12345 − 12d5c1−2345 + l6c13456c2
a3 = + 12d3c123 − 12d3c1−23 + 12d4c1234 − 12d4c1−234 + 12d5c12345 − 12d5c1−2345 − l6s13456s2
a4 = + 12d4c1234 − 12d4c1−234 + 12d5c12345 − 12d5c1−2345 − l6s13456s2
a5 = + 12d5c12345 − 12d5c1−2345 − l6s13456s2
a6 = −l6s13456s2
b1 = l1 + d3c13 + d4c134 + d5c1345 + l6c13456
b2 = 0
b3 = +d3c13 + d4c134 + d5c1345 + l6c13456
b4 = +d4c134 + d5c1345 + l6c13456
b5 = +d5c1345 + l6c13456
b6 = +l6c13456
c1 = −l1s1 − 12d3s1−23 − 12d3s123 − 12d4s1−234 − 12d4s1234 − 12d5s1−2345 − 12d5s12345 − l6s13456c2
c2 = − 12d3s1−23 − 12d3s123 − 12d4s1−234 − 12d4s1234 − 12d5s1−2345 − 12d5s12345 − l6c13456s2
c3 = − 12d3s1−23 − 12d3s123 − 12d4s1−234 − 12d4s1234 − 12d5s1−2345 − 12d5s12345 − l6s13456c2
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c4 = − 12d4s1−234 − 12d4s1234 − 12d5s1−2345 − 12d5s12345 − l6s13456c2
c5 = − 12d5s1−2345 − 12d5s12345 − l6s13456c2
c6 = −l6s13456c2
In addition, for the case of the ant-like Jacobian expression of first-order derivative, equation(12.29) is the analytical solution,


ẋ

ẏ

ż

 =

a1a2a3a4a5a6
b1b2b3b4b5b6
c1c2c3c4c5c6

 ·



φ̇1
φ̇2
φ̇3
φ̇4
φ̇5
φ̇6


(12.29)

Similarly, with its Jacobian matrix terms given in their functional representations,
a1 = l1c1 − l3s13s2 − l4s134s2 − l5s1345s2 − l6s13456s2
a2 = +l3c13c2 − l4c134c2 − l5c1345c2 − l6c13456c2
a3 = −l3s13s2 − l4s134s2 − l5s1345s2 − l6s13456s2
a4 = −l4s134s2 − l5s1345s2 − l6s13456s2
a5 = −l5s1345s2 − l6s13456s2
a6 = −l6s13456s2
b1 = l1c1 + l3c13 + l4c134 + l5c1345 + l6c13456
b2 = 0
b3 = l3c13 + l4c134 + l5c1345 + l6c13456
b4 = +l4c134 + l5c1345 + l6c13456
b5 = +l5c1345 + l6c13456
b6 = +l6c13456
c1 = −l1s1 + l3s13c2 + l4s134c2 + l5s1345c2 + l6s13456c2
c2 = −l3c13s2 − l4c134s2 − l5c1345s2 − l6c13456s2
c3 = +l3s13c2 + l4s134c2 + l5s1345c2 + l6s13456c2
c4 = +l4s134c2 + l5s1345c2 + l6s13456c2
c5 = +l5s1345c2 + l6s13456c2
c6 = +l6s13456c2



320 CHAPTER 12. DIRECT/INVERSE ANALYSIS OF REDUNDANT WALKING ROBOTSNevertheless, when Jacobian is not square, as the case of redundant multi-joint extremities,the method is numerically solved since for a non-squared matrix there is no determinant andtherefore cannot be directly inverted.
12.3.1 Right pseudoinverse

The inverse kinematic problem is straightforward solved when Jacobian is square with nonzero determinant. Nevertheless, when Jacobian is not square, as is the case for redundantmulti-joint mechanism, the method is numerically solved since for a non-squared matrix thereis no determinant and therefore cannot be inverted. Thus, to deal with the case m < n, we usethe following resilt from linear algebra.
Proposition 12.3.1. For J ∈ <m×n , and rank J = m, then (JJ)−1 exists.

In this case (JJT ) ∈ <m×m and has rank m. Using this result, we can regroup terms toobtain,
(JJT )(JJT )−1 = I

it follows that,
J
[
JT (JJT )−1] = I

and,
JJ+ = I

Here, J+ = JT (JJT )−1 is called a right pseudoinverse of J, since JJ+ = I. Note that, J+J ∈ <n×n ,and that in general, J+J 6= i (recall that matrix multiplication is not commutative). Therefore,the inverse leg’s kinematics model is given for either Mantis-like leg or ant-like leg.
Definition 12.3.2. The ant-like leg inverse kinematic model q̇ is formalised by:

q̇(t) = JT (J · JT )−1 · ṗ(t) (12.30)
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

φ̇1
φ̇2
φ̇3
φ̇4
φ̇5
φ̇6


=



a1b1c1
a2b2c2
a3b3c3
a4b4c4
a5b5c5
a6b6c6


·




a1a2a3a4a5a6
b1b2b3b4b5b6
c1c2c3c4c5c6

 ·



a1b1c1
a2b2c2
a3b3c3
a4b4c4
a5b5c5
a6b6c6





−1

·


ẋ

ẏ

ż

 (12.31)

12.3.2 Singular value decomposition

The inverse solution is complemented alternatively with a second numeric method to findthe inverse kinematics by decomposing the Jacobian singular values, by the eigenvalues λ1 ≥
λ2 · · · ≥ λm ≥ 0 of square matrix JJT .The singular values for the Jacobian matrix J are given by the square roots of the eigenvaluesof JJT through σi = 2√λi , where U = [u1,u2, . . . ,um], and V = [v1, v2, . . . , vn] that are orthogonalmatrices, and Σ ∈ <m×n.The diagonal matrix Σm = diag(σ0, σ1, . . . , σk) is squared and symmetric.

Σm =

σ1
σ2 . . .

σm

 (12.32)

It is found the singular values, σi of J that can be used to find the eigenvectors u, . . . ,umthat satisfy JJT = ui = σiui. Such eigenvectors comprise the matrix U = [u1,u2, · · · ,um]. Thesystem is then rewritten as,
JJTU = UΣ2

m (12.33)
Thus, by defining the matrix,

Σm =

σ1
σ2 . . .

σ1

 (12.34)
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m . and let V be any orthogonal matrix that satisfies V =[Vm|Vn−m]. Notice that V is an n × n matrix. Then, constructing the right pseudo-inverse of

J using singular value decomposition, the Jacobian pseudo-inverse J+ = VΣ−1UT . Therefore,through SVD the ant-like leg inverse kinematics is given by (12.36), in which Σ+
m is the inverse(square) matrix of Σm.

Σ+
m =


σ−11

σ−12 . . .
σ−11

 (12.35)

For the same kinematic example as previous subsection, now the inverse matrix solution isgiven by, 

φ̇1
φ̇2
φ̇3
φ̇4
φ̇5
φ̇6


=





a1b1c1
a2b2c2
a3b3c3
a4b4c4
a5b5c5
a6b6c6


·U ·Σ−1

m


·Σ−1

m ·






a1a2a3a4a5a6
b1b2b3b4b5b6
c1c2c3c4c5c6

 ·



a1b1c1
a2b2c2
a3b3c3
a4b4c4
a5b5c5
a6b6c6





−1

U ·Σ2
m



>

·


ẋ

ẏ

ż



(12.36)

The forward kinematics p(t) and its first derivative ṗ(t) are analytic solutions. However,their inverse solutions Φ(t) and first derivative Φ̇(t) are numeric ones. Either types of equationcan be used within the general navigation control law ξ̇(t), which will only depend on itsnavigational algorithmic convenience.
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12.4 Dynamics analysis

By means of energies analysis through Euler-Lagrange motion equations, walking tasks aresolely considered over the plane,()two dimensions). The next kinematics equations only

Figure 12.3: Degrees of freedom required for walking in a Mantis-like extremity.

describes the kinematic motion of Mantis-like leg.
x = l1c01 + lac01a + d2(t)c01ab + lcc01abc + ldc01abcd (12.37)

and,
y = l1s01 + las01a + d2(t)s01ab + lcs01abc + lds01abcd (12.38)

Their, first derivative is given by,
ddtx = −l1s01

( ddtφ0 + ddtφ1
)
− las01a

( ddtφ0 + ddtφ1 + a
)+ ddtd2(t)c01ab

−d2(t)s01ab
( ddtφ0 + ddtφ1 + a + b

)
− lcs01abc

( ddtφ0 + ddtφ1 + a + b + c
)

−lds01abcd
( ddtφ0 + ddtφ1 + a + b + c + d

) (12.39)
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ddty = l1c01

( ddtφ0 + ddtφ1
)+ lac01a

( ddtφ0 + ddtφ1 + a
)+ ddtd2(t)s01ab

−d2(t)c01ab
( ddtφ0 + ddtφ1 + a + b

)+ lcc01abc
( ddtφ0 + ddtφ1 + a + b + c

)
+ldc01abcd

( ddtφ0 + ddtφ1 + a + b + c + d
) (12.40)

The kinetic energy for joint 0 with (potential energy p0 = 0),
k0 = 12 I0( ddtφ0)2 (12.41)

and its linear velocity model,
v21 = l21

( ddtφ0 + ddtφ1
)2 (12.42)

The kinetic energy for joint 1,
k1 = 12m1v21 + 12 I1( ddtφ0)2 (12.43)

and potential energy p1,
p1 = mg l12 s01 (12.44)

The linear velocity model for joint-1 is given by
v22 = l21

( ddtφ0 + ddtφ1
)2 + l2a

( ddtφ0 + ddtφ1 + a
)2 + ddtd2(t)2

+d2(t)2( ddtφ0 + ddtφ1 + a + b
)2 + 2l1laca ( ddtφ0 + ddtφ1

)( ddtφ0 + ddtφ1 + a
)

+2 ddtd2(t)l1sab ( ddtφ0 + ddtφ1
)

−2d2(t)l1c2φ02φ1ab
( ddtφ0 + ddtφ1

)( ddtφ0 + ddtφ1 + a + b
)

+2 ddtd2(t)2lasb ( ddtφ0 + ddtφ1 + a
)

−2d2(t)lac2φ02φ12ab
( ddtφ0 + ddtφ1 + a

)( ddtφ0 + ddtφ1 + a + b
)

−2 ddtd2(t)d2(t)s2(01ab)
( ddtφ0 + ddtφ1 + a + b

)

(12.45)



12.4. DYNAMICS ANALYSIS 325Likewise, the kinetic and potential energy models for the second joint p2,
k2 − p2 = 12m2v22 + 12 I2( ddtφ0)2 −mg l12 s01 + 12mg d2(t)2 s01ab (12.46)

The linear velocity model for joint-2 is defined by,
v2
w = l21

( ddtφ0 + ddtφ1
)2 + l2a

( ddtφ0 + ddtφ1 + a
)2 + ddtd2(t)2

+d2(t)2( ddtφ0 + ddtφ1 + a + b
)2 + l2c

( ddtφ0 + ddtφ1 + a + b + c
)2

l2d
( ddtφ0 + ddtφ1 + a + b + c + d

)2 + 2l1laca ( ddtφ0 + ddtφ1
)( ddtφ0 + ddtφ1 + a

)
+2 ddtd2(t)l1sab ( ddtφ0 + ddtφ1

)
−2d2(t)l1c2φ02φ1ab

( ddtφ0 + ddtφ1
)( ddtφ0 + ddtφ1 + a + b

)
+2 ddtd2(t)2lasb ( ddtφ0 + ddtφ1 + a

)
−2d2(t)lac2φ02φ12ab

( ddtφ0 + ddtφ1 + a
)( ddtφ0 + ddtφ1 + a + b

)
−2 ddtd2(t)d2(t)s2(01ab)

( ddtφ0 + ddtφ1 + a + b
)

+2l1lccabc ( ddtφ0 + ddtφ1
)( ddtφ0 + ddtφ1 + a + b + c

)
+2lalccbc ( ddtφ0 + ddtφ1 + a

)( ddtφ0 + ddtφ1 + a + b + c
)

+2 ddtd2(t)lcsc ( ddtφ0 + ddtφ1 + a + b + c
)

−2d2(t)lcc2φ02φ12a2bc
( ddtφ0 + ddtφ1 + a + b + c

)( ddtφ0 + ddtφ1 + a + b + c + d
)

+2lcldcd ( ddtφ0 + ddtφ1 + a + b + c
)( ddtφ0 + ddtφ1 + a + b + c + d

)
+2l1ldcabcd ( ddtφ0 + ddtφ1

)( ddtφ0 + ddtφ1 + a + b + c + d
)

+2laldcbcd ( ddtφ0 + ddtφ1 + a
)( ddtφ0 + ddtφ1 + a + b + c + d

)
+2 ddtd2(t)ldscd ( ddtφ0 + ddtφ1 + a + b + c + d

)
−2d3(t)ldc2φ02φ12a2bcd

( ddtφ0 + ddtφ1 + a + b
)( ddtφ0 + ddtφ1 + a + b + c + d

)

(12.47)
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kw = 12mwv2

w + 12 Iw( ddtφ0)2 (12.48)
The potential energy model,

pw = mgAwsφw (12.49)
Then according to Euler-Lagrange equations, and by partially deriving, the force equations are,

τ0 = I0 d2dt2φ0 (12.50)
τ1 = 12m1a1 + I1 d2dt2φ0 −mg l12 s01 (12.51)

τ2 = 12m2a2 + I2 d2dt2φ0 −mg l12 s01 − 12mg d2(t)2 s01ab (12.52)
τw = 12mwaw + Iw

d2dt2φ0 −mgAwsw (12.53)
Furthermore, by developing the same systematic derivation and algebraic process, now onwe state the set of dynamic equations for the ant-like extremities for a process of walkingkinematic configuration.

Figure 12.4: Degrees of freedom required for walking of an ant-like extremity.



12.4. DYNAMICS ANALYSIS 327Then, the walking kinematic configuration is given by next equations of planar positions(x, y)>,
x = l1c01 + lac01a + l3c01a3 + lbc01a3b + lcc01a3bc (12.54)

and
y = l1s01 + las01a + l3s01a3 + lbs01a3b + lcs01a3bc (12.55)

Thus, the first order derivative for the X component
ddtx = −l1s01

( ddtφ0 + ddtφ1
)
− las01a

( ddtφ0 + ddtφ1 + a
)

−l3s01a3
( ddtφ0 + ddtφ1 + a + ddtφ3

)
− lbs01a3b

( ddtφ0 + ddtφ1 + a + ddtφ3 + b
)

−lcs01a3bc
( ddtφ0 + ddtφ1 + a + ddtφ3 + b + c

) (12.56)

likewise, the first order derivative for the Y component
ddty = l1c01

( ddtφ0 + ddtφ1
)+ lac01a

( ddtφ0 + ddtφ1 + a
)

+l3c01a3
( ddtφ0 + ddtφ1 + a + ddtφ3

)+ lbc01a3b
( ddtφ0 + ddtφ1 + a + ddtφ3 + b

)
+lcc01a3bc

( ddtφ0 + ddtφ1 + a + ddtφ3 + b + c
) (12.57)

the kinetic energy for the active joint 0,
k0 = 12 I0( ddtφ0)2 (12.58)

The model for linear velocity of active joint 1,
v21 = l21

( ddtφ0 + ddtφ1
)2 (12.59)

The kinetic and potential energy models for active joint 1,
k1 = 12m1v21 + 12 I1( ddtφ0)2 (12.60)
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p1 = mg l12 s01 (12.61)

Likewise,
v22 = l1

( ddtφ0 + ddtφ1
)2 + l2a

( ddtφ0 + ddtφ1 + a
)2 + l23

( ddtφ0 + ddtφ1 + a + ddtφ3
)2

+2l1l3ca3
( ddtφ0 + ddtφ1

)( ddtφ0 + ddtφ1 + a + ddtφ3
)

+2l1laca ( ddtφ0 + ddtφ1
)( ddtφ0 + ddtφ1 + a

)
+2lal3c3

( ddtφ0 + ddtφ1 + a
)( ddtφ0 + ddtφ1 + a + ddtφ3

)
(12.62)

The kinetic and potential energy models for active joint 2,
k2 = 12m2v22 + 12 I2( ddtφ0)2 (12.63)

and
p2 = mg l12 s01 + 12mg l32 s01a3 (12.64)
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v2
w = l1

( ddtφ0 + ddtφ1
)2 + l2a

( ddtφ0 + ddtφ1 + a
)2 + l23

( ddtφ0 + ddtφ1 + a + ddtφ3
)2

+l2b ( ddtφ0 + ddtφ1 + a + ddtφ3 + b
)2 + l2c

( ddtφ0 + ddtφ1 + a + ddtφ3 + b + c
)2

+2l1l3ca3
( ddtφ0 + ddtφ1

)( ddtφ0 + ddtφ1 + a + ddtφ3
)

+2l1laca ( ddtφ0 + ddtφ1
)( ddtφ0 + ddtφ1 + a

)
+2lal3c3

( ddtφ0 + ddtφ1 + a
)( ddtφ0 + ddtφ1 + a + ddtφ3

)
+2l1lbca3b

( ddtφ0 + ddtφ1
)( ddtφ0 + ddtφ1 + a + ddtφ3 + b

)
+2lalbc3b

( ddtφ0 + ddtφ1 + a
)( ddtφ0 + ddtφ1 + a + ddtφ3 + b

)
+2l3lbcb ( ddtφ0 + ddtφ1 + a + ddtφ3

)( ddtφ0 + ddtφ1 + a + ddtφ3 + b
)

+2lblccc ( ddtφ0 + ddtφ1 + a + ddtφ3 + b
)( ddtφ0 + ddtφ1 + a + ddtφ3 + b + c

)
+2l1lcca3bc

( ddtφ0 + ddtφ1
)( ddtφ0 + ddtφ1 + a + ddtφ3 + b + c

)
+2lalcc3bc

( ddtφ0 + ddtφ1 + a
)( ddtφ0 + ddtφ1 + a + ddtφ3 + b + c

)
+2l3lccbc ( ddtφ0 + ddtφ1 + a + ddtφ3

)( ddtφ0 + ddtφ1 + a + ddtφ3 + b + c
)

(12.65)

The models for the kinetic and potential energies,
kw = 12mwv2

w + 12 Iw( ddtφ0)2 (12.66)
and

pw = mgAwsφw (12.67)
The rotational joints angular moments are described by

τ0 = I0 d2dt2φ0 (12.68)
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τ1 = 12m1a1 + I1 d2dt2φ0 −mg l12 s01 (12.69)

τ2 = 12m2a2 + I2 d2dt2φ0 −mg l12 s01 − 12mg l32 s01a3 (12.70)
and

τw = 12mwaw + Iw
d2dt2φ0 −mgAwsw (12.71)

12.5 Simulation results

Figure 12.5 depicts work spaces of both extremities Mantis-like (12.5-(a)), and ant-like (12.5-(b))legs. The coordinate (0, 0)> correspond to each leg’s first joint dubbed φ0. A transversal cutof either plots represent an approximation of a single leg step. The workspace is a Cartesianplot showing the set of possible 3D locations a leg is able to reach in terms of its kinematicrestrictions. The vector models first derivative ṗm and ṗa are the Mantis-like and ant-likeforward kinematic equations respectively. For the case of first order legs kinematics ṗ(t),

Figure 12.5: (a) Mantis-like walking-step space; (b) Ant-like 3D walking-step space.

the figure 12.6 illustrates the Cartesian speeds ẋ, ẏ, ż evolution in reference to a single leg-step trajectory, figure 12.6-(a) for Mantis-like leg step, and 12.6-(c) for ant-like leg step. Theirmagnitudes in velocity given by the norm ‖ṗm‖ and ‖ṗa‖ are depicted by figure 12.6-(b)(d),respectively. For these results, a step given by a Mantis-like leg, the joints φ0, φ3, and φ5 werecontrolled, according to empirical observations of the insect’s walking movements.In addition, for the ant-like leg, a step trajectory was emulated by controlling the joints
φ1, φ2, and φ4 only, according to insects empirical observations. The small differences ofspeed magnitudes between Mantis and ant, resulted because of links lengths configuration
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A) B)

C) D)
Figure 12.6: Robot’s one step Cartesian velocities. (a) Mantis-like leg; (b) Mantis-like magnitude; (c) Ant-like
leg; (d) ant-like leg magnitude.

were arbitrary taken considering insects’ size rates. The presented formulation in this workstated that the joints may be adjusted and configured in accordance to the expression ‖J ·Φ‖,which is the equation (12.4) that allow to configure numerous gaits patterns.

Figure 12.7: Robot’s position given by the accelerative restrictions g(x, ẋ, ẍ).
The general acceleration restrictions given by function g(x, ẋ, ẍ) as the motion state vectorin the navigation control law is illustrated by figure 12.7. It depicts the instantaneous robot’stangential velocity evolution, according to equation (12.7). At constant acceleration 0.25ms−2 forthe first equation condition. However, for second restriction, despite is a linear function of time,



332 CHAPTER 12. DIRECT/INVERSE ANALYSIS OF REDUNDANT WALKING ROBOTSits behaviour is prone to slope changes affecting displacements. It is because the instantaneousacceleration gives such slope value. The acceleration depends on differences in time of twosuccessive instantaneous velocities. The third acceleration restriction was set at a constantreference velocity of vref = 0.25m/s, and gamma (attenuation factor) γ = 0.25. Although a = 0,its behaviour in time is gradually increased or decreased (if the case) because it is velocitycontrolled equation at constant speed change overtime gives stability of rate displacement. Thelinearised state equation determines the global robot’s motion behaviour, and it was basedon observable conditions that depend on any of the acceleration condition states: uniform,non-uniform and magnitude zero. The navigation control relies upon an averaged Cartesiannorm of legs’ speed components. It allows to adjust and configure the walking gaits sincethe control law’s input vector is defined in terms of the norm of Jacobians 1
n‖
∑n

i Ji · Φ̇i‖,where n is the number of legs, and joints vector Φ̇ is explicitly defined in accordance to agiven walking gait. Instead, a first order derivative analysis of kinematic equations system wasstated. Two different bio-inspired six-DOF extremities with redundant kinematics were studiedand analysed through simulation results; the Praying-Mantis, and the Ant Smithi. Redundantkinematic extremities were inversely solved by two solutions: the right pseudo-inverse, anddecomposition the Jacobian’s singular values through SVD.
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Chapter 13

UNDER-ACTUATED JANSEN-BASED

ROBOT CONTROL

Jaime Candelaria Solís and Edgar A. Martínez García

Laboratorio de Robótica, Institute of Engineering and Technology
Universidad Autónoma de Ciudad Juárez, Mexico.

Latest advances in science and technology have incredibly imposed robotic walkers, whichis becoming a very important aspect in human society. A few examples of this role are robotsemployed in industrial, space fields, all-terrain exploration, rehabilitation, and even entertain-ment1–5. As these kind of robotic systems technologically grow, they require more sensorsand devices in order to make them behave in a more realistic manner. Therefore, achievinga better interaction with their environment. Wheeled mobile robots are characterized by theirsimplicity, but high performance to travel on even surfaces. Nevertheless their movementover complex terrains becomes limited. Unlike wheeled robots, the robots with extremitiescapable to walk over all types of grounds, and they consume less energy than wheeled robots.All these advantages make these systems to depend on the number of actuators to travel andcomplete tasks, since they regularly require one independent variable to be controlled perjoint. As a consequence, they gain more weight, use more energy and computational com-plexity gets incremented. As a result, the systems known as under-actuated ones have beendeveloped, and represent a reduction in their driven joints to perform dynamic walking em-



336 CHAPTER 13. UNDER-ACTUATED JANSEN-BASED ROBOT CONTROLploying more efficiently potential and kinetic energies6. As this reduction may constraint therobot’s movement, but it provides the benefit of reducing the number of actuators needed forworking. This chapter presents the design and kinematic control of an octapod walking robotwith foundations on the study of the under-actuated Theo Jansen mechanism7. The analysisdeparts from a study of all passive joints present in Jansen linkage. The position equations ofJansen-based limbs’ interacting as an octapod are analysed, involving mathematical modellingof both walking patterns: for one limb, and for the eight limbs. The Jansen’s mechanism isa planar mechanical linkage that consists of a frame, a crankshaft, and 11 links; shown infigure 13.1-a). The mechanism is based on the next idea: if the crankshaft’s rotary movementis controlled, all mechanism’s linkages are also easily controlled.
13.1 Passive joints analysis

In this section, an algebraic analysis of the Jansen mechanism of figure 13.1-a) is discussed.The main strategy of this chapter is to gain understanding of the mechanism’s behaviour bymathematically treat partial closed chains of links (figures 13.1-b)–f). The solution of the kine-matic system is provided by analysing all rotational variables (passive joints) that are controlledthrough the driven input, namely crankshaft angle (denoted by link l2) (see chapter 1.1). Thekinematic analysis of the limb, is by following a way of interconnected links from the end of l2or node −Ïjk until node −Ïih (figure 13.1-a)). Any linkage relationship may correctly be used to ob-tain a solution about the planar position of the limb’s contact (node −Ïih). Therefore, consideringthe rigid links Li and passive angles θj , the following position equations are stated,
Axiom 13.1.1 (Closed link kinematic equations). A formal statement of two equations to solve

a planar four links closed chain is postulated. Thus, equation for the component X,

L2 cos θ + L3 cos θ3 = L1 cos θ1 + L4 cos θ4 (13.1)
and for the component Y,

L2 sin θ + L3 sin θ3 = L1 sin θ1 + L4 sin θ4 (13.2)
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Figure 13.1: a)Jansen links. Closed chain of links: b) linkage l1, l2, l3, l4; c) linkage l4, l7, l8; d) linkage
l1, l2, l5, l6; e) linkage l6, l8, l9, l10; and f) linkage l10, l11, l12.

In this case, the input angle θ is the only independent driven variable known, as well as theangle of passive joint θ1 = 0 for motion of link L1. In order to simplify equations, the value of
θ1 is algebraically substituted from the previous equations:

L2 cos θ + L3 cos θ3 = L1 + L4 cos θ4 (13.3)
and

L2 sin θ + L3 sin θ3 = L4 sin θ4 (13.4)
Thus, a known angle is obtained temporally called θ, and two unknowns θ3 and θ4. Hence, thelast expression is rearranged as

L3 cos θ3 = L1 + L4 cos θ4 − L2 cos θ (13.5)
and

L3 sin θ3 = L4 sin θ4 − L2 sin θ (13.6)



338 CHAPTER 13. UNDER-ACTUATED JANSEN-BASED ROBOT CONTROLThen, the two equations are squared in both sides of equality, and algebraically and simplified,
(L3 cos θ3)2 = (L1 + L4 cos θ4 − L2 cos θ)2 (13.7)

as well as
L23 cos2 θ3 = L21 + 2L1L4 cos θ4 + L24 cos2 θ4 − 2(L1 + L4 cos θ4)(L2 cos θ) + L22 cos2 θ (13.8)

It follow that, (L3 sin θ3)2 = (L4 sin θ4 − L2 sin θ)2 (13.9)
and

L23 sin2 θ3 = L24 sin2 θ4 − 2(L4 sin θ4)(L2 sin θ) + L22 sin2 θ (13.10)
by adding (L3 cos θ3)2 with (L3 sin θ3)2, we have:

L23 = L21 + L22 + L24 + 2L1L4 cos θ4 − 2L1L2 cos θ − 2L2L4(cos θ cos θ4 + sin θ sin θ4) (13.11)
Algebraically rearranging
(2L1L4 − 2L2L4 cos θ) cos θ4 − (2L2L4 sin θ) sin θ4 + (L21 + L22 − L23 + L24 − 2L1L2 cos θ) = 0 (13.12)

Thus, the double-angle formulas are then used according to the following manner,
cos θ4 = 1− tan2( θ42 )1 + tan2( θ42 ) (13.13)

and sin θ4 = 2 tan( θ42 )1 + tan2( θ42 ) (13.14)
Hence, the following expression is obtained,

A
(1− t21 + t2

)+ B
( 2t1 + t2

)+C = 0 (13.15)
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A = 2L1L4 − 2L2L4 cos θ (13.16)

B = −2L2L4 sin θ (13.17)
C = L21 + L22 − L23 + L24 − 2L1L2 cos θ (13.18)

and
t = tan(θ42 ) (13.19)

From previous equation (13.15), the following process is developed,
A − At2 + 2Bt1 + t2 +C = 0 (13.20)

A − At2 + 2Bt +C +Ct21 + t2 = 0 (13.21)
A − At2 + 2Bt +C +Ct2 = 0 (13.22)

thus, (C − A)t2 + (2B)t + (A+C) = 0 (13.23)
It is observed that (13.23) is a quadratic equation of the general quadratic form ax2 +bx+c = 0.Thereby, a second degree equation is solved by the general form,

t = −2B −√4B2 − 4(C − A)(A+C)2(C − A) = −B −√B2 −C2 + A2
C − A (13.24)

Thus, let us consider that t = tan( θ42 ), and θ4 is drop-off,
θ4 = 2 tan−1(t) (13.25)

Since θ4 is already known, L3 sin θ3 is divided by L3 cos θ3 to obtain a solution for θ3
tan θ3 = ( L4 sin θ4 − L2 sin θ

L1 + L4 cos θ4 − L2 cos θ ) (13.26)
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θ3 = tan−1( L4 sin θ4 − L2 sin θ

L1 + L4 cos θ4 − L2 cos θ ) (13.27)
It follows to solve for the a second linkage formed by L4, L7, L8 that is depicted in figure13.1-c). Thus, the following kinematic equations of position are stated, for the X component,

L4 cos θ4 + L7 cos θ7 = L8 cos θ8 (13.28)
and then for the Y component,

L4 sin θ4 + L7 sin θ7 = L8 sin θ8 (13.29)
It is worth noting that an analytic solution for θ4 has already been obtained, and it will be usedas a known variable to solve for the next chain of links where angles θ7 and θ8 are involved.

L7 cos θ7 = L8 cos θ8 − L4 cos θ4 (13.30)
and

L7 sin θ7 = L8 sin θ8 − L4 sin θ4 (13.31)
Similarly, both equations are squared and algebraically simplified to obtain

(L7 cos θ7)2 = (L8 cos θ8 − L4 cos θ4)2 (13.32)
and developing square binomial,

L27 cos2 θ7 = L28 cos2 θ8 − 2L4L8 cos θ4 cos θ8 + L24 cos2 θ4 (13.33)
applying same algebraic procedure to the Y component,

(L7 sin θ7)2 = (L8 sin θ8 − L4 sin θ4)2 (13.34)
and expanding the squared binomial,

L27 sin2 θ7 = L28 sin2 θ8 − 2L4L8 sin θ4 sin θ8 + L24 sin2 θ4 (13.35)
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L27 = L28 − 2L4L8(cos θ4 cos θ8 + sin θ4 sin θ8) + L24 (13.36)

In addition, by rearranging
− (2L4L8 cos θ4) cos θ8 − (2L4L8 sin θ4) sin θ8 + (L28 − L27 + L24) = 0 (13.37)

And by substituting next trigonometric identities,
cos θ8 = 1− tan2( θ82 )1 + tan2( θ82 ) (13.38)

as well as sin θ8 = 2 tan( θ82 )1 + tan2( θ82 ) (13.39)
As early stated, similarly to equation (13.15), the following expressions are established,

A = −2L4L8 cos θ4, (13.40)
B = −2L4L8 sin θ4, (13.41)
C = L28 − L27 + L24 (13.42)

and
t = tan(θ82 ) (13.43)

As in equation (13.15), a similar algebraic process is developed and the quadratic equation issolved by the a general form
t = −B −√B2 −C2 + A2

C − A (13.44)
Let us recall that t = tan( θ82 ), and we solve for θ8,

θ8 = 2 tan−1(t) (13.45)
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θ8 = 2 tan−1

2L4L8 sin θ4 −√(−2L4L8 sin θ4)2 − (L28 − L27 + L24)2 + (−2L4L8 cos θ4)2(L28 − L27 + L24)− (−2L4L8 cos θ4)
 (13.46)

Once θ8 is known, L7 sin θ7 is divided by L7 cos θ7 to obtain θ7
tan θ7 = ( L8 sin θ8 − L4 sin θ4

L8 cos θ8 − L4 cos θ4 ) (13.47)
θ7 = tan−1( L8 sin θ8 − L4 sin θ4

L8 cos θ8 − L4 cos θ4 ) (13.48)
θ7 = tan−1

 L8 sin(2 tan−1( 2L4L8 sin θ4−√(−2L4L8 sin θ4)2−(L28−L27+L24)2+(−2L4L8 cos θ4)2(L28−L27+L24)−(−2L4L8 cos θ4) ))− L4 sin θ4
L8 cos(2 tan−1( 2L4L8 sin θ4−√(−2L4L8 sin θ4)2−(L28−L27+L24)2+(−2L4L8 cos θ4)2(L28−L27+L24)−(−2L4L8 cos θ4) ))− L4 cos θ4


(13.49)

Furthermore, as depicted in figure 13.1-d) the third linkage to be analysed is formed by therigid links L1, L2, L5, L6, which form a closed kinematic chain. Thus, the following equationsare stated,
L2 cos θ + L5 cos θ5 = L1 cos θ1 + L6 cos θ6 (13.50)

and
L2 sin θ + L5 sin θ5 = L1 sin θ1 + L6 sin θ6 (13.51)

In this case, the angle θ is known a priori from the link L1, and where θ1 = 0. Thus, the set ofequations are simplified due to the value of θ1,
L2 cos θ + L5 cos θ5 = L1 + L6 cos θ6 (13.52)

and
L2 sin θ + L5 sin θ5 = L6 sin θ6 (13.53)

Rearranging previous expressions,
L5 cos θ5 = L1 + L6 cos θ6 − L2 cos θ (13.54)
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L5 sin θ5 = L6 sin θ6 − L2 sin θ (13.55)

and both equations are squared, and algebraically simplified,
(L5 cos θ5)2 = (L1 + L6 cos θ6 − L2 cos θ)2 (13.56)

developing the squared binomial,
L25 cos2 θ5 = L21 + 2L1L6 cos θ6 + L26 cos2 θ6 − 2(L1 + L6 cos θ6)(L2 cos θ) + L22 cos2 θ (13.57)

the following expressions are obtained
(L5 sin θ5)2 = (L6 sin θ6 − L2 sin θ)2 (13.58)

L25 sin2 θ5 = L26 sin2 θ6 − 2L2L6 sin θ sin θ6 + L22 sin2 θ (13.59)
Adding (L5 cos θ5)2 and (L5 sin θ5)2, next expression results

L25 = L21 + L26 + L22 + 2L1L6 cos θ6 − 2L1L2 cos θ − 2L2L6(cos θ cos θ6 + sin θ sin θ6) (13.60)
and algebraically rearranging,
(2L1L6 − 2L2L6 cos θ) cos θ6 − (2L2L6 sin θ) sin θ6 + (L21 + L26 + L22 − L25 − 2L1L2 cos θ) = 0 (13.61)

substituting next trigonometric identities to reduce previous expression,
cos θ6 = 1− tan2( θ62 )1 + tan2( θ62 ) (13.62)

and sin θ6 = 2 tan( θ62 )1 + tan2( θ62 ) (13.63)
Because the process does not change, an equation like (13.15) is obtained, with factors as:

A = 2L1L6 − 2L2L6 cos θ (13.64)
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B = −2L2L6 sin θ (13.65)

C = L21 + L26 + L22 − L25 − 2L1L2 cos θ (13.66)
t = tan(θ62 ) (13.67)

The following process is similar as previously stated from equation (13.15), by arranging as aquadratic general form,
t = −B+√B2 −C2 + A2

C − A (13.68)
Let us recall that t = tan( θ62 ), to solve for θ6, thus

θ6 = 2 tan−1(t) (13.69)
Once θ6 is already solved, then L5 sin θ5 is divided by L5 cos θ5 in order to solve for θ5,

tan θ5 = ( L6 sin θ6 − L2 sin θ
L1 + L6 cos θ6 − L2 cos θ

) (13.70)
and subsequently,

θ5 = tan−1( L6 sin θ6 − L2 sin θ
L1 + L6 cos θ6 − L2 cos θ

) (13.71)
The following linkage to solve for, is comprised by the rigid links L6, L8, L9, L10 arrangedas a closed kinematic chain, as depicted in figure 13.1-e). Hence, the following the positionequations are stated for the X component

L8 cos θ8 + L9 cos θ9 = L6 cos θ6 + L10 cos θ10 (13.72)
and for the Y component,

L8 sin θ8 + L9 sin θ9 = L6 sin θ6 + L10 sin θ10 (13.73)
At this stage, it is assumed that the angles θ6 and θ8 are already known through a functionalform. Thus, in the analysis of actual kinematic chain, the unknown variables are the angles θ9and θ10. Therefore, arranging as in the next expressions,

L9 cos θ9 = L6 cos θ6 + L10 cos θ10 − L8 cos θ8 (13.74)
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L9 sin θ9 = L6 sin θ6 + L10 sin θ10 − L8 sin θ8 (13.75)

They are squared, and algebraically simplified,
(L9 cos θ9)2 = (L6 cos θ6 + L10 cos θ10 − L8 cos θ8)2 (13.76)

L29 cos2 θ9 = L26 cos2 θ6 + 2L6L10 cos θ6 cos θ10+L210 cos2 θ10 − 2(L6 cos θ6 + L10 cos θ10)(L8 cos θ8) + L28 cos2 θ8 (13.77)
hence, (L9 sin θ9)2 = (L6 sin θ6 + L10 sin θ10 − L8 sin θ8)2 (13.78)
and

L29 sin2 θ9 = L26 sin2 θ6 + 2L6L10 sin θ6 sin θ10 + L210 sin2 θ10
−2(L6 sin θ6 + L10 sin θ10)(L8 sin θ8) + L28 sin2 θ8 (13.79)

Adding (L9 cos θ9)2 and (L9 sin θ9)2, and algebraically rearranging,
(2L6L10 cos θ6 − 2L8L10 cos θ8) cos θ10 + (2L6L10 sin θ6 − 2L8L10 sin θ8) sin θ10+(L26 + L210 + L28 − L29 − 2L6L8(cos θ6 cos θ8 + sin θ6 sin θ8) = 0 (13.80)

Once again, trigonometric identities are used for further simplification,
cos θ10 = 1− tan2( θ102 )1 + tan2( θ102 ) (13.81)

and sin θ10 = 2 tan( θ102 )1 + tan2( θ102 ) (13.82)
We define the following expressions

A = 2L6L10 cos θ6 − 2L8L10 cos θ8, (13.83)
B = 2L6L10 sin θ6 − 2L8L10 sin θ8, (13.84)
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C = L26 + L210 + L28 − L29 − 2L6L8(cos θ6 cos θ8 + sin θ6 sin θ8), (13.85)

and
t = tan(θ102 ) (13.86)

hence, solving by using a general quadratic form, the result becomes,
t = −B −√B2 −C2 + A2

C − A (13.87)
and considering that t = tan( θ102 ), hence we solve for θ10 in the following manner,

θ10 = 2 tan−1(t) (13.88)
Likewise, with θ10 already known, L9 sin θ9 is divided by L9 cos θ9 to obtain the solution for θ9,

tan θ9 = ( L6 sin θ6 + L10 sin θ10 − L8 sin θ8
L6 cos θ6 + L10 cos θ10 − L8 cos θ8

) (13.89)
and subsequently,

θ9 = tan−1( L6 sin θ6 + L10 sin θ10 − L8 sin θ8
L6 cos θ6 + L10 cos θ10 − L8 cos θ8

) (13.90)

Finally, an analysis for the next linkage comprised of the kinematic chain L10, L11, L12 isprovided (figure 13.1-f)). The following kinematic equations are stated, for the X component,
L10 cos θ10 + L11 cos θ11 = L12 cos θ12 (13.91)

and for the Y component,
L10 sin θ10 + L11 sin θ11 = L12 sin θ12 (13.92)

Since the passive angle θ10 has already been analytically solved, it is involved as the input anglefor the next linkage. So far this stage, only two passive angles θ11 and θ12 still remain unknown.Thus, arranging as in the following expressions,
L11 cos θ11 = L12 cos θ12 − L10 cos θ10 (13.93)
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L11 sin θ11 = L12 sin θ12 − L10 sin θ10 (13.94)

Then, the expression is squared, and algebraically simplified,
(L11 cos θ11)2 = (L12 cos θ12 − L10 cos θ10)2 (13.95)

then, the squared binomial is expanded,
L211 cos2 θ11 = L212 cos2 θ12 − 2L10L12 cos θ10 cos θ12 + L210 cos2 θ10 (13.96)

similarly for the Y component,
(L11 sin θ11)2 = (L12 sin θ12 − L10 sin θ10)2 (13.97)

and
L211 sin2 θ11 = L212 sin2 θ12 − 2L10L12 sin θ10 sin θ12 + L210 sin2 θ10 (13.98)

In addition, for algebraic reduction, we add the terms (L11 cos θ11)2 and (L11 sin θ11)2, resultingthe next expression,
L211 = L212 − 2L10L12(cos θ10 cos θ12 + sin θ10 sin θ12) + L210 (13.99)

and by algebraically rearranging,
− (2L10L12 cos θ10) cos θ12 − (2L10L12 sin θ10) sin θ12 + (L210 − L211 + L212) = 0 (13.100)

Substituting the next trigonometric identities,
cos θ12 = 1− tan2( θ122 )1 + tan2( θ122 ) (13.101)

as well as sin θ12 = 2 tan( θ122 )1 + tan2( θ122 ) (13.102)
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A = −2L10L12 cos θ10, (13.103)
B = −2L10L12 sin θ10, (13.104)

and
C = L210 − L211 + L212, (13.105)

and
t = tan(θ122

) (13.106)
Solving by using the quadratic general form, it leads to the next solution,

t = −B −√B2 −C2 + A2
C − A (13.107)

Considering that t = tan( θ122 ), and we solve for the passive joint θ12
θ12 = 2 tan−1(t) (13.108)

Substituting a = L210 − L211 + L212,
θ12 = 2 tan−1((2L10L12 sin θ10)−√(−2L10L12 sin θ10)2a2 + (−2L10L12 cos θ10)2

a + 2L10L12 cos θ10
) (13.109)

Once θ12 is known, then L11 sin θ11 is divided by L11 cos θ11 to obtain θ11:
tan(θ11) = L12 sin θ12 − L10 sin θ10

L12 cos θ12 − L10 cos θ10 (13.110)
and

θ11 = tan−1( L12 sin θ12 − L10 sin θ10
L12 cos θ12 − L10 cos θ10

) (13.111)
13.1.1 Passive joints simulation

Previous analytical solutions were directly coded in C++ programming language, resultingwith a very fast computing performance. Likewise, plots were produced with GNUplot. There-



13.1. PASSIVE JOINTS ANALYSIS 349fore, by summarising the set of equations modelling the passive joints in terms of the anglesof the Jansen mechanism limb, the following expressions are analytic solutions.
θ1 = 0; θ = θ

For the next angles θ3 and θ4, let us define L34 = L21+L22−L23+L24 , `c = 2L1L2 cos θ, `s = 2L2L4 sin θ,as well as `z = 2L2L4 cos θ, such that
θ3 = tan−1

 L4 sin(2 tan−1( `s−
√(−`s)2−(L34−`c)2+(2L1L4−`z)2(L34−`c)−(2L1L4−2L2L4 cos θ)

))
− L2 sin θ

L1 + L4 cos(2 tan−1( (2L2L4 sin θ)−√−`2s−(L34−`c)2+(2L1L4−`z)2(L34−`c)−(2L1L4−`z)
))
− L2 cos θ

 (13.112)
and

θ4 = 2 tan−1( `s −√(−`s)2 − (L34 − `c)2 + (2L1L4 − `z)2(L34 − `c)− (2L1L4 − `z)
) (13.113)

For the cases of θ5 and θ6, we firstly define the expressions L56 = L21 +L26 +L22−L25−2L1L2 cos θ,and `56 = 2L1L6 − 2L2L6 cos θ.
θ5 = tan−1

 L6 sin(2 tan−1( 2L2L6 sin θ+√(2L2L6 sin θ)2−L256+`256
L56−`56

))
− L2 sin θ

L1 + L6 cos(2 tan−1( 2L2L6 sin θ+√(2L2L6 sin θ)2−L256+`256
L56−`56

))
− L2 cos θ

 (13.114)
and

θ6 = 2 tan−1
2L2L6 sin θ +√(−2L2L6 sin θ)2 − L256 + `256

L56 − `56
 (13.115)

and
θ7 = tan−1

 L8 sin(2 tan−1( 2L4L8 sin θ4−√(−2L4L8 sin θ4)2−(L28−L27+L24)2+(−2L4L8 cos θ4)2(L28−L27+L24)−(−2L4L8 cos θ4) ))− L4 sin θ4
L8 cos(2 tan−1( 2L4L8 sin θ4−√(−2L4L8 sin θ4)2−(L28−L27+L24)2+(−2L4L8 cos θ4)2(L28−L27+L24)−(−2L4L8 cos θ4) ))− L4 cos θ4



θ8 = 2 tan−1
2L4L8 sin θ4 −√(−2L4L8 sin θ4)2 − (L28 − L27 + L24)2 + (−2L4L8 cos θ4)2(L28 − L27 + L24)− (−2L4L8 cos θ4)


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θ9 = tan−1( L6 sin θ6 + L10 sin θ10 − L8 sin θ8

L6 cos θ6 + L10 cos θ10 − L8 cos θ8
)

For the case of θ10 let us define the expression Ld = L26 + L210 + L28 − L29 − 2L6L8(cos θ6 cos θ8 +sin θ6 sin θ8), `e = 2L6L10 cos θ6 − 2L8L10 cos θ8, and `d = 2L6L10 sin θ6 − 2L8L10 sin θ8

θ10 = 2 tan−1
−`d −√`2d − L2

d + `2e
L2
d − `2e

 (13.116)
Defining L11 = 2L10L12 sin θ10 for θ11

θ11 = tan−1
 L12 sin(2 tan−1(L11−√−L211−(L210−L211+L212)2+(−2L10L12 cos θ10)2(L210−L211+L212)−(−2L10L12 cos θ10)

))
− L10 sin θ10

L12 cos(2 tan−1(L11−√−L211−(L210−L211+L212)2+(−2L10L12 cos θ10)2(L210−L211+L212)−(−2L10L12 cos θ10)
))
− L10 cos θ10

 (13.117)
Likewise, for θ12 let us substitute L11 too,

θ12 = 2 tan−1
L11 −√−L211 − (L210 − L211 + L212)2 + (−2L10L12 cos θ10)2(L210 − L211 + L212)− (−2L10L12 cos θ10)

 (13.118)
Previous summary of passive joints formulae are validated by producing numerical simulationsof the entire system. Figure 13.2 shows resulting tracks for each joint in two legs of robot’slateral side. The simulation considered suitable inertial frames transformation, while the twolimbs are synchronised. The numerical simulation validates the algebraic approach proposedin this chapter. Each track may be compared with figure 13.1, and with angles θ0-θ12 formulae.

13.2 Robot’s global passive movement

This section is mainly focused on the analysis of the mechanical structure end-joint, or contactpoint with surface. The contact point describes the kinematics of the robot’s walking gait,either in terms of planar Cartesian positions, or in terms of velocities. The proposed roboticstructure is an octapod, which is depicted in figure 13.3. It consists of four legs per side(lateral), where two actuators drive θ and φ as differential control for the two crankshafts. It’simportant to note that between the first and second pair of legs exist 120o offset in between
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Figure 13.2: Joints track simulation yielded by the linkage kinematic models θ0-θ12.

the crankshafts.This section contains a formal analysis of the contact point position equations as functions ofthe driven angles θ and φ. Then, the study is organised in a section discussion front legs relatedposition kinematics (those using index 1), and a section discussing the rear legs (those usingindex 2). Variables using index r refer to the right-sided limbs; while those using l refer to theleft-sided limbs.
13.2.1 Front legs kinematic position

Lets define and substitute the terms R1 = 4L210L212 sin(2 tan−1(D))2 + 4L210L212 cos(2 tan−1(D))2 and
Ls = L212 − L211 + L210,

Xr1 = L12 cos(2 tan−1(2L10L12 sin(2 tan−1(D))−√R1 − L2
s2L10L12 cos(2 tan−1(D)) + Ls

))+ L6 cos(A) + L1 (13.119)
and

Xl1 = −L12 cos(2 tan−1((2L10L12 sin(2 tan−1(D))−√R1 − L2
s)2L10L12 cos(2 tan−1(D)) + Ls)
))
− L6 cos(A)− L1 (13.120)
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Figure 13.3: Octapod-type walking robot design, with legs’ contact point position.

Likewise, Yr1 = Yl1 hence
Yr1 = L12 sin(2 tan−1(2L10L12 sin(2 tan−1(D))−√R1 − L2

s2L10L12 cos(2 tan−1(D)) + Ls

))+ L6 sin(A) (13.121)
The velocity models are described by their first order derivative,

Ẋr1 = dXr1dt (13.122)
Ẋl1 = dXl1dt (13.123)

and
Ẏr1 = Ẏl1 = dYr1dt = dYl1dt (13.124)

Hence by substituting the following expressions LA = L26 −L25 + L22 + L21 , and LAs = 2L2L6 sin(θ),
A = 2 tan−1

√L2
As + (2L1L6 − 2L2L6 cos(θ))2 − (−2L1L2 cos(θ) + LA)2 + LAs2L2L6 cos(θ)− 2L1L2 cos(θ)− 2L1L6 + LA

 (13.125)



13.2. ROBOT’S GLOBAL PASSIVE MOVEMENT 353likewise, by substituting LB = L24 − L23 + L22 + L21 , and LBs = 2L2L4 sin(θ),
B = 2 tan−1

LBs −√L2
Bs + (2L1L4 − 2L2L4 cos(θ))2 − (−2L1L2 cos(θ) + LB)22L2L4 cos(θ)− 2L1L2 cos(θ)− 2L1L4 + LB

 (13.126)
following with substitutions LC = L28 − L27 + L24

C = 2 tan−1
2L4L8 sin(B)−√4L24L28 sin(B)2 + 4L24L28 cos(B)2 − L2

B2L4L8 cos(B) + LC

 (13.127)
and defining the term LD = L29 + L28 + L26 + L210 the following expression is stated,

D = −
√
d + 2L10L8 sin(C)− 2L10L6 sin(A)

−2L6L8(sin(A) sin(C) + cos(A) cos(C)) + 2L10L8 cos(C)− 2L10L6 cos(A)− LD (13.128)
Where d = −(−2L6L8(sin(A) sin(C) + cos(A) cos(C)) − LD)2 + (2L10L6 sin(A) − 2L10L8 sin(C))2 +(2L10L6 cos(A)− 2L10L8 cos(C))2
13.2.2 Rear legs kinematic position

Let us define the expressions Lr2 = 2L10L12 sin(2 tan−1(D), and L2s = L212 − L211 + L210,
Xr2 = L12 cos

2 tan−1(Lr2 −√L2
r2 + 4L210L212 cos(2 tan−1(D))2 − L22s

)
2L10L12 cos(2 tan−1(D)) + L2s

+ L6 cos(A) + L1
(13.129)and

X12 = −L12 cos
2 tan−1(Lr2 −√L2

r2 + 4L210L212 cos(2 tan−1(D))2 − L22s
)

2L10L12 cos(2 tan−1(D)) + L2s

− L6 cos(A)− L1
(13.130)and since Yr2 = Yl2

Yl,r2 = L12 sin
2 tan−1(Lr2 −√L2

r2 + 4L210L212 cos(2 tan−1(D))2 − L22s
)

2L10L12 cos(2 tan−1(D)) + L2s

+ L6 sin(A) (13.131)



354 CHAPTER 13. UNDER-ACTUATED JANSEN-BASED ROBOT CONTROLIt follows that the Cartesian speeds obtained from firs order derivatives w.r.t. time are statedby
Ẋr2 = dXr2dt (13.132)

and
Ẋl2 = dXl2dt (13.133)

as well as
Ẏr2 = Ẏl2 = dYr2dt = dYl2dt (13.134)

Therefore, by substituting next expressions, La1 = L26 − L25 + L22 + L21 , La2 = 2L2L6 sin(θ + 120π180 ),and La3 = 2L2L6 cos(θ + 120π180 ),
A = 2 tan−1

√L2
a2 + (2L1L6 − La3)2 − (−2L1L2 cos(θ + 120π180 ) + La1)2 + La2

La3 − 2L1L2 cos(θ + 120π180 )− 2L1L6 + La1
 (13.135)

Likewise, substituting Lb1 = L24−L23 +L22 +L21 , Lb2 = 2L2L4 sin(θ+ 120π180 ), and Lb3 = 2L2L4 cos(θ+120π180 ),
B = 2 tan−1

(Lb2 −√L2
b2 + (2L1L4 − La3)2 − (−2L1L2 cos(θ + 120π180 ) + Lb1)2)(La3 − 2L1L2 cos(θ + 120π180 )− 2L1L4 + Lb1)

 (13.136)
For the case of factor C, it is defined as

C = 2 tan−1
2L4L8 sin(B)−√4L24L28 sin(B)2 + 4L24L28 cos(B)2 − (L28 − L27 + L24)22L4L8 cos(B) + L28 − L27 + L24

 (13.137)
and for D let us define Ld1 = L29 + L28 + L26 + L210

D = − 2√d + 2L10L8 sin(C)− 2L10L6 sin(A)
−2L6L8(sin(A) sin(C) + cos(A) cos(C)) + 2L10L8 cos(C)− 2L10L6 cos(A)− Ld1 (13.138)

where d = −(−2L6L8(sin(A) sin(C) + cos(A) cos(C)) − Ld1)2 + (2L10L6 sin(A) − 2L10L8 sin(C))2 +(2L10L6 cos(A)− 2L10L8 cos(C))2.
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13.3 Robot analysis with driven angle φ

13.3.1 Front limbs

The equations for planar Cartesian positions for the front limbs are stated. Thus, let usdefine the following terms Rr1 = L212 − L211 + L210, Sr1 = 2L10L12 sin(2 tan−1(D)), and Tr1 =2L10L12 cos(2 tan−1(D)),
Xr1 = L12 cos2 tan−1

(Sr1 −√S2
r1 + T2

r1 −R2
r1)(Tr1 + Rr1)
+ L6 cos(A) + L1 (13.139)

and,
Xl1 = −L12 cos(2 tan−1( (Sr1 −

√
S2
r1 + 4L210L212 cos(2 tan−1(D))2 −R2

r1)(2L10L12 cos(2 tan−1(D)) + Rr1) ))− L6 cos(A)− L1 (13.140)
and since Yr1 = Yl1 , then
Yr1 = L12 sin2 tan−1

(Sr1 −√R2
r1 + 4L210L212 cos(2 tan−1(D))2 − (Rr1)2)(2L10L12 cos(2 tan−1(D)) + Rr1)

+L6 sin(A) (13.141)
It follows that the Cartesian speeds are described by the first order derivative w.r.t. time,

Ẋr2 = dXr2dt (13.142)
and

Ẋl2 = dXl2dt (13.143)
and

Ẏr2 = Ẏl2 = dYr2dt = dYl2dt (13.144)
Thus, by defining the following expressions that were used previously. Let us re-define theterms `a = 2L1L6 − 2L2L6 cos(φ), and τA = L26 − L25 + L22 + L21

A = 2 tan−1
√4L22L26 sin(φ)2 + (`a)2 − (−2L1L2 cos(φ) + τA)2 + 2L2L6 sin(φ)2L2L6 cos(φ)− 2L1L2 cos(φ)− 2L1L6 + τA

 (13.145)



356 CHAPTER 13. UNDER-ACTUATED JANSEN-BASED ROBOT CONTROLLikewise, by defining the following expressions that were used previously. Let us re-define theterms `b = 2L1L4 − 2L2L4 cos(φ), and τB = L24 − L23 + L22 + L21 ,
B = 2 tan−1

2L2L4 sin(φ)−√4L22L24 sin(φ)2 + `2b − (−2L1L2 cos(φ) + τB)22L2L4 cos(φ)− 2L1L2 cos(φ)− 2L1L4 + τB

 (13.146)
by defining the following expressions that were used previously. Let us re-define the term
τC = L28 − L27 + L24 ,

C = 2 tan−1
2L4L8 sin(B)−√4L24L28 sin(B)2 + 4L24L28 cos(B)2 − (τC)22L4L8 cos(B) + τC

 (13.147)
and by defining the term τD = L29 + L28 + L26 + L210,

D = −
√
d + 2L10L8 sin(C)− 2L10L6 sin(A)

−2L6L8(sin(A) sin(C) + cos(A) cos(C)) + 2L10L8 cos(C)− 2L10L6 cos(A)− τD (13.148)
where d = −(−2L6L8(sin(A) sin(C) + cos(A) cos(C)) − τD)2 + (2L10L6 sin(A) − 2L10L8 sin(C))2 +(2L10L6 cos(A)− 2L10L8 cos(C))2.
13.3.2 Rear limbs

The equations for planar Cartesian positions for the front limbs are stated. Thus, let us usethe terms previously defined Rr1, Sr1 and Tr1,
Xr2 = L12 cos2 tan−1

Sr1 −√S2
r1 + T2

r1 −R2
r1

Tr1 + Rr1
+ L6 cos(A) + L1 (13.149)

Likewise, following with the same substitution terms Rr1, Sr1, and Tr1,
X12 = −L12 cos2 tan−1

(Sr1 −√S2
r1 + T2

r1 −R2
r1)(Tr1 + Rr1)
− L6 cos(A)− L1 (13.150)

and
Yr2 = Yl2 = L12 sin2 tan−1

Sr1 −√S2
r1 + T2

r1 − (Rr1)2
Tr1 + Rr1

+ L6 sin(A) (13.151)



13.3. ROBOT ANALYSIS WITH DRIVEN ANGLE φ 357In addition, let us define the Cartesian speed of the rear limbs’ contact point,
Ẋr2 = dXr2dt

and
Ẋl2 = dXl2dtas well as,

Ẏr2 = Ẏl2 = dYr2dt = dYl2dt

By substituting the factors used in previous equations, the expressions for A, B, C, and
D are defined. In addition, let us redefine `1 = 2L2L6 cos(φ + 120π180 ), `2 = 2L1L2 cos(φ + 120π180 ),
`3 = 2L2L6 sin(φ + 120π180 ), and LA = L25 + L22 + L21

A = 2 tan−1
 2√`23 + (2L1L6 − `1)2 − (−`2 + L26 − LA)2 + `3(`1 − `2 + L26 − 2L1L6 − LA)

 (13.152)
and defining L41 = L24 − L23 + L22 + L21 , and `4 = 2L2L4 sin(φ + 120π180 ),

B = 2 tan−1
 `4 −√`24 + (2L1L4 − 2L2L4 cos(φ + 120π180 ))2 − (−`2 + L41)22L2L4 cos(φ + 120π180 )− `2 − 2L1L4 + L41

 (13.153)
Similarly,

C = 2 tan−1
2L4L8 sin(B)−√4L24L28 sin(B)2 + 4L24L28 cos(B)2 − (L28 − L27 + L24)22L4L8 cos(B) + L28 − L27 + L24

 (13.154)
Finally, by defining the term L19 = L29 + L28 + L26 + L210

D = −
√
d + 2L10L8 sin(C)− 2L10L6 sin(A)

−2L6L8(sin(A) sin(C) + cos(A) cos(C)) + 2L10L8 cos(C)− 2L10L6 cos(A)− L19 (13.155)
where d = −(−2L6L8(sin(A) sin(C) + cos(A) cos(C)) − L19)2 + (2L10L6 sin(A) − 2L10L8 sin(C))2 +(2L10L6 cos(A)− 2L10L8 cos(C))2.
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13.4 Robot’s motion control

On studying how the mechanisms walking evolve, results of critical importance to provide therobot with the ability of self-balancing. Synchronised contact of the eight legs with ground maygrant suitable stability for the global robot’s manoeuvrability. Figure 13.4 depicts a top view ofthe octapod, as well as hash-tag symbols plus a number indicating the synchronization orderof the limbs during walking. The step’s displacements magnitude were set arbitrary for both:for the purpose of simulation, and for an hoe-made experimental prototype robot. In addition,this order of walking is a preamble for any type of controller design.

Figure 13.4: Octapod’s top view. The hashtag symbols plus a number indicate the synchronising order for
the limbs during walking.

Such as depicted in figure 13.4 (XZ-plane), an eight-leg walking pattern is indicated. Wherethe big black dot located at the robot’s centre determines the robotic structure’s centroid, whilethe smaller black dots represent each limb’s contact point (i.e. L1, L2, D1, and D2). Further,the gait sequence follows the next order:
1. The front left-sided leg (L1) steps first.
2. Second, the rear right-sided leg (D2) steps.
3. Third, the front right-sided leg (D1) steps next.
4. Finally the rear left-sided leg (L2) moves.
5. Repeats again from 1.



13.4. ROBOT’S MOTION CONTROL 359From previous walking sequence, and kinematic analysis, figure 13.5 illustrates a side view(XY plane) of the gait patterns, and the walking behaviour for the set of three limbs duringa normal walking task. Two front-side limbs (black color for the right-sided, and red colorfor the left-sided limbs), and one rear-side limb (blue color). The walking pattern yielded bythe two actuators θ and φ is cyclic and records the same type of gait as any other limb does,although with constant angular offsets.

Figure 13.5: Walking patterns simulation of three limbs.

In addition, the robot’s global displacement along the X-axis is contributed by the eight limbsmoving in coordination. Thus, the robot’s displacement was characterised by setting arbitrarylink sizes preserving same rate even when lengths are changed. The robot displacement isnumerically expressed by the following limbs’ contribution, where such linear displacementwill depend on the limbs touching the ground in turn. At least two limbs synchronised thatsimultaneously are producing the same displacement.

∆x ≈



24.2cm, ∆R119cm, ∆R224.2cm, ∆L119cm, ∆L2

(13.156)



360 CHAPTER 13. UNDER-ACTUATED JANSEN-BASED ROBOT CONTROLThe robot’s trajectory control is one of the main issues of this chapter. In terms of the robot’sglobal kinematic control, the instantaneous input vector ut ∈ R2 is defined. Its components arethe instantaneous velocity υt , and the instantaneous angular velocity ωt ,
ut = υt

ωt


On formulating υt , the robot’s absolute velocity represents an averaged displacement of theeight legs along the longitudinal X-axis. The eight legs averaged displacements arise fromtheir first order derivatives w.r.t. time ∆t. Therefore, a formulation that approaches υt isdefined by
Postulate 13.4.1 (Octapod’s instantaneous absolute velocity). The absolute velocity is an aver-

age speed value of the eight limbs’ contact point.

υt = 18 (ẊθR1 + ẊθR2 + ẊθL1 + ẊθL2 + ẊφR1 + ẊφR2 + ẊφL1 + ẊφL2
) (13.157)

The indexes θ and φ denote the lateral side of the actuators positions Besides the robot’slateral control is related to the instantaneous angular velocity. Therefore, when the differenceof sides speed yields an angular velocity that gradually changes the robot’s direction. Thus, anychange in lateral velocities will produce a speed component projected along the transversal axis,also known the normal component that impulses the robots to spin. Therefore, the definitionof ωt is provided next,
ωt = υ̂tcos(α)

r (13.158)
Where parameters and variables are depicted in figure 13.6. The differential velocity basicallyis the speed difference between both robot’s sides as defined by the next expressions,

υ̂t = ΣRVR −ΣLVL (13.159)
Such previous expression is known as the instantaneous differential velocity, and is equivalentto the sum of all limbs’ velocity. The right-sides velocities are considered positives (counter-
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Figure 13.6: Robot’s top view with kinematic configuration.

clockwise), while the left-sided velocities are assumed negative as they turn clockwise direction.
cos(α) = a2r (13.160)

where the functional form of r is stated by
r = 2

√(a2 )2 +(b2
)2 (13.161)

Being r the average distance of contact points with the ground of each one of the legs w.r.t.the robot’s centroid. Likewise, a and b are constants and represent the lateral and longitudinaldistances respectively among the limbs’ contact point. Finally,
ωt = (υR − υL)( a2r )√

a2+b24
(13.162)

thus, algebraically arranging,
ωt = (υR−υL)a2r√

a2+b22 (13.163)



362 CHAPTER 13. UNDER-ACTUATED JANSEN-BASED ROBOT CONTROLreorganizing division terms,
ωt = (υR − υL)(a)(2)2r 2√a2 + b2 (13.164)

by reducing terms,
Postulate 13.4.2 (Octapod’s instantaneous yaw velocity model). The octapod’s yaw speed is

postulated in terms of its kinematic structure, and difference between lateral velocities.

ωt = a(υR − υL)
r 2√a2 + b2 (13.165)

The instantaneous ωt physical units are given in rad/s. When there exists a differencein the subtraction of lateral velocities, a numeric change for ωt exists and ωt 6= 0, which isconsequently produced by any change in θ and/or φ. In addition, when vt = vt−1, then therewill not be any difference in velocities υt = ΣVR − ΣVL = 0, and ωt = 0. For any instant υ̂tthe projection upon the transversal axis is what determines the angular velocity. Mathematicalanalysis of this structure led to obtain a control vector of the octapod structure based on TheoJansen’s mechanism. The study of angles in all linkages allowed to gain better understandingon how the system behaves and evolves solely with two driven angles.
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Chapter 14

RECONFIGURABLE GAIT PATTERNS OF

A KLANN-BASED ROBOT

Jaichandar K. Sheba1,3, Rajesh E. Mohan2, Edgar A. Martínez García3, Le Tan-Phuc1
1Singapore Polytechnic, Singapore.2Singapore University of Technology and Design, Singapore.3Laboratorio de Robótica, Institute of Engineering and Technology, Universidad Autónoma de Ciudad

Juárez, Mexico.

Legged robots are well suited to walk over abrupt terrains and they are effective in using iso-lated footholds which optimize support and traction. Design based on one degree-of-freedomplanar linkages can be energy efficient however their locomotion is limited by the range of gaitsproduced. In this chapter, novel reconfigurable mechanism based upon Klann linkage to gen-erate wide range of gait cycles has been investigated, opening new possibilities for innovativeapplications. A robot that has a fixed structure of movement mechanism faces issues relatedto constrained set of gaits that it can produce. Numerous research efforts have been dedicatedto this end involving varied design strategies. However, such an approach results in increas-ing difficulty in control algorithm when more and more units are connected with each other.Another design approach in the literature achieves gait variations via parametric changes ofleg structure1–3. Our aim in this research is to design a robot using Klann mechanism whichcan change its linkage configurations to adapt their gait according to changes of surround-



366 CHAPTER 14. RECONFIGURABLE GAIT PATTERNS OF A KLANN-BASED ROBOTing environment. In this chapter, Klann based reconfigurable design and implementation ispresented, where a robot changes its structure morphology by changing its components andsub-assemblies parameters to adapt to multi-terrain and multi-task. The leg linkage length ratioof the robot platform has been modified to create a large number of gait patterns which canbe selectively used by the robots to explore, test and apply to get real feedback. The proposedreconfigurable mechanism approach can be extended from two symmetry legged assemblyto four or more legged assembly. This design supports multiple legged robots with adaptivechanges when one leg fails or to use a leg as a tool to perform functions other than locomotion.This design can be applied to both homogeneous and heterogeneous legged platform.

14.1 Klann mechanism position analysis

The Klann linkage (“Klann leg” can be used as term in this chapter) named after its inventor isa one degree of freedom planar mechanism which is formed by six bars connected with eachother by revolute joints4. This linkage was designed to emulate a smooth walking motion withonly one actuator. The limitation of this mechanism is that it can produce only one walking gaitfor one specific design of linkages. It can be observed that the foot trajectory of the standardKlann leg is similar to a specific animal walking gait5,6. The main challenge in identifyingfoot trajectory for further reconfigurable design is to create efficient approaches to solve theposition analysis problem of the Klann leg. A common method is to solve a system of nonlinear equation with the number of equation equal to number of unknown variable6. However,the elimination process will give out a large number of solutions caused by trigonometric partsand tangent half-angle problem. Using bilateration method solution can be found for this typeof problem7.
The bilateration problem consists in finding feasible locations of a point Pc , given its dis-tances to two other points, say Pa and Pb , whose locations are known. Then, according tofigure 14.1-b), the solution to this problem can be expressed in matrix form as:

pa,c = Za,b,c pa,b (14.1)
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a) b) c)
Figure 14.1: a) Photo of an experimental Klann-based prototype limb. b) Geometric foundation of the
bilateration problem. c) Klann linkage kinematics.

Where pa,b = −−−ÏPaPb and,
Za,b,c = 12sa,b

sa,b + sa,c − sb,c −4Aa,b,c4Aa,b,c sa,b + sa,c − sb,c

 (14.2)
is called a bilateration matrix, with sa,b = d2

a,b = ‖Pa,b‖2, the squared distance between Pa and
Pb , and

Aa,b,c = ±14√(sa,b + sa,c + sb,c)2 − 2(s2
a,b + s2

a,c + s2
b,c) (14.3)

The oriented area of 4PaPbPc which is defined as positive if Pc is to the left of vector −−Ïpa,b,and vice versa. The interested reader can refer to the work4 for a derivation of equation.By using bilateration matrices, the position analysis problem of linkages such as Klann leg isgreatly simplified. Next, we apply the bilateration method on Klann leg for solving the positionanalysis problem of the end point of the leg.Figure 14.2 shows a Klann leg with 5 links, they are P1P2, P3P4, P5P6, P2P3P7, P6P7P8. Thisone-degree-of-freedom planar linkage consists of the frame (4P1P4P5), one crank (P1P2), twogrounded rockers (segments P3P4, P5P6), and two couplers (4P2P3P7, 4P6P7P8) all connectedby revolute joints. These links and frame’s dimensions including links length d1,2, d2,3, d3,4,
d5,6, d3,7, d6,7 and d7,8, fixed angle ε and ω of two couplers are all known with an angle θ forthe input link. The Cartesian coordinate plane Oxy with original point was placed on joint P1together with axis directions as shown. The position analysis problem for Klann leg is thencalculating all possible Cartesian locations of end point P8.
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Figure 14.2: Bilateration method applied to red-highlighted chain of links.



14.1. KLANN MECHANISM POSITION ANALYSIS 369In this case, squared distances and bilateration matrix are used to compute the correspondinglocation of end point P8 based on angle θ. First, let us locate the position of P2 based on theinput angle θ and the origin P1 through a simple cosine equation as following:
−−−ÏP1P2 = d1,2

cos θsin θ
 (14.4)

Figure 14.2-a) shows the corresponding link for the calculation of equation (2). Figure 14.2-b)shows the next step of the process, the position of P3 is located by computing p2,3 from θ andthe position of previous calculated joints P2 and P4 using equation (1).
p2,3 = Z2,3,4p2,4 (14.5)

it follows that,
−−−ÏP2P3 = 12s2,4

s2,4 + s2,3 − s4,3 −4A2,4,34A2,4,3 s2,4 + s2,3 − s4,3
−−−ÏP2P4 (14.6)

with
−−−ÏP2P4 = −ÏP4 −−ÏP2 = x4 − d1,2 cos θ

y4 − d1,2 sin θ
 (14.7)

and
A2,4,3 = 14√(s2,4 + s2,3 + s4,3)2 − 2(s2,42 + s2,32 + s4,32) (14.8)

P3 is to the left of vector −−−ÏP2P4 in this case; and,
s2,4 = ‖−−−ÏP2P4‖2 = (x4 − d1,2cos θ )2 + (y4 − d1,2sin θ )2 (14.9)

After getting −−−ÏP2P3, we can calculate −ÏP3 = −−−ÏP2P3 +−ÏP 2. Next, we locate P7 based on P2 and P3 asshown in figure 14.2-c):
P2,7 = Z2,3,7p2,3 (14.10)

therefore,
−−−ÏP2P7 = 12s2,3

s2,3 + s2,7 − s3,7 −4A2,3,74A2,3,7 s2,3 + s2,7 − s3,7
−−−ÏP2P3 (14.11)
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s2,7 = s3,2 + s3,7 − 2d3,2d3,7 cos(ε), (14.12)

and
A2,3,7 = 14 2√(s2,3 + s2,7 + s3,7)2 − 2(s22,3 + s22,7 + s23,7) (14.13)

given that P7 is to the left of vector −−−ÏP2P3 in this case. thus,
−ÏP7 = −−−ÏP2P7 +−ÏP2 (14.14)

Then, from known position of P7 and P5, P6 is located (figure 14.2-d),
p5,6 = Z5,7,6p5,7 (14.15)

hence,
−−−ÏP5P6 = 12s5,7

s5,7 + s5,6 − s7,6 −4A5,7,64A5,7,6 s5,7 + s5,6 − s5,6
−−−ÏP5P7 (14.16)

with s5,7 = ‖−−−ÏP5P7‖2,
A5,7,6 = 14 2√(s5,7 + s5,6 + s7,6)2 − 2(s25,7 + s25,6 + s27,6) (14.17)

where P6 is to the left of vector −−−ÏP5P7 in this case.
−ÏP6 = −−−ÏP5P6 + P5 (14.18)

and finally, we locate the end point P8 of the linkage based on previous calculated joints P6 and
P7. From figure 14.2-e, we have:

p6,8 = Z6,7,8p6,7 (14.19)
Therefore,

−−−ÏP6P8 = 12s6,7
s6,7 + s6,8 − s7,8 −4A6,7,84A6,7,8 s6,7 + s6,8 − s7,8

−−−ÏP6P7 (14.20)
with

s6,8 = s7,6 + s7,8 − 2d7,6d7,8 cos(ω) (14.21)
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A6,7,8 = −14 2√(s6,7 + s6,8 + s7,8)2 − 2(s26,7 + s26,8 + s27,8) (14.22)

where P8 is to the right of vector −−−ÏP6P7 in this case. Then
−ÏP8 = −−−ÏP6P8 +−ÏP6 (14.23)

From equations (18), (20), position of points P7, P6, is located respectively. Equation (14.23)defines the position of point P8, the foot of Klann leg, which depends on the set of link di-mensions (L) including fixed angle ω and ε, input angle (θ), the location of P1, P4, P5 and theoriented areas A2,4,3, A2,3,7, A5,7,6, and A6,7,8. To this end, instead of using independent loop-closure equations with joint angles, for a specific set of link dimensions (S) and input angle
θ of Klann leg, a unique position of point end point P8 is located using bilateration methodmentioned above.

14.2 Foot traces generation beyond Klann linkage

Our aim is to generate useful gait pattern based on novel reconfigurable Klann mechanism yetmaintaining the efficiency and simplicity of the actuation. As this research is an initial step fordesign of a complete reconfigurable platform using Klann linkage, we chose one leg for theanalysis presented in this work. We compute position of every point using a series of equationspresented in previous section. By connecting all calculated points, we are able to trace the gaitpattern. With a different set of link dimensions, we can acquire a distinct foot trajectory foreach set. Hence, if the Klann leg can change the link dimensions itself, the linkage will generatea numerous new and different coupler curves. With this basic principle in mind, our objectivein this study is to identify whether by performing small variations in the lengths of the links ofa standard Klann leg, novel foot trajectories of interest for a walking platform can be obtained.Hence, a simple exploratory method is conducted in which we change the standard dimensionsof every links of the Klann leg within a limit of except the crank d1,2, the leg d7,8 and the frame
P1, P4, P5. Then, all the foot resulting coupler curves are computed using the above method foreach change of link dimensions. To be classified as reconfigurable at least one of the followingfeatures should vary a) the effective number of links and/or joints, b) the kinematic type i.e.,
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Figure 14.3: Traced foot trajectory of standard Klann leg with trajectory direction.

the contact constraint of some joints, c) the adjacency and incidence of links and joints, and d)the relative arrangement between joints. By reallocating the joint position new and differentcoupler curves can be generated. By changing the link lengths, five distinctive gait patternsthat extend the original Klann linkage has been presented in table 14.1 achieved through fourlinks, five links and six links transformations.
Digitigrade Locomotion The standard foot trajectory of a Klann leg is similar to a kind ofspider’s locomotion with a long stride. On the other hand, digitigrades walk on their digits ortoes. Due to the short floor touch of the foot of digitigrades, these kinds of animal performless friction and use less energy than others. This interest makes digitigrade locomotion ofgreat interest for the development of walking platforms.
Jam avoidance (Walking on soft, sticky terrain) When walking on soft or sticky terrainssuch as semi-wet mud, walkers could easily get jam because of the soil conditions. Usually, achange in walker’s gait pattern has to be made where the stride become shorter and touch-down as well as lift-up leg angle is increased nearly to overcome such situation.
Step climbing One of the advantages of a standard Klann leg is that it has a relative highfoot step at 350 (units) with highest point at −200 (units), which can handle with uneven terrain



14.3. EXPERIMENTAL RESULT 373or non-significant obstacles such as gravel or small stone. However, the difficulty is increasedwhen the leg faces with higher step level (above −200 units) or obstacles higher than its limit(350 units).
Hammering motion Beside those walking-related foot patterns that we have presented above,in the process of analysing foot trajectories for reconfigurable design, we have found this po-tential pattern whose shape is similar to a hammering motion. The hammering action providesa repeated short, rapid impact to an object with high force on a small area.
Digging motion For those kinds of legged animal such as dog or cat, legs are used not onlyfor walking or running but also for others functions, pawing, clawing or digging, etc.As shown in figure 14.1-a) a fully function reconfigurable Klann leg has been designed withtwo DC servos and five linear servos, suitable for performing the transformation previouslydiscussed. Transformations are achieved by changing link length variable. To facilitate updown movement during reconfigurable process the base link is designed with ball screw witha ball screw and a slider joint. The base link is designed to allow the up and down movementof the reconfigurable Klan leg during transformation process. The base system and extendablelinks are the principal components of the proposed design of reconfigurable klann leg.
14.3 Experimental result

The first experiment consisted in comparing the simulated and experimental leg trajectories forthe different gait patterns8. The linear servos represent link dimensions of the reconfigurableKlann leg, and were set according to the number of active links, together with five cyclesof input crank. A percent error of less than 25% is obtained for all cases. The origin ofsuch errors is principally due to the non-conformity of link lengths and the presence of jointclearances in the prototype. Both error sources are almost inherent to the fabrication ofmechanical designs and are the typical elements that affect the performance of linkages andmechanisms. The highest error in the digging motion pattern, 24.9% in height, is caused bythe dramatically change in moment generated by the mechanism. It can be easily shown bysimulation that the farthest center of mass point, respect to the base link, is achieved in suchpattern, as a consequence, the joint clearance (backlash effect) affects more this pattern than
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Digitigradelocomotion

Jamavoidance

Stepclimbing
Table 14.1: Foot trajectory patterns for reconfiguration application.

the others. The second type of experiment consisted in verifying the transformation processbetween patterns. To this end, the transformation from jam avoidance locomotion to diggingmotion was tested. The results verify that the transformation is carried out without undesiredfloor contacts.All experimental results of leg trajectories are obtained by getting data of five cycles of inputjoint and calculating their median value with seven implemented actuators. This design whichhas the ability to transform its links to produce five different gait patterns is still consideredas a one degree of freedom linkage when operating in normal cycle. A simple but effectivemethod to solve the position analysis problem for Klann linkage based on bilateration matrixhas been introduced together with leg transformation technique. Five potential gait patternsof reconfigurable design have been classified and evaluated beside a transformation methodto swap among those gaits. These typical gait patterns have shown that this simple but orig-inal Klann linkage can produce foot trajectories not only used for walking purposes but alsobehaved as a tool with other functions. A real prototype of Klann leg is built based on thepreliminary design to test output trajectories.
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Figure 14.4: Simulation of the leg transformation from jam avoidance to digging motion through several
steps.
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ANALYSIS AND MODELLING OF A

HOEKENS-JANSEN BIPED

Julio Reyes Muñoz and Edgar Alonso Martínez García
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Universidad Autónoma de Ciudad Juárez, Mexico.

In this chapter a detailed kinematic analysis of walking trajectory for an experimental bipedrobot comprised of hybrid limbs Hoekens-Jansen is presented. Mathematical and numericalmodelling of the Hoekens and Jansen mechanisms are discussed separately. Subsequently, anovel hybrid mechanical limb Hoekens-Jansen is described. The both mechanisms are dis-cussed in terms of their planar motion1,2. In addition, the Jansen mechanism is a mechanicallinkage that was taken as a foundation for the development of the proposed mechanical design.The Jansen mechanism has one active independent control variable, similarly to the Hoekenslinkage. However, the Jansen type poses more passive joints that the Hoekens. Therefore,the whole limb’s movement is transmitted by only one rotatory actuator, and the hybrid limb’stheoretical trajectory geometry is validated with its experimental trajectory motion.
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15.1 Kinematic analysis of the Hoekens mechanism

The Hoekens mechanism is one of the mechanical linkages used for the basis of the proposedlimb design. The Hoekens mechanism (figure 15.1) is built with two Cartesian variables ofthe workspace that describe the geometry of motion (two degrees of freedom) of the finallink l4’s xy components. The Hoekens mechanism is comprised of a closed 3-link kinematicchain l0 + l3 (rotation radius and link 3), l1(chassis), and link l2. In addition, one independentactive variable controls the rotation motion of l0, which is the motion that inputs the first link
l3. Likewise, the end point of the link l4 moves along a non linear trajectory, which is definedaccording to the numerical geometric parameters of the mechanism. The motion track of l4 isdeveloped regardless of the actuators speed. Because of the the geometrical relation betweenthe links of the mechanism, the output trajectory is traditionally described by a semi-ellipticcurve that is closed by a straight line3,4.

Figure 15.1: Hoekens mechanism’s rigid links(left). Angles of interest for premier analysis (right).

Figure 15.1 shows all Hoekens mechanism’s points of interest. Where a is the controlvariable or rotatory actuation. b is a fixed passive joint with no translation over time. c and
d are passive joints. e is the point describing the output trajectory. In addition, the metricrelation for each link’s length is depicted and provided next, where the link l0 is the startinglength parameter to establish the relation for the rest of the links:

l1 = 2l0; l2 = 52 l0; l3 = 52 l0; l4 = 52 l0



15.1. KINEMATIC ANALYSIS OF THE HOEKENS MECHANISM 381The active angular joint θ0 is the only angle measured over time, while the other angles areinferred and described through the mechanism’s kinematics model.

Figure 15.2: Kinematic chains to arrive to point d.

According to figure 15.2, in order to infer until joint d, the following model is established:
Axiom 15.1.1 (Closed kinematic chain). Point d position in planar coordinates is formulated

by

l0 cos θ0 + l3 cos θ1 = l1 + l2 cos θ2 (15.1)
and

l0 sin θ0 + l3 sin θ1 = l2 sin θ2 (15.2)
Hence, having a system of two equations θ1 and θ2 are unknown. Thus, dropping off thefollowing terms in each equation,

l2 cos θ2 = l0 cos θ0 + l3 cos θ1 − l1 (15.3)
and

l2 sin θ2 = l0 sin θ0 + l3 sin θ1 (15.4)
Both equations are squared, and by substituting the trigonometric identities for sine and cosine(see chapter 1.1),

l22 cos2 θ2 = l21 + l20 cos2 θ0 + l23 cos2 θ1 + 2l0l3 cos θ0 cos θ1 − 2l0l1 cos θ0 − 2l1l3 cos θ1
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l22 sin2 θ2 = l20 sin2 θ0 + l23 sin2 θ1 + 2l0l3 sin θ0 sin θ1

Thus, by simplifying equations,
l22 = l21 + l23 + l20 + 2l0l3 cos θ0 cos θ1 − 2l0l1 cos θ0 − 2l1l3 cos θ1 + 2l0l3 sin θ0 sin θ1

By rearranging equations,
(2l0l3 cos θ0 − 2l1l3) cos θ1 + (2l0l3 sin θ0) sin θ1 + (l21 + l23 + l20 − l22 − 2l0l1 cos θ0) = 0 (15.5)

By using the following trigonometric identities:
cos θ = 1− tan2( θ2 )1 + tan2( θ2 )

as well as, sin θ = 2 tan( θ2 )1 + tan2( θ2 )
Equation (15.5) is simplified and rewritten to provide the following expression
Postulate 15.1.2 (Quadratic general equation). The quadratic general equation as a function

of tan(θ1/2) is postulated by

A
(1− t21 + t2

)+ B
( 2t1 + t2

)+C = 0

Where, for simplicity the next notation is used,
t = tan

(
θ12
) (15.6)

Thus,
A = 2l0l3 cos θ0 − 2l1l3
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B = 2l0l3 sin θ0

and
C = l21 + l23 + l20 − l22 − 2l0l1 cos θ0

therefore, by rewriting the next equation
(C − A)t2 + (2B)t + (A+C) = 0 (15.7)

and by solving the quadratic equation by using the general form,
t = −B −√A2 + B2 −C2

C − A

The solution for θ1 from equation (15.6) is obtained,
Corollary 15.1.3 (Passive joint θ1). The equation that models the passive joint θ1,

θ1 = 2 arctan(−B −√A2 + B2 −C2
C − A

) (15.8)

Likewise, a solution for θ2 is provided when dividing equation (15.4) by equation (15.3),
tan(θ2) = l0 sin θ0 + l3 sin θ1

l0 cos θ0 + l3 cos θ1 − l1
Thus, by solving for θ2, the next corollary has been proved,
Corollary 15.1.4 (Passive joint θ2). The equation that models the passive joint θ2,

θ2 = arctan( l0 sin θ0 + l3 sin θ1
l0 cos θ0 + l3 cos θ1 − l1

) (15.9)



384 CHAPTER 15. ANALYSIS AND MODELLING OF A HOEKENS-JANSEN BIPEDTherefore, a kinematic analysis of the kinematic closed chain will be obtained until the finalpoint e. The vector of position (15.10) is stated by
pe =  xe

ye

 =  l0 cos(θ0) + (l3 + l4) cos(θ1)
l0 sin(θ0) + (l3 + l4) sin(θ1)

 (15.10)
The Cartesian trajectories of each point in the mechanism are depicted in figure 15.3. Theposition vector a starts with Cartesian components

pa =  xa
ya

 =  00


likewise, the position vector of point b:
pb =  xb

yb

 =  l10


the position vector of point c
pc =  xc

yc

 =  l0 cos(θ0)
l0 sin(θ0)


and the position vector of point d

pd =  xd
yd

 =  l0 cos(θ0) + l3 cos(θ1)
l0 sin(θ0) + l3 sin(θ1)


Eventually, in order to plot the trajectory of point e, the position model was previously pro-vided by the expression (15.10). It is worth noting that the trajectories plotted in figure 15.3correspond to a complete cycle of the link l0 denoted by the control angle θ0, ranging from 0 to2π radians. The lengths for each link were established according to the following parameters(given in mm): l0 = 50; l1 = 100; l2 = 125; l3 = 125; and l4 = 125.

The advantage on using this mechanism is its simplicity, because only four links are neededto describe a semi-elliptic trajectories. Furthermore, despite this mechanical simplicity, it ispossible to modify the output trajectory by solely changing the Cartesian position of the fixed
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Figure 15.3: Trajectories described by each point of the Hoekens mechanism.

passive joints, and/or by numerically changing the links lengths. As a matter of fact, the lownumber of links makes a light mechanism, which is suitable to manage as required the endingsection of the proposed design.

15.2 Kinematic analysis of the Jansen mechanism

The Jansen mechanism is another of the mechanical linkages taken as foundation for thedevelopment of the proposed limb design. Similarly as the Hoekens mechanism, the Jansenmechanism is actuated by deploying one rotatory joint. Nevertheless, the Jansen mechanismposses even more links (eleven), and passive joints than the Hoekens mechanism. Using similarnotation as previous sections, the Jansen actuation is transmitted by only one rotatory controlvariable the inputs link l0.Figure 15.4 shows the Jansen mechanism with all its joints and links. a is the driven joint.
b and i are fixed passive joints at fixed positions. c, d, e, f , and g are the passive joints. Finally,
h is the point describing the output trajectory. Likewise, the mechanism has a special metricratio of the links w.r.t. l0 (driven by the actuated joint): l1 = 0.52l0, l2 = 2.53l0, l3 = 3.33l0,
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l4 = 4.13l0, l5 = 2.76l0, l6 = 3.72l0, l7 = 2.67l0, l8 = 2.62l0, l9 = 2.63l0, l10 = 2.45l0, l11 = 3.27l0,
l12 = 4.38l0.

Figure 15.4: The Jansen mechanism’s links (left). Angles of each link w.r.t. the horizontal (right).

In order to obtain the kinematic model of the Jansen linkage, the whole set of angular valuesof the passive joints are required to be expressed with a mathematical functional form5,6. Thekinematic analysis is very similar to one previously described for the Hoekens mechanism. Themathematical expression is stated w.r.t. the driven angle θ0, and the links lengths associated.Thus, by developing a similar method as the previous section, the equation (15.7) was establishedand solved by using the next quadratic formula,
Postulate 15.2.1 (Quadratic solution for tan(θi/2)). For the set of closed kinematic chains, the

general quadratic solution for passive angles is

ti = −Bi ±
√
A2
i + B2

i −C2
i

Ci −Ai
(15.11)

Where A, B, and C are expressions, which depend on the known driven angle and its linkslengths. The index i identifies a closed set of kinematic chains. Thus, in order to obtain ananalytical solution for the unknown angles θ3 and θ5, the kinematic chains are shown in figure15.5. The following system of equations is obtained:
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Axiom 15.2.2 (Kinematic chain b). The kinematic chain model to solve position of point b,

l5 cos θ5 + l2 = l0 cos θ0 + l3 cos θ3 (15.12)
and

l5 sin θ5 − l1 = l0 sin θ0 + l3 sin θ3 (15.13)

And, by firstly isolating a term of each equation containing one of the unknown variables,
l3 cos θ3 = l5 cos θ5 − l0 cos θ0 + l2 (15.14)

likewise,
l3 sin θ3 = l5 sin θ5 − l0 sin θ0 − l1 (15.15)

The expression are subsequently squared
l23 cos2 θ3 = l25 cos2 θ5 + l20 cos2 θ0 + l22 − 2l0l5 cos θ0 cos θ5 − 2l0l2 cos θ0 + 2l2l5 cos θ5 (15.16)

as well as
l23 sin2 θ3 = l25 sin2 θ5 + l20 sin2 θ0 + l21 − 2l0l5 sin θ0 sin θ5 + 2l0l1 sin θ0 − 2l1l5 sin θ5 (15.17)

and algebraically simplifying the equations
l23 = l20 + l21 + l22 + l25 − 2l0l5cθ0cθ5 − 2l0l2cθ0 + 2l2l5cθ5 − 2l0l5sθ0sθ5 + 2l0l1sθ0 − 2l1l5sθ5 (15.18)

and
(2l2l5 − 2l0l5cθ0 )cθ5 + (−2l1l5 − 2l0l5sθ0 )sθ5 + (l20 + l21 + l22 + l25 − l23 − 2l0l2cθ0 + 2l0l1sθ0 ) = 0 (15.19)

and by obtaining the expressions A, B and C for this pair of closed kinematic chains:
A1 = 2l2l5 − 2l0l5 cos θ0 (15.20)



388 CHAPTER 15. ANALYSIS AND MODELLING OF A HOEKENS-JANSEN BIPED
B1 = −2l1l5 − 2l0l5 sin θ0 (15.21)

and
C1 = l20 + l21 + l22 + l25 − l23 − 2l0l2 cos θ0 + 2l0l1 sin θ0 (15.22)

hereafter, from equation (15.11), it provides an analytical solution
t1 = −B1 −√A21 + B21 −C21

C1 −A1
and considering that

t1 = tan(θ52
)

Thus, the solution for θ5:
θ5 = 2 tan−1

−B1 −√A21 + B21 −C21
C1 −A1

 (15.23)
In addition, dividing equation (15.15) by expression (15.14):

tan θ3 = l5 sin θ5 − l0 sin θ0 − l1
l5 cos θ5 − l0 cos θ0 + l2

hence, the solution for θ3:
θ3 = tan−1( l5 sin θ5 − l0 sin θ0 − l1

l5 cos θ5 − l0 cos θ0 + l2
) (15.24)

In order to obtain the next pair of angles, the kinematic chains shown in figure 15.5 werealgebraically analysed. Thus, the kinematic path from the point b to the point e is stated
l5 cos θ5 + l6 cos θ6 = l7 cos θ7 (15.25)

as well as
l5 sin θ5 + l6 sin θ6 = l7 sin θ7 (15.26)
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Figure 15.5: a) Kinematic chain of links until joint d. b) Kinematic chain of links until joint g . c) Kinematic
chain of links until joint f . d) Kinematic chain of links until joint e. e) Kinematic chain of links until joint h.

and the resulting equations are subsequently squared,
l27 cos2 θ7 = l25 cos2 θ5 + l26 cos2 θ6 + 2l5l6 cos θ5 cos θ6 (15.27)

and
l27 sin2 θ7 = l25 sin2 θ5 + l26 sin2 θ6 + 2l5l6 sin θ5 sin θ6 (15.28)

by algebraically simplifying the expressions,
l27 = l25 + l26 + 2l5l6 cos θ5 cos θ6 + 2l5l6 sin θ5 sin θ6 (15.29)

and
(2l5l6 cos θ5) cos θ6 + (2l5l6 sin θ5) sin θ6 + (l25 + l26 − l27) = 0 (15.30)

after simplifying previous expressions, A, B and C are obtained and the related pair of closedkinematic chains are solved
A2 = 2l5l6 cos θ5
B2 = 2l5l6 sin θ5

and
C2 = l25 + l26 − l27
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θ6 = 2 tan−1
−B2 +√A22 + B22 −C22

C2 −A2
 (15.31)

Likewise, solving for θ7 equation (15.26) is divided by equation (15.25):
θ7 = tan−1( l5 sin θ5 + l6 sin θ6

l5 cos θ5 + l6 cos θ6
) (15.32)

In order to obtain the unknown angles θ4 and θ8, the kinematic path from point a until point
f is modelled by

l8 cos θ8 + l2 = l0 cos θ0 + l4 cos θ4 (15.33)
and

l8 sin θ8 − l1 = l0 sin θ0 + l4 sin θ4 (15.34)
Thus, by isolating the terms containing the variables of interest

l4 cos θ4 = l8 cos θ8 − l0 cos θ0 + l2 (15.35)
as well as

l4 sin θ4 = l8 sin θ8 − l0 sin θ0 − l1 (15.36)
In addition, equations are squared to algebraically re-arrange,

l24 cos2 θ4 = l28 cos2 θ8 + l20 cos2 θ0 + l22 − 2l0l8 cos θ0 cos θ8 − 2l0l2 cos θ0 + 2l2l8 cos θ8
and

l24 sin2 θ4 = l28 sin2 θ8 + l20 sin2 θ0 + l21 − 2l0l8 sin θ0 sin θ8 + 2l0l1 sin θ0 − 2l1l8 sin θ8
by defining ` = l20 + l21 + l22 + l28 ,and algebraically simplifying equations:

l24 = ` − 2l0l8cθ0cθ8 − 2l0l2cθ0 + 2l2l8cθ8 − 2l0l8sθ0sθ8 + 2l0l1sθ0 − 2l1l8sθ8 (15.37)
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(2l2l8 − 2l0l8cθ0 )cθ8 + (−2l1l8 − 2l0l8sθ0 )sθ8 + (` − l24 − 2l0l2cθ0 + 2l0l1sθ0 ) = 0 (15.38)

The solution for expressions A, B and C are obtained for the actual pair of closed kinematicchains:
A3 = 2l2l8 − 2l0l8 cos θ0
B3 = −2l1l8 − 2l0l8 sin θ0

and
C3 = l20 + l21 + l22 + l28 − l24 − 2l0l2 cos θ0 + 2l0l1 sin θ0

likewise, by using equation (15.11) to solve θ8

θ8 = 2 tan−1
−B3 +√A23 + B23 −C23

C3 −A3
 (15.39)

In addition, equation (15.36) is divided by (15.35) to solve for θ4
θ4 = tan−1( l8 sin θ8 − l0 sin θ0 − l1

l8 cos θ8 − l0 cos θ0 + l2
) (15.40)

It follows that in order to solve for the unknown angles θ9 and θ10, the kinematic path frompoint b to point g is stated next:
l7 cos θ7 + l9 cos θ9 = l8 cos θ8 + l10 cos θ10 (15.41)

and
l7 sin θ7 + l9 sin θ9 = l8 sin θ8 + l10 sin θ10 (15.42)

Isolating the terms containing variables of interest in both expression,
l10 cos θ10 = l7 cos θ7 + l9 cos θ9 − l8 cos θ8 (15.43)

and
l10 sin θ10 = l7 sin θ7 + l9 sin θ9 − l8 sin θ8 (15.44)
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l210c2

θ10 = l27c2
θ7 + l28c2

θ8 + l29c2
θ9 + 2l7l9cθ7cθ9 − 2l7l8cθ7cθ8 − 2l8l9cθ8cθ9 (15.45)

and
l210s2

θ10 = l27s2
θ7 + l28s2

θ8 + l29s2
θ9 + 2l7l9sθ7sθ9 − 2l7l8sθ7sθ8 − 2l8l9sθ8sθ9 (15.46)

The term ` = l27 + l28 + l29 is defined, and by algebraically simplifying
l210 = ` + 2l7l9cθ7cθ9 − 2l7l8cθ7cθ8 − 2l8l9cθ8cθ9 + 2l7l9sθ7sθ9 − 2l7l8sθ7sθ8 − 2l8l9sθ8sθ9 (15.47)

and
(2l7l9cθ7 − 2l8l9cθ8 )cθ9 + (2l7l9sθ7 − 2l8l9sθ8 )sθ9 + (` − l210 − 2l7l8cθ7cθ8 − 2l7l8sθ7sθ8 ) = 0 (15.48)

hence, solving for expressions A, B and C of the actual closed kinematic chains,
A4 = 2l7l9 cos θ7 − 2l8l9 cos θ8 (15.49)
B4 = 2l7l9 sin θ7 − 2l8l9 sin θ8 (15.50)

and
C4 = l27 + l28 + l29 − l210 − 2l7l8 cos θ7 cos θ8 − 2l7l8 sin θ7 sin θ8 (15.51)

solving θ9 through equation (15.11)
θ9 = 2 tan−1

−B4 +√A24 + B24 −C24
C4 −A4

 (15.52)
Similarly, equation (15.44) is divided by expression (15.43) to solve for θ10

θ10 = tan−1( l7 sin θ7 + l9 sin θ9 − l8 sin θ8
l7 cos θ7 + l9 cos θ9 − l8 cos θ8

) (15.53)
Similarly, in order to obtain the unknown angles θ11 and θ12, the kinematic path from point fto point h is developed next,
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l10 cos θ10 + l12 cos θ12 = l11 cos θ11 (15.54)

and
l10 sin θ10 + l12 sin θ12 = l11 sin θ11 (15.55)

further, both sides of equations are squared and algebraically arranged,
l211 cos2 θ11 = l210 cos2 θ10 + l212 cos2 θ12 + 2l10l12 cos θ10 cos θ12 (15.56)

and
l211 sin2 θ11 = l210 sin2 θ10 + l212 sin2 θ12 + 2l10l12 sin θ10 sin θ12 (15.57)

by simplifying the expressions
l211 = l210 + l212 + 2l10l12 cos θ10 cos θ12 + 2l10l12 sin θ10 sin θ12 (15.58)

and (2l10l12 cos θ10) cos θ12 + (2l10l12 sin θ10) sin θ12 + (l210 + l212 − l211) = 0 (15.59)
solving expressions A, B and C:

A5 = 2l10l12 cos θ10
B5 = 2l10l12 sin θ10

and
C5 = l210 + l212 − l211

Eventually, expression (15.11) is used to solve θ12

Corollary 15.2.3 (Solution of passive joint θ12). the model solution for the passive joint θ12

θ12 = 2 tan−1
−B5 +√A25 + B25 −C25

C5 −A5
 (15.60)
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Corollary 15.2.4 (Solution of passive joint θ11). the model solution for the passive joint θ11 is

described by

θ11 = tan−1( l10 sin θ10 + l12 sin θ12
l10 cos θ10 + l12 cos θ12

) (15.61)

Hereafter, the analytical solutions for each Jansen mechanism’s passive joints have beenfound, hence it is possible to state the position vector model that corresponds to the mech-anism’s contact point h and the ground. Following a kinematic chains starting from point a(origin of the mechanism) to the point h through the links l0, l4 and l11, the vector of position(15.62) is obtained.
Theorem 15.2.5 (Jansen limb’s contact point position). The Jansen limb’s contact point position

in planar coordinates is stated by the next vector:

ph =  xh
yh

 =  l0 cos(θ0) + l4 cos(θ4) + l11 cos(θ11)
l0 sin(θ0) + l4 sin(θ4) + l11 sin(θ11)

 (15.62)

Validation of the solution model is provided through numerical simulations depicted in figure15.6. Each mechanism’s link produced a kinematic trajectory from corresponding positionvectors in the mechanism that will be summarised next. Thus, the position vector for point ais stated,
pa =  xa

ya

 =  00
 (15.63)

likewise, the position vector of point b,
pb =  xb

yb

 =  l2
−l1
 (15.64)
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pc =  xc

yc

 =  l0 cos(θ0)
l0 sin(θ0)

 (15.65)
the position vector of point d:

pd =  xd
yd

 =  l0 cos(θ0) + l3 cos(θ3)
l0 sin(θ0) + l3 sin(θ3)

 (15.66)
the position vector of point e:

pe =  xe
ye

 =  l2 + l7 cos θ7
−l1 + l7 sin θ7

 (15.67)
the position vector of point f :

pf =  xf
yf

 =  l2 + l8 cos θ8
−l1 + l8 sin θ8

 (15.68)
Finally, the position vector model for the point g is defined by

pg =  xg
yg

 =  l2 + l8 cos θ8 + l10 cos θ10
−l1 + l10 sin θ10

 (15.69)
The trajectory of the point h is governed by the position vector (15.62), and plotted in figure15.6 (Punto H). All trajectories behave as a result of a complete turn of the driven angle θ0from 0 to 2π radians. For this numerical simulations the parameters of each link were thefollowing (in mm): l0 = 50, l1 = 126.65, l2 = 26, l3 = 166.67, l4 = 206.35, l5 = 138.30, l6 = 186,
l7 = 133.71, l8 = 131, l9 = 131.33, l10 = 122.33, l11 = 163.41, l12 = 219.06.

The advantage on using this type of planar mechanism in the proposed limbs design is be-cause its high stiffness, and it is able to describe gait trajectories suitable for walking machines.Furthermore, the forces involved during a gait are not transmitted from the contact point tothe actuator, rather the stiffness of the ensemble of links only allows to transmit movementfrom the actuator towards the contact point.
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Figure 15.6: Trajectories described by each point of the Jansen mechanism.

Thus, it makes a non-back drivable system that would function analogously to biologicalorganisms.

15.3 Kinematic analysis of a hybrid limb

In this section we detail the kinematics of a hybrid mechanical design that mixes the Jansenwith the Hoekens mechanism to work as a single limb. The main purpose is to control thetrajectory of the Jansen mechanism in combination with the Hoekens motion to generatealthough complex, but a stable and flexible output trajectory. The proposed extremity designprovides some advantages since both mechanisms abilities are exploited7–12. The Jansenmechanism provided a good stiffness to the design, making it non-back drivable. At the sametime, the incorporation of the Hoekens linkage supplied the flexibility for achieving a morecomplex output trajectory. The hybrid mechanism has fourteen links with only an actuatedjoint θ0. Figure 15.3 shows the proposed mechanism with all its joints of interest.Where a is the actuated joint; b and i are passive joints fixed to the chassis. c, d, e, f , g , h, j ,and k are passive joints analysed in previous sections of this chapter. l is a point describing
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a) b)
Figure 15.7: a) Points of interest and links of the proposed limb. b) Angles of each link w.r.t. the horizontal.

the output trajectory or the limb’s contact point. The links’ length ratio is keep the sameas previously explained in other sections (Hoekens and Jansen). Likewise, the relationshipbetween the Hoekens and the Jansen mechanism was preserved by 1 : 1, its ratio is l0 = l13.This analysis carried out in this section for the hybrid version is very similar to analysisdiscussed previously. However, minimal modifications have been carried out according to thenew design features.
Firstly, to obtain the hybrid limb design kinematic model, the passive joint angles mustanalytically be solved, in accordance to the links chain as depicted in figure 15.8. Each passiveangle directly depends on the actuator’s position, and the links length. The final trajectory willdepend on the position of point i w.r.t. the axis of rotation of the link l13 in close relation to thepoint a, which is the axis of rotation of l0. Likewise, it will depends on the angle β (not depictedin figure 15.8), which is the angular phase difference of the link l0 w.r.t. the actual angle of

l13 mechanically connected by a crossed chain. The first part of the analysis focuses on theJansen mechanism. Although, the kinematic analysis is developed similar to previous sections,but now a virtual link la and angle θa is included to preserve the equations homogeneity. Thevirtual link equals the polar representation of a vector describing the position of the point bw.r.t. a. In order to solve for the unknown angles θ3 and θ5, the kinematic chains involved



398 CHAPTER 15. ANALYSIS AND MODELLING OF A HOEKENS-JANSEN BIPEDare depicted in figure 15.8 from where our analysis is developed. The first path taken goesfrom the point a to the point d. Thus, in order to obtain the unknown angles, a system of twoequations previously stated must be solved. for this case, there are six closed link trajectories,with angles solution obtained through equation (15.11).

Figure 15.8: Kinematic chains to arrive to point d .
Thus, let us start our analysis by stating the following axiom:

Axiom 15.3.1 (Hybrid limb initial kinematic chain). The initial set of kinematic equations for

the hybrid limb starting from the actuated angle is stated by

la cos θa + l5 cos θ5 = l0 cos θ0 + l3 cos θ3
and

la sin θa + l5 sin θ5 = l0 sin θ0 + l3 sin θ3



15.3. KINEMATIC ANALYSIS OF A HYBRID LIMB 399It follows, that by isolating a term of each equation containing one of the variables of interest,
l3 cos θ3 = la cos θa + l5 cos θ5 − l0 cos θ0 (15.70)

and
l3 sin θ3 = la sin θa + l5 sin θ5 − l0 sin θ0 (15.71)

Similarly, again the resulting equations are now squared for a subsequent algebraic arrange-ment,
l23c2

θ3 = l2ac2
θa + l25c2

θ5 + l20c2
θ0 + 2lal5cθacθ5 − 2l0lacθ0cθa − 2l0l5cθ0cθ5 (15.72)

and
l23s2

θ3 = l2as2
θa + l25s2

θ5 + l20s2
θ0 + 2lal5sθasθ5 − 2l0lasθ0sθa − 2l0l5sθ0sθ5 (15.73)

Thus, defining `h = l2a + l25 + l20 by simplifying the two expression
l23 = `h + 2lal5cθacθ5 − 2l0lacθ0cθa − 2l0l5cθ0cθ5 + 2lal5sθasθ5 − 2l0lasθ0sθa − 2l0l5sθ0sθ5 (15.74)

similarly,
(2lal5cθa − 2l0l5cθ0 )cθ5 + (2lal5sθa − 2l0l5sθ0 )sθ5 + (`h − l23 − 2l0lacθ0cθa − 2l0lasθ0sθa ) = 0 (15.75)

Obtaining the solution for expressions A, B and C,
A1 = 2lal5 cos θa − 2l0l5 cos θ0 (15.76)
B1 = 2lal5 sin θa − 2l0l5 sin θ0 (15.77)

and
C1 = l2a + l20 + l25 − l23 − 2l0la cos θ0 cos θa − 2l0la sin θ0 sin θa (15.78)

Hence, by using equation (15.11) to solve for θ5,
θ5 = 2 tan−1

−B1 −√A21 + B21 −C21
C1 −A1

 (15.79)



400 CHAPTER 15. ANALYSIS AND MODELLING OF A HOEKENS-JANSEN BIPEDand equation (15.71) is divided by equation (15.70) to solve for θ3,
θ3 = tan−1( la sin θa + l5 sin θ5 − l0 sin θ0

la cos θa + l5 cos θ5 − l0 cos θ0
) (15.80)

It follows that in order to obtain the unknown angles θ6 and θ7, the kinematic chains of thepath between the point b and the point e is described by
l5 cos θ5 + l6 cos θ6 = l7 cos θ7 (15.81)

and
l5 sin θ5 + l6 sin θ6 = l7 sin θ7 (15.82)

Thus, squaring in both sides of the equations
l27 cos2 θ7 = l25 cos2 θ5 + l26 cos2 θ6 + 2l5l6 cos θ5 cos θ6 (15.83)

and
l27 sin2 θ7 = l25 sin2 θ5 + l26 sin2 θ6 + 2l5l6 sin θ5 sin θ6. (15.84)

Algebraically simplifying the following is obtained:
l27 = l25 + l26 + 2l5l6 cos θ5 cos θ6 + 2l5l6 sin θ5 sin θ6 (15.85)

and (2l5l6 cos θ5) cos θ6 + (2l5l6 sin θ5) sin θ6 + (l25 + l26 − l27) = 0 (15.86)

Now stating the solution of expressions A, B and C

A2 = 2l5l6 cos θ5
B2 = 2l5l6 sin θ5 (15.87)

and
C2 = l25 + l26 − l27 (15.88)
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θ6 = 2 tan−1
−B2 −√A22 + B22 −C22

C2 −A2
 (15.89)

and equation (15.82) is divided by equation (15.81) to solve for θ7,
θ7 = tan−1( l5 sin θ5 + l6 sin θ6

l5 cos θ5 + l6 cos θ6
) (15.90)

Following to solve for the next kinematic chain of links, to obtain the unknown angles θ4and θ8, the kinematic chains from point a to point f are stated next.
la cos θa + l8 cos θ8 = l0 cos θ0 + l4 cos θ4 (15.91)

and
la sin θa + l8 sin θ8 = l0 sin θ0 + l4 sin θ4 (15.92)

Dropping off the terms containing the unknown variables of interest in both equations
l4 cos θ4 = la cos θa + l8 cos θ8 − l0 cos θ0 (15.93)

and
l4 sin θ4 = la sin θa + l8 sin θ8 − l0 sin θ0 (15.94)

It follows to square both sides of the equations
l24 cos2 θ4 = l2a cos2 θa+l28 cos2 θ8+l20 cos2 θ0+2lal8 cos θa cos θ8−2l0la cos θ0 cos θa−2l0l8 cos θ0 cos θ8
and
l24 sin2 θ4 = l2a sin2 θa+ l28 sin2 θ8 + l20 sin2 θ0 +2lal8 sin θa sin θ8−2l0la sin θ0 sin θa−2l0l8 sin θ0 sin θ8
By defining `f = l2a + l28 + l20 Algebraically simplifying,

l24 = `f + 2lal8cθacθ8 − 2l0lacθ0cθa − 2l0l8cθ0cθ8 + 2lal8sθasθ8 − 2l0lasθ0sθa − 2l0l8sθ0sθ8 (15.95)
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(2lal8cθa − 2l0l8cθ0 )cθ8 + (2lal8sθa − 2l0l8sθ0 )sθ8 + (`f − l24 − 2l0lacθ0cθa − 2l0lasθ0sθa ) = 0 (15.96)

Obtaining a solution for expressions A, B and C,
A3 = 2lal8 cos θa − 2l0l8 cos θ0
B3 = 2lal8 sin θa − 2l0l8 sin θ0

and
C3 = l2a + l20 + l28 − l24 − 2l0la cos θ0 cos θa − 2l0la sin θ0 sin θa

Through equation (15.11) we solve for θ8,
θ8 = 2 tan−1

−B3 −√A23 + B23 −C23
C3 −A3


As well as equation (15.94) divided by equation (15.93) for solving θ4,

θ4 = tan−1( la sin θa + l8 sin θ8 − l0 sin θ0
la cos θa + l8 cos θ8 − l0 cos θ0

)

Similarly, it follows that to obtain the next unknown angles θ9 and θ10, the kinematic chainsform the path from the point b to the point g modelled by
l7 cos θ7 + l9 cos θ9 = l8 cos θ8 + l10 cos θ10

and
l7 sin θ7 + l9 sin θ9 = l8 sin θ8 + l10 sin θ10

Isolating the terms having the variables of interest in both equations,
l10 cos θ10 = l7 cos θ7 + l9 cos θ9 − l8 cos θ8 (15.97)
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l10 sin θ10 = l7 sin θ7 + l9 sin θ9 − l8 sin θ8 (15.98)

and squaring in both sides of equations
l210 cos2 θ10 = l27 cos2 θ7+l29 cos2 θ9+l28 cos2 θ8+2l7l9 cos θ7 cos θ9−2l7l8 cos θ7 cos θ8−2l8l9 cos θ8 cos θ9
and
l210 sin2 θ10 = l27 sin2 θ7 + l29 sin2 θ9 + l28 sin2 θ8 +2l7l9 sin θ7 sin θ9−2l7l8 sin θ7 sin θ8−2l8l9 sin θ8 sin θ9
Algebraically simplifying with definition `g = l27 + l29 + l28

l210 = `g + 2l7l9cθ7cθ9 − 2l7l8cθ7cθ8 − 2l8l9cθ8cθ9 + 2l7l9sθ7sθ9 − 2l7l8sθ7sθ8 − 2l8l9sθ8sθ9 (15.99)
and

(2l7l9cθ7 − 2l8l9cθ8 )cθ9 + (2l7l9sθ7 − 2l8l9sθ8 )sθ9 + (`g − l210 − 2l7l8cθ7cθ8 − 2l7l8sθ7sθ8 ) = 0 (15.100)
Thus, obtaining the solution of expressions A, B and C,

A4 = 2l7l9 cos θ7 − 2l8l9 cos θ8 (15.101)
B4 = 2l7l9 sin θ7 − 2l8l9 sin θ8 (15.102)

and
C4 = l27 + l29 + l28 − l210 − 2l7l8 cos θ7 cos θ8 − 2l7l8 sin θ7 sin θ8 (15.103)

Using expression (15.11) to solve θ9,
θ9 = 2 tan−1

−B4 −√A24 + B24 −C24
C4 −A4

 (15.104)
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θ10 = tan−1( l7 sin θ7 + l9 sin θ9 − l8 sin θ8

l7 cos θ7 + l9 cos θ9 − l8 cos θ8
) (15.105)

In order to obtain an analytical solution for the unknown angles θ11 and θ12, the kinematicpath from the point f to the point h is developed next,
l10 cos θ10 + l12 cos θ12 = l11 cos θ11 (15.106)

and
l10 sin θ10 + l12 sin θ12 = l11 sin θ11 (15.107)

squaring in both sides of the resulting equations,
l211 cos2 θ11 = l210 cos2 θ10 + l212 cos2 θ12 + 2l10l12 cos θ10 cos θ12 (15.108)

and
l211 sin2 θ11 = l210 sin2 θ10 + l212 sin2 θ12 + 2l10l12 sin θ10 sin θ12 (15.109)

simplifying expressions,
l211 = l210 + l212 + 2l10l12 cos θ10 cos θ12 + 2l10l12 sin θ10 sin θ12 (15.110)

and (2l10l12 cos θ10) cos θ12 + (2l10l12 sin θ10) sin θ12 + (l210 + l212 − l211) = 0
hence the solutions for expressions A, B and C are obtained,

A5 = 2l10l12 cos θ10
B5 = 2l10l12 sin θ10

and
C5 = l210 + l212 − l211
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θ12 = 2 tan−1

−B5 −√A25 + B25 −C25
C5 −A5


likewise, with an algebraic division of expressions (15.107) and (15.106) θ11 is solved,

θ11 = tan−1( l10 sin θ10 + l12 sin θ12
l10 cos θ10 + l12 cos θ12

)
In order to find a functional form to solve for the angle θ13, which describes the angularmotion on point i, the input angle θ0 was involved with motion transmission of 1:1 relation,with inverse sense of rotation and angular offset β

θ13 = (− l0
l13 θ0 − β

) (15.111)
From the provided formulation, it follows to include the Hoekens mechanism model, wherefor the hybrid case the point h is actually not fixed, depending only on the output trajectory ofthe Jansen linkage. There is assumed an imaginary link lim represented by a vector positionon the point h w.r.t. the point i. such vector components are

limX = hx − ix (15.112)
and

limY = hy − iy (15.113)
In addition, the connection between the two mechanisms is in principle by obtaining a solutionfor the unknown angles θ14 and θ16. The kinematic path from the point i to the point k isdefined by

limX + l16 cos θ16 = l13 cos θ13 + l14 cos θ14 (15.114)
and

limY + l16 sin θ16 = l13 sin θ13 + l14 sin θ14 (15.115)
Similarly as in previous methodology by isolating the terms having the unknown variables ofinterest at this stage
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l16 cos θ16 = l13 cos θ13 + l14 cos θ14 − limX (15.116)

and
l16 sin θ16 = l13 sin θ13 + l14 sin θ14 − limY (15.117)

The resulting equations are squared in both sides of the expressions
l216 cos2 θ16 = l213 cos2 θ13+l214 cos2 θ14+l2imX+2l13l14 cos θ13 cos θ14−2l13limX cos θ13−2l14limX cos θ14
and
l216 sin2 θ16 = l213 sin2 θ13 + l214 sin2 θ14 + l2imY +2l13l14 sin θ13 sin θ14− 2l13limY sin θ13− 2l14limY sin θ14
simplifying algebraically the expressions substituting `m = l213 + l214 + l2imX + l2imY
l216 = `m + 2l13l14cθ13cθ14 − 2l14limXcθ14 + 2l13l14sθ13sθ14 − 2l14limYsθ14 − 2l13limXcθ13 − 2l13limYsθ13(15.118)(2l13l14cθ13 − 2l14limX)cθ14 + (2l13l14sθ13 − 2l14limY )sθ14 + (`m − l216 − 2l13limXcθ13 − 2l13limYsθ13 ) = 0(15.119)Hence, it follows to obtain the expressions A, B and C,

A6 = 2l13l14 cos θ13 − 2l14limX (15.120)
B6 = 2l13l14 sin θ13 − 2l14limY (15.121)

and
C6 = l213 + l214 + l2imX + l2imY − l216 − 2l13limX cos θ13 − 2l13limY sin θ13 (15.122)

By using equation (15.11) to solve θ14, The passive joint angle θ14 is modelled by
θ14 = 2 tan−1

−B6 −√A26 + B26 −C26
C6 −A6

 (15.123)
Likewise, (15.117) is divided by (15.116) to solve θ16,
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Corollary 15.3.2. The passive joint angle θ16 is modelled by

θ16 = tan−1( l13 sin θ13 + l14 sin θ14 − limY
l13 cos θ13 + l14 cos θ14 − limX

) (15.124)

To obtain the position vector of the contact point with the ground l, the kinematic chain formedby the links l0, l4, l11, l16 and l15 was used to state (15.125).
Theorem 15.3.3 (Limb’s contact point position). The limb’s contact point kinematic position

is defined by the next vector:

pl =  xl
yl

 =  l0 cos θ0 + l4 cos θ4 + l11 cos θ11 + l16 cos θ16 + l15 cos θ15
l0 sin θ0 + l4 sin θ4 + l11 sin θ11 + l16 sin θ16 + l15 sin θ15

 (15.125)

To validate the position model, numerous numerical simulations were produced as the onesdepicted in figure 15.9. The trajectories plotted basically complete a revolution by the drivenjoint θ0 from 0 to 2π radians, with links length in mm: l0 = 50, la = 129.29, l3 = 166.67,
l4 = 206.35, l5 = 138.30, l6 = 186, l7 = 133.71, l8 = 131, l9 = 131.33, l10 = 122.33, l11 = 163.41,
l12 = 219.06, l13 = 50, l14 = 125, l15 = 125, l16 = 125, l17 = −25, l18 = −175. Simulation resultsare produced by the summarised set of links’ vector models. The position vector of the point
a is provided next,

pa =  xa
ya

 =  00
 (15.126)

The position vector of the point b,
pb =  xb

yb

 =  la cos θa
la sin θa

 (15.127)
The position vector of the point c,

pc =  xc
yc

 =  l0 cos θ0
l0 sin θ0

 (15.128)
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pd =  xd

yd

 =  l0 cos θ0 + l3 cos θ3
l0 sin θ0 + l3 sin θ3

 (15.129)
The position vector of the point e,

pe =  xe
ye

 =  l0 cos θ0 + l3 cos θ3 + l6 cos θ6
l0 sin θ0 + l3 sin θ3 + l6 sin θ6

 (15.130)
The position vector of the point f ,

pf =  xf
yf

 =  l0 cos θ0 + l4 cos θ4
l0 sin θ0 + l4 sin θ4

 (15.131)
The position vector of the point g ,

pg =  xg
yg

 =  l0 cos θ0 + l4 cos θ4 + l10 cos θ10
l0 sin θ0 + l4 sin θ4 + l10 sin θ10

 (15.132)
the position vector of the point h,

ph =  xh
yh

 =  l0 cos θ0 + l4 cos θ4 + l10 cos θ10 + l12 cos θ12
l0 sin θ0 + l4 sin θ4 + l10 sin θ10 + l12 sin θ12

 (15.133)
The position vector of the point i:

pi =  xi
yi

 =  −l17
−l18

 (15.134)
The position vector of the point j ,

pj =  xj
yj

 =  l13 cos θ13 − l17
l13 sin θ13 − l18

 (15.135)
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pk =  xk

yk

 =  l13 cos θ13 + l14 cos θ14 − l17
l13 sin θ13 + l14 sin θ14 − l18

 (15.136)
For plotting the trajectory of the point l, the position vector (15.125) was numerically valued.

Figure 15.9: Trajectories described by each point of the hybrid limb (left). Walking gait simulation (centre).
3D biped’s limbs simulation (right).

Alternative to gait validation by numerical simulations (figure 15.9), numerous experimentalmeasurements of the gait trajectory tracking were carried out (figure 15.10-a)). A home-made experimental prototype robot was built in our Robotics Lab shown in figure 15.10-c), andits real gait shape was compared with numerical models obtaining accurate and satisfactoryresults. Each experiment consisted of capturing the set of images while the limbs walked.By deploying only one actuator per limb, the mechanism movement generation alternatedmovements between the two parallel limbs imitating a bipedal gait. An artificial visual landmarkwas laterally placed on the Limb’s contact point l as a manner to track it by an external computervision system, as shown by figure 15.10-a). Therefore, by using the real kinematic parametersof the walker robot, the corresponding numerical gait simulation (theoretical) was matchedwith the mechanism plot in Cartesian space (observation), finding a minimal error due toseveral factors: manufacturing inaccuracies, gravitational and inertial effects.
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Figure 15.10: a) Experimental robot’s gait tracking by a computer vision system. b) Comparative plot between
a theoretical gait and the empirical observation. c) A photo of the experimental biped prototype.

Comparative results between the mathematical theoretical model, and the empirical ob-servation through the tracking vision system are depicted in figure 15.10-b). Therefore, itis concluded that the experimental robot prototype emulating bipedal gaits, acted closely aspredicted by the kinematic model. Both trajectories had similar kinematic behaviour, andsuch results validated the theoretical analysis provided in this chapter. In addition, in orderto achieve under-actuated walking gaits, there exist the need to deploy actuators with optimaltorque. Likewise, actuators velocity control systems are required to accomplish synchroniza-tion between the two parallel extremities, achieving gait coordination as expected according tothe kinematic formulation.
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Chapter 16

MODELLING A HEXAPOD-TYPE

AMPHIBIOUS ROBOT

Angel A. Maldonado Ramírez2, Edgar A. Martínez García1 and L. Abril Torres Méndez2
1Laboratorio de Robótica, Institute of Engineering and Technology, Universidad Autónoma de Ciudad

Juárez, Mexico.
2Robotics and Advanced Manufacturing Group, CINVESTAV Campus Saltillo, Coahuila, Mexico.

Mathematical modelling of physical systems is one of the major foundations to developapplied control systems, and process design. The mathematical model of a system is derivedeither from physical laws or experimental data. In this chapter, the main focus is on modellinga complete amphibious robotic system comprised of six propulsive paddles. This analysisstarts from the experimental modelling of the actuators (DC-motors), and rotatory sensors(encoders), until reaching an Euler-Lagrange formulation of the full robotic platform. Experi-mental results are presented to show the application of the model for controlling the actuators.Systems modelling is an important process in all fields of science and engineering. It providesa deeper understanding of the behaviour of any system. Particularly, when specifically it isdesired to control such a system. Thus, by taking into account its full mathematical dynamicmodel, more sophisticated is the system design, and hence more robust results are obtained.Nevertheless, obtaining an analytical solution of a model is not always an easy task speciallywhen there exist numerous unknown perturbation phenomena that are difficult to define. The



416 CHAPTER 16. MODELLING A HEXAPOD-TYPE AMPHIBIOUS ROBOTmathematical model of a system can be derived either from physical laws as analytical so-lutions, or experimental data through numerical solutions. In some works, a mathematicalmodel is obtained and then through experimentation the values of certain parameters are cal-culated1,2. Another approach for modelling a system is the Euler-Lagrange formulation, whichis based on the energy of the system as a function of the generalized coordinates. As long as,we know how to relate the generalized coordinates with the energy of the system, we can usethe Lagrangian approach. This approach is widely used in the robotics field, some example ofapplications has been reported3,4. In the last part of this work, we will focus on the modellingof the entire underwater robotic platform by using an Euler-Lagrange formulation.
16.1 Actuator’s experimental-theoretical model

In the first part of this chapter, the actuators angular velocity of an amphibious robotic systemis modelled by using a measuring experimental approach to subsequently state the control ofthe paddles angular speed. This approach approximates a full model that scopes the presentuncertainties within the actuator’s empirical model. The empirical model is obtained by de-ploying simple rotatory encoder devices. The encoders are sensors that measure the angularposition of an actuator device (i.e. a DC-motor). The angular position is obtained by the num-ber of pulses, and the relationship between the pulses and the angular position is given by
φi = 2π

renc
ni, (16.1)

where renc is the resolution of the encoder and ni is the instantaneous number of pulses. Inorder to infer the angular speed, we obtain the numerical derivative (see section 1.7) of theangular position with respect to time, as provided by the following expression:
ˆ̇φi = 2πni

renc −
2πni−1
renc

ti − ti−1 = 2π
renc

(
ni − ni−1
ti − ti−1

)
. (16.2)

By providing the numerical derivative w.r.t. time of the angular velocity, the angular accelera-tion is obtained by ˆ̈φi = φ̇i − φ̇i−1
ti − ti−1 = 2π

renc
ni−ni−1
ti−ti−1 − 2π

renc
ni−1−ni−2
ti−1−ti−2

ti − ti−1 ,

Assuming constant sampling times ∆t = ti − ti−1, the next equation is also obtained,
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ci = 2π

renc

( ni−ni−1∆t − ni−1−ni−2∆t∆t
) = 2π

renc

(
ni − 2ni−1 + ni−2∆t

)
. (16.3)

Therefore, the following postulate is hereafter the actuator’s observation, which feedbacks therate of change of the angular position w.r.t. time.
Postulate 16.1.1 (angle observation model). The actuator’s averaged value of k measure-

ments ˆ̈φ is the derivative of the angular position w.r.t. to t.

φ̇(d) = 1
k

k∑
i=1

ˆ̇φi = k∑
i=1

2π
renc

(
ni − ni−1
ti − ti−1

) (16.4)

As a part to control the actuators, it is important to establish the mathematical model of theactuator’s variables, which are of interest as the control input and output of the robot system.For instance, it is fundamental to find the mathematical relationship between the digital control,and the motor’s tangential and/or angular speeds. Since the models for the actuator and forthe inherent perturbations are unknown, the empirical model is obtained experimentally.In our particular case, we are able model the relation between a digital control command andthe speed of the motor. All the possible control commands were applied to two motors andtheir average speed response were registered (16.4). The motor type, encoders, and mechanicalstructure are identical. The collected data are shown by figure 16.1.

Figure 16.1: Angular speed as a function of a digital control (two physical motors).



418 CHAPTER 16. MODELLING A HEXAPOD-TYPE AMPHIBIOUS ROBOTAlthough both motors were under the same conditions, the sets of collected data were different.Also, it is seen in figure 16.1 that there is a region where no motors’ response was performedregardless the digital control commands (i.e. regions A and B). These regions lack of angularspeeds due to the shaft frictions and mechanical loads applied to the motors (also frictionsdue to shaft misalignments). We obtained approximated theoretical models for each motor byusing a non-linear regression applied to the empirical model. A residual error (ri) betweenthe empirical data and a theoretical model (φ̇∗) was defined. A third degree polynomial as atheoretical model was proposed to fit well the speed behaviour.
ri = φ̇i − φ̇∗,

ri = φ̇i − (a0 + a1di + a2d2
i + a3d3

i ), (16.5)
where di is the digital control command. Then, we define the sum of the quadratic errors (seesection 1.6.3),

S = n∑
i=1 r

2
i = n∑

i=1 [φ̇i − (a0 + a1di + a2d2
i + a3d3

i )]2. (16.6)
Furthermore, to define a separate model for each coefficient of interest, the partial derivativesof S w.r.t. each parameter a0, a1, a2 and a3 are developed to set an approximation S ≈ 0.

∂S
∂a0 = 2 n∑

i=1
(
φ̇i − a0 − a1di − a2d2

i − a3d3
i

) (c − 1),
∂S
∂a1 = 2 n∑

i=1
(
φ̇i − a0 − a1di − a2d2

i − a3d3
i

) (−di), (16.7)
∂S
∂a2 = 2 n∑

i=1
(
φ̇i − a0 − a1di − a2d2

i − a3d3
i

) (−d2
i ),

∂S
∂a3 = 2 n∑

i=1
(
φ̇i − a0 − a1di − a2d2

i − a3d3
i

) (−d3
i ),
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0 = 2 n∑

i=1 (φ̇i − a0 − a1di − a2d2
i − a3d3

i )(−1),
0 = 2 n∑

i=1 (φ̇i − a0 − a1di − a2d2
i − a3d3

i )(−di), (16.8)
0 = 2 n∑

i=1 (φ̇i − a0 − a1di − a2d2
i − a3d3

i )(−d2
i ),

0 = 2 n∑
i=1 (φ̇i − a0 − a1di − a2d2

i − a3d3
i )(−d3

i ),
then, by performing the products and rearranging the terms, the following is obtained

n∑
i=1 φ̇i = n∑

i=1 a0 + n∑
i=1 a1di + n∑

i=1 a2d2
i + n∑

i=1 a3d3
i ,

n∑
i=1 φ̇idi = n∑

i=1 a0di + n∑
i=1 a1d2

i + n∑
i=1 a2d3

i + n∑
i=1 a3d4

i , (16.9)
n∑
i=1 φ̇id

2
i = n∑

i=1 a0d2
i + n∑

i=1 a1d3
i + n∑

i=1 a2d4
i + n∑

i=1 a3d5
i ,

n∑
i=1 φ̇id

3
i = n∑

i=1 a0d3
i + n∑

i=1 a1d4
i + n∑

i=1 a2d5
i + n∑

i=1 a3d6
i .

Thus, arranging the equations (16.9) in the matrix form,
∑n

i=1 φ̇i∑n
i=1 φ̇idi∑n
i=1 φ̇id2

i∑n
i=1 φ̇id3

i

 =


n
∑n

i=1 di∑n
i=1 d2

i
∑n

i=1 d3
i∑n

i=1 di∑n
i=1 d2

i
∑n

i=1 d3
i
∑n

i=1 d4
i∑n

i=1 d2
i
∑n

i=1 d3
i
∑n

i=1 d4
i
∑n

i=1 d5
i∑n

i=1 d3
i
∑n

i=1 d4
i
∑n

i=1 d5
i
∑n

i=1 d6
i

 ·

a0
a1
a2
a3

 (16.10)

Hence, the compact form of (16.10) may be expressed as a linear form,
x = A · λ. (16.11)

Since, A is a positive-definite matrix, then it always has an inverse. Thus, by solving for λ (seesection 1.2.3),
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x = A · λ,

λ = A−1 · x. (16.12)
Thus, it follows the next proposition of the actuators theoretical model,

Proposition 16.1.2 (actuator theoretical model). The parameters a0, a1, a2, and a3 fits

the real angular velocity behaviour through the theoretical model φ̇i(di) as a polynomial

function of the digital control di ,

φ̇i = a0 + a1di + a2d2
i + a3d3

i . (16.13)

By applying the above process to the empirical data, and obtaining the next values for theparameters,
a0 a1 a2 a3

φ̇1 (-) -14.4229 1.91041 -0.0275454 0.000129814
φ̇1 (+) -0.758746 1.36245 0.0227922 0.000117595
φ̇2 (+) -13.4632 1.90241 -0.0283169 0.000136413
φ̇2 (-) -5.88016 0.568018 0.0111437 0.0000645076
Table 16.1: Actuators third degree polynomial coefficients found.

In applied control it is required to know the inverse solution of (16.13) in order to calculate d,given that φ̇(d) is known, then to find one real roots of direct form,
0 = a0 − φ̇(d) + a1d + a2d2 + a3d3 = p(d), (16.14)

Nevertheless, in order to find a close-form solution to this problem, it became a complex alge-braic process. Instead, an iterative numerical method was used to solve it, the Newton-Raphsonmethod (see section 1.4). Therefore, as a first mathematical step, a first order derivative poly-



16.1. ACTUATOR’S EXPERIMENTAL-THEORETICAL MODEL 421

Figure 16.2: Two motors’ empirical velocities approximated with third degree polynomials.

nomial is approached through the Maclaurin and Taylor series of p(d) (see section 1.3)
p(d) = p(d0)0! + p′(d0)(d − d0)1! + p′(d0)(d − d0)22! + ... (16.15)

Then, p(d) = 0, and let us ignore the high order terms to obtain
0 = p(d0) + p′(d0)(d − d0). (16.16)

Solving for d, we have
d = d0 − p(d0)

p′(d0) . (16.17)
An approximated solution for (16.14) is obtained. By doing this process iteratively, we can findthe desired d. Expressing this process with equation (16.18).

Corollary 16.1.3. (actuator’s inverse solution) The inverse solution d(φ̇) is stated from

previous proposition about the theoretical model φ̇(d).
dk+1 = dk −

a0 − φ̇d + a1dk + a2d2
k + a3d3

k
a1 + 2a2dk + 3a3d2

k
|ε<ε1 , (16.18)

where ε = p(dk) and ε is a small value that defines the precision of the result. We will use(16.18) iteratively until ε < ε.



422 CHAPTER 16. MODELLING A HEXAPOD-TYPE AMPHIBIOUS ROBOTThe model is used to directly control the actuators desired speed φ̇(d), and by using theNewton-Raphson method it is obtained the digital command d to control the motor.
16.2 2nd-order paddle control

The actuator’s physical model is critical to propose a control law for approaching the angularoscillations of robot’s paddles. Based on different tests and analysis, a 2nd-order angular positionresulted reliable and feasible for implementation.
16.2.1 Proportional velocity control

First, we propose a control law for the angular speed of the motor.
φ̇i = φ̇i−1 + α(φ̇ref − ˆ̇φi), (16.19)

where φ̇i, φ̇i−1 are the values for controlling speed in the current and previous instant. φ̇i isused in (16.18) to obtain the digital control input. The second term of the sum is the differencebetween the desired speed φ̇ref and the observed speed ˆ̇φi , all this weighted by a factor α. Bysubstituting equation (16.2) in equation (16.19) the following recursive approach is postulated
Postulate 16.2.1 (recursive φ̇ control). Having a reference model φ̇ref , the angular speed

φ̇ is recursively controlled by feedback of its proportional observation error.

φ̇i = φ̇i−1 + α
(
φ̇ref −

2π
renc

[
ni − ni−1
ti − ti−1

]) (16.20)

with
α =

 α∗, |φ̇ref − ˆ̇φi| ≥ 11− α∗, |φ̇ref − ˆ̇φi| < 1 , (16.21)
and

α∗ ∈ (0, 1)



16.2. 2ND-ORDER PADDLE CONTROL 423Experimental tests were carried out by using expression (16.20) to control the paddle angularvelocity. Figure 16.3 shows the results obtained. It can be seen that the constant referencevelocity is reached with considerable reliability.

Figure 16.3: Actuators controlled angular velocity with constant reference models.

Additionally, other experiments were performed adjusting for different values of α. Suchresults are depicted in figure 16.4. It can be seen that the smaller the value of α the faster themotor reaches the desired speed.
16.2.2 Acceleration control

When slow or unstable controlled speeds are yielded, control of the acceleration may outper-form the results instead. And an acceleration control may be preferred in such cases. Wepropose the next control law:
φ̈i = φ̈i−1 + κ(φ̈ref − ˆ̈φi), (16.22)

with
κ =

 κ∗, |φ̈ref − ˆ̈φi| ≥ 11− κ∗, |φ̈ref − ˆ̈φi| < 1 (16.23)
and

κ∗ ∈ (0, 1),
where φ̈i, φ̈i−1 are the values for controlling acceleration, in the current and previous instant.
φ̈ref is the desired acceleration and ˆ̈φi the observed acceleration, all of them weighted by afactor κ. By substituting equation (16.3) in equation (16.22), the following expresson is proposed,
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Figure 16.4: Actuator’s controlled angular velocity behaviours with different convergence factors α.

Proposition 16.2.2. (controlled φ̈) The actuator angular acceleration is recursively con-

trolled by feedback of its error observation of the angular rate of change.

φ̈i = φ̈i−1 + κ
[
φ̈ref −

2π
renc

(
ni − 2ni−1 + ni−2∆t

)]
, (16.24)

From equation (16.24) in previous proposition, it follows to establish an inverse solution for thedigital control variable. To achieve that, we use the trapezoidal rule of the numerical integrationmethods (see section 1.7) to integrate the acceleration into speed. The obtained speed can beconverted into digital control command.
φ̇i = ∫ ti

0 φ̈idt ≈ φ̇0 + i∑
j=1

(tj − tj−1)(φ̈j + φ̈j−1)2 . (16.25)
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φ̇i = φ̇0 + i∑

j=1
(tj − tj−1)(φ̈j + φ̈j−1)2 , (16.26)

then, factorizing the term i from the sum,

φ̇i = φ̇0 + i−1∑
j=1
[(tj − tj−1)(φ̈j + φ̈j−1)2

] + (ti − ti−1)(φ̈i + φ̈i−1)2 , (16.27)
and by considering φ̇i−1 = φ̇0 +∑i−1

j=1 [ (tj−tj−1)(φ̈j+φ̈j−1)2
],

φ̇i = φ̇i−1 + (ti − ti−1)(φ̈i + φ̈i−1)2 . (16.28)
Substituting φ̇i by φ̇d in (16.28), and then in (16.18), we obtain the equation that provide thedigital command, given a known acceleration φ̈i.

Corollary 16.2.3 (inverse of φ̈). The digital control d solution is recursively provided as

a function of observations φ̇ and φ̈.

dk+1 = dk −
a0 − φ̇i−1 − (ti−ti−1)(φ̈i+φ̈i−1)2 + a1dk + a2d2

k + a3d3
k

a1 + 2a2dk + 3a3d2
k

|ε<ε1 (16.29)

The experimental controlled acceleration results obtained are depicted in figure 16.5. Thedesired acceleration values for this experiment was set to φ̈ref = 0.1. Being the motor’s speeda straight line with slope m = 0.1, which was confirmed by setting another straight line withsame slope 0.1, but different translation parameter. It is important to highlight that the motorwas intentionally subjected to perturbations during the experiment. It was concluded that theacceleration control compensated quite well under the influence of existing perturbations.
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Figure 16.5: Actuator’s behaviour with reference model a(t) = a0 + a1t, and two different values for a0.

16.2.3 Acceleration model reference

Plamondon5 described a function that relates the oscillation of a paddle submerged in waterand the force generated by it. The geometry and shape of the paddle is shown in figure 16.6.

a) b)
Figure 16.6: a) Centre of oscillation of one paddle (front/back side). b) Paddle’s shape (top side).

The movement of the paddle is provided by the following definition:
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Definition 16.2.4 (reference oscillation model). The paddle oscillation movement is estab-lished as a reference movement by the sinusoidal function:

φ(t) = A2 sen(2π
P t + δ

)+ λ (16.30)

where A is the oscillation amplitude; P is the oscillation period; δ is the phase, and λ is thecentre of oscillation. The relationship between the paddle movement and the force generatedis described by the following postulation.
Postulate 16.2.5 (paddle propulsion force). The experimental propulsion force as a func-

tion of the paddle’s oscillatory motion is produced according to the next model,

fp = 0.1963(w1 + 2w2)l23 ρAP − 0.1554 (16.31)

where w1 and w2 are the dimensions of the paddle with w1 < w2. l is the length (all thedimensions in meters) and ρ the density of the water in kg
m3 . The direction of the force isdetermined by the angle λ. We calculate the second derivative w.r.t. time of the equation(16.30) to obtain the acceleration which will be used as the reference value in the equation(16.24).

φ̈ref (t) = −2Aπ2
P2 sen(2π

P t + δ
)
. (16.32)

Therefore, by substituting (16.32) in (16.24), the following corollary is stated,
Corollary 16.2.6. [model reference based φ̈] The paddle angular velocity control is given

as a recursive tracking function of the non linear reference model.

φ̈i = φ̈i−1 + κ
[
−2Aπ2

P2 sen
(2π
P ti + δ

)
− 2π
renc

(
ni − 2ni−1 + ni−2∆t

)] (16.33)



428 CHAPTER 16. MODELLING A HEXAPOD-TYPE AMPHIBIOUS ROBOTAn underwater robot with oscillating paddles was emulated by deploying two motors and con-trolling their acceleration through equation (16.33). The results obtained whit varying amplitudeof oscillations are shown in figure 16.7.

Figure 16.7: Robot’s two-paddle controlled oscillations tied to the network transmission delays.

16.3 Robot’s dynamical analysis

In two previous sections the modelling and control of the actuators were described. Now, thissection describes the robot’s general movement with an approach to the Newton-Euler equa-tions to model the tangential forces generated by the rotatory actuators. Further informationon the underwater robot in discussion may be found6,7. The forces generated by the paddleare decomposed into their components along the X and Y axes. Each force has a magnitudeof fpj and a direction of λj . Therefore, the following equations are stated,
fxj = fpj cos λj , (16.34)
fyj = fpj sin λj . (16.35)
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Figure 16.8: Robot’s free body diagram of forces and torques with effects on the Y -axis (Yaw).

By substituting (16.31) in the last two equations, we obtain
fxj = (0.1963(w1 + 2w2)l23 ρAjPj

− 0.1554)cos θj , (16.36)
fyj = (0.1963(w1 + 2w2)l23 ρAjPj

− 0.1554) senθj , (16.37)
where Aj and Pj are the parameters of oscillation of the paddle j . Then, by using the free bodydiagram of the robot on each of its planes, we can obtain the torques around X, Y and Z axes.
In order to obtain the moment in Yaw, we sum all the moments generated by each paddleforce

τyaw = da(fx1 + fx3 − fx4 − fx6 ) + db(fx2 − fx5 ), (16.38)
Likewise, the angular moments for Roll and Pitch are obtained

τroll = da(fy4 + fy6 − fy1 − fy3 ) + db(fy5 − fy2 ), (16.39)
τpitch = dc(fy1 + fy4 − fy3 − fy6 ). (16.40)
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Figure 16.9: Robot’s free body diagram of forces and torques with effects on the Z axis (Pitch).

Figure 16.10: Robot’s free body diagram of forces and torques with effects on the X axis (Roll).



16.3. ROBOT’S DYNAMICAL ANALYSIS 431Equations (16.38), (16.39) and (16.40) are expressed in the matrix form by
τroll
τyaw
τpitch

 =

da(fy4 + fy6 − fy1 − fy3 ) + db(fy5 − fy2 )
da(fx1 + fx3 − fx4 − fx6 ) + db(fx2 − fx5 )

dc(fy1 + fy4 − fy3 − fy6 )
 , (16.41)

and factorising the forces,


τroll
τyaw
τpitch

 =


0 0 0 0 0 0 −da−db−dadadb da
dadbda−da−db−da 0 0 0 0 0 00 0 0 0 0 0 dc 0 −dcdc 0 −dc

 ·



fx1
fx2
fx3
fx4
fx5
fx6
fy1
fy2
fy3
fy4
fy5
fy6



(16.42)

By simplifying the expression (16.42) iin terms of the resultant forces (Fyaw , Fpitch, Froll), andthe resultant distances (dyaw , dpitch, droll) as shown in the free body diagrams. The simplifiedexpressions are
τroll = Froll · droll, (16.43)

τpitch = Fpitch · dpitch, (16.44)
τyaw = Fyaw · dyaw . (16.45)

(16.46)
With the torques around each robot’s axis, the orientation is obtained. The angle αR and torquearound X axis are related by

Icxα̈R = τroll (16.47)



432 CHAPTER 16. MODELLING A HEXAPOD-TYPE AMPHIBIOUS ROBOTwhere Icx is the moment of inertia w.r.t. the X axis, and it is known that
α̈R = dα̇R

dt , (16.48)
then, by rearranging the terms, and integrating, we obtain

α̈Rdt = dα̇R

by completing the differentials with their respective integrals in both sides of the equation,
∫ ti

ti−1 α̈
Rdt = ∫ α̇Ri

α̇Ri−1
dα̇R

solving the defined integrals
α̈Rt|titi−1 = α̇R|α̇

R
i

α̇Ri−1
a recursive equation is obtained,

α̈R(ti − ti−1) = α̇Ri − α̇Ri−1
or

α̈R∆t = α̇Ri − α̇Ri−1 (16.49)
Since equation (16.49) was provided in terms of α̇, then it now is deduced in terms of α. Theangular velocity is the angle rate increment w.r.t. time as the next equation,

α̇R = dαR
dt

by separating the differentials in both sides of the equation,
α̇Rdt = dαR

then, completing the differentials with their respective integrals,
∫ ti

ti−1 α̇
Rdt = ∫ αRi

αRi−1
dαR
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α̇Rt|titi−1 = αR|α

R
i

αRi−1

a recursive model is obtained,
α̇R(ti − ti−1) = αRi − αRi−1

or
α̇R∆t = αRi − αRi−1

the next equation provides the actual angular velocity as the recursive angular positions,
α̇R = αRi − αRi−1∆t (16.50)

Therefore, by substituting equation (16.50) in equation (16.49), a more complete recursive func-tional form of the angular acceleration is obtained,
α̈R∆t = αRi − αRi−1∆t − α̇Ri−1

algebraically rearranging ∆t ,
α̈R(∆t)2 = αRi − αRi−1 − α̇Ri−1∆t

the recursive angle equation is obtained,
αRi = α̈R(∆t)2 + α̇Ri−1∆t + αRi−1 (16.51)

Finally, by substituting the equation (16.47) in equation (16.51), the following is stated,
Proposition 16.3.1 (amphibious angular movement). The general recursive model αi−1 and

α̇i−1 is given as a function of angular and torsional moment I, and τ respectively:

αRi = τroll
Icx

(∆t)2 + α̇Ri−1∆t + αRi−1, (16.52)



434 CHAPTER 16. MODELLING A HEXAPOD-TYPE AMPHIBIOUS ROBOTTherefore, by using the model of previous proposition for the three Euler axes, and by substi-tuting the functional form of the torques in terms of tangential forces as provided by equation(16.39), the roll, pitch and yaw are stated consecutively,
Corollary 16.3.2 (recursive roll motion model). The recursive model for the roll motion αi
in terms of αi−1, α̇i−1, and as a function of the angular moment Icx , and involved forces is

αRi = da(fy4 + fy6 − fy1 − fy3 ) + db(fy5 − fy2 )
Icx

(∆t)2 + α̇Ri−1∆t + αRi−1 (16.53)

Similarly, he angles βR (yaw) and γR (pitch) are obtained respectively.
Corollary 16.3.3 (recursive yaw motion model). The recursive model for the yaw motion βi
in terms of βi−1, β̇i−1, and as a function of the angular moment Icy , and involved forces is

βRi = da(fx1 + fx3 − fx4 − fx6 ) + db(fx2 − fx5 )
Icy

(∆t)2 + β̇Ri−1∆t + βRi−1 (16.54)

and
Corollary 16.3.4 (recursive pitch motion model). The recursive model for the pitch motion

γi in terms of γi−1, γ̇i−1, and as a function of the angular moment Icz, and involved forces is

γRi = dc(fy1 + fy4 − fy3 − fy6 )
Icz

(∆t)2 + γ̇Ri−1∆t + γRi−1 (16.55)

Hereafter, the models (16.53)-(16.55) stated in previous corollaries provide the relationshipsbetween the forces produced by the paddles, and the robot’s orientations αR , βR , and γR.
16.4 Euler-Lagrange analysis

The underwater robot is considered as a rigid body (non deformable), with six degrees offreedom. Thus, the robot’s dynamic model is algebraically developed by using the Euler-



16.4. EULER-LAGRANGE ANALYSIS 435Lagrange formulation. Some foundations about the application of the Euler-Lagrange equationson robotics has been reported3. It is necessary to define the generalized coordinates by thevector
q = (x, y, z, α, β, γ)> (16.56)

where x, y y z represent the position of the center of mass of the robot. α, β y γ represent theorientation of the robot with respect to the fixed frame in the roll-pitch-yaw parametrization.The angular speed (α̇R , β̇R and γ̇R) of the robot are expressed in the robot’s frame. To convertthose speeds into the fixed frame (world frame) we use the rotation matrix that relates therobot frame with the fixed one.
RW
R = R =


cos γ−sinγ0sinγ cos γ 00 0 1




cos β 0 sinβ0 1 0
−sinβ0cos β




1 0 00cosα−sinα0 sinα cosα
 ,

=


cos γ cos βcos γ sin β sinα − sinγ cosαcos γ sin β cosα+ sinγ sinαsinγ cos βsinγ sin β sinα+ cos γ cosαsinγ sin β cosα − cos γ sinα
− sin β cos β sinα cos β cosα

 (16.57)
Then, the relation between the translational velocities in the robot frame with the ones in thefixed frame is: 

vx
vy
vz

 = R> ·


ẋ

ẏ

ż

 (16.58)
Thus, to convert the angular speed in the robot frame into the fixed one, we use the followingproperty of the rotation matrices,

Ṙ ·R> =


0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 (16.59)
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0 sin βα̇ − γ̇ sinγ cos βα̇+ cos γβ̇

− sin βα̇+ γ̇ 0 − cos γ cos βα̇+ sinγβ̇
− sinγ cos βα̇ − cos γβ̇cos γ cos βα̇ − sinγβ̇ 0

 =


0 −ωWz ωWy
ωWz 0 −ωWx
−ωWy ωWx 0


therefore, the angular speed is

ωWx
ωWy
ωWz

 =


cos γ cos βα̇ − sinγβ̇sinγ cos βα̇+ cos γβ̇
− sin βα̇+ γ̇

 =


cos γ cos β− sinγ0sinγ cos β cos γ 0
− sin β 0 1

 ·

α̇

β̇

γ̇

 (16.60)
By defining the matrix G as

G =


cos γ cos β− sinγ0sinγ cos β cos γ 0
− sin β 0 1

 . (16.61)
Rotation matrix R converts a vector from the robot frame to the fixed one, then we have thefollowing equation: 

ωWx
ωWy
ωWz

 = R


α̇R

β̇R

γ̇R

 ,

then substituting (16.60)
G ·


α̇

β̇

γ̇

 = R ·


α̇R

β̇R

γ̇R

 ,

and algebraically arranging
R> ·G ·


α̇

β̇

γ̇

 =

α̇R

β̇R

γ̇R

 (16.62)
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R> ·G =


1 0 − sin β0 cosα sinα cos β0− sinαcosα cos β

 . (16.63)
Now, with all this information at hand, we can calculate the kinetic energy required by therobotic platform for its roto-translational movements,

K = 12mvTv + 12ωTIcω, (16.64)
and by substituting v and ω by (16.58) and (16.62),

K = 12m (ẋẏż) ·R ·R> ·

ẋ

ẏ

ż

+ 12 (α̇β̇γ̇)G> ·R · Ic ·R> ·G ·


α̇

β̇

γ̇

 .

Considering that the robot has three planes of symmetry, then Ic can be simplified as a diagonalmatrix diag(Ixx , Iyy , Izz). Expand the last equation the following expression is produced
K = 12m(ẋ2 + ẏ2 + ż2) + 12 [Ixx(α̇ − γ̇ sin β)2 + Iyy(β̇ cosα+ γ̇ sinα cos β)2

+Izz(−β̇ sinα+ γ̇ cosα cos β)2] (16.65)
The potential energy of the robot is associated with its height, that is

P = −mgy (16.66)
Once having the kinetic and potential energy models, the Lagrangian L = K − P is stated,

L = 12m(ẋ2 + ẏ2 + ż2) + 12 [Ixx(α̇ − γ̇ sin β)2 + Iyy(β̇ cosα+ γ̇ sinα cos β)2
+Izz(−β̇ sinα+ γ̇ cosα cos β)2] +mgy (16.67)
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d
dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= τi (16.68)
and by applying (16.68) for qi = x,

d
dt

(
∂L
∂ẋ

)
− ∂L
∂x = τ1
mẍ = τ1. (16.69)

and for qi = y,
d
dt

(
∂L
∂ẏ

)
− ∂L
∂y = τ2

mÿ −mg = τ2. (16.70)

finally, for qi = z

d
dt

(
∂L
∂ż

)
− ∂L
∂z = τ3
mz̈ = τ3. (16.71)

Thus, for qi = α,
∂L
∂α̇ = Ixx(α̇ − γ̇ sin β)

d
dt

(
∂L
∂α̇

) = Ixx(α̈ − γ̇β̇ cos β − α̈ sin β)
∂L
∂α = Iyy(β̇ cosα+ γ̇ sinα cos β)(−β̇ sinα+ γ̇ cosα cos β) +

Izz(−β̇ sinα+ γ̇ cosα cos β)(−β̇ cosα − γ̇ sinα cos β)
Therefore,

d
dt

(
∂L
∂α̇

)
− ∂L
∂α = τ4
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Ixx(α̈ − γ̇β̇ cos β − α̈ sin β)− (Iyy − Izz)(β̇ cosα+ γ̇ sinα cos β)

(−β̇ sinα+ γ̇ cosα cos β) = τ4 (16.72)

Now, solving for qi = β

∂L
∂β̇

= Iyy(β̇ cosα+ γ̇ sinα cos β)(cosα) + Izz(−β̇ sinα+ γ̇ cosα cos β)(− sinα) =
Iyy β̇ cos2 α+ Izzβ̇ sin2 α+ (Iyy − Izz)γ̇ sinα cosα cos β

d
dt

(
∂L
∂β̇

) = Iyy(β̈ cos2 α − 2α̇β̇ sinα cosα) + Izz(β̈ sin2 α+ 2α̇β̇ sinα cosα)
+(Iyy − Izz)(α̈ sinα cosα cos β + α̇γ̇ cos2 α cos β − α̇γ̇ sin2 α cos β − β̇γ̇ sin β sinα cosα)

∂L
∂β = Ixx(α̇ − γ̇ sin β)(−γ̇ cos β) + Iyy(β̇ cosα+ γ̇ sinα cos β)(−γ̇ sinα sin β)+

Izz(−β̇ sinα+ γ̇ cosα cos β)(−γ̇ cosα sin β)

(16.73)

And, by arranging terms,
d
dt

(
∂L
∂β̇

)
− ∂L
∂β = τ5

hence,
Iyy(β̈ cos2 α − 2α̇β̇ sinα cosα) + Izz(β̈ sin2 α+ 2α̇β̇ sinα cosα)

+(Iyy − Izz)(α̈ sinα cosα cos β + α̇γ̇ cos2 α cos β − α̇γ̇ sin2 α cos β − β̇γ̇ sin β sinα cosα)
−Ixx(−α̇γ̇ cos β + γ̇2 sin β cos β)− Iyy(−β̇γ̇ cosα sinα sin β − γ̇2 sin2 α cos β sin β)−

Izz(β̇γ̇ cosα sinα sin β − γ̇2 cos2 α sin β cos β) = τ5
(16.74)
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∂L
∂γ̇ = Ixx(γ̇ sin2 β − α̇ sin β) + Iyy(β̇ sinα cosα cos β + γ̇ sin2 α cos2 β)

+Izz(−β̇ sinα cosα cos β + γ̇ cos2 α cos2 β)
d
dt

(
∂L
∂γ̇

) = Ixx(α̈ sin2 β + 2γ̇β̇ sin β cos β − α̈ sin β − α̇β̇ cos β) +
Iyy(γ̈ sin2 α cos2 β + 2α̇γ̇ sinα cosα cos2 β − 2β̇γ̇ cos β sin β sin2 α)

+Izz(γ̈ cos2 α cos2 β − 2α̇γ̇ cosα sinα cos2 β − 2β̇γ̇ cos β sin β cos2 α)
+(Iyy − Izz)(β̈ sinα cosα cos β + α̇β̇ cos2 α cos β − α̇β̇ sin2 α cos β − β̇2 sin β sinα cosα)

∂L
∂γ = 0

and
d
dt

(
∂L
∂γ̇

)
− ∂L
∂γ = τ6,

Ixx(α̈ sin2 β + 2γ̇β̇ sin β cos β − α̈ sin β − α̇β̇ cos β) + Iyy(γ̈ sin2 α cos2 β + 2α̇γ̇ sinα cosα cos2 β
−2β̇γ̇ cos β sin β sin2 α) + Izz(γ̈ cos2 α cos2 β − 2α̇γ̇ cosα sinα cos2 β − 2β̇γ̇ cos β sin β cos2 α)
+(Iyy − Izz)(β̈ sinα cosα cos β + α̇β̇ cos2 α cos β − α̇β̇ sin2 α cos β − β̇2 sin β sinα cosα) = τ6(16.75)

Equations (16.69)-(16.75) represent the dynamics of the underwater robot. By factorising thesecond order derivatives of the generalized coordinates system in the dynamic equations, theinertia matrix is obtained by
H(q) =  H1 03×3

03×3 H2

 (16.76)
with

H1 =

m 0 00m 00 0m

 (16.77)



16.4. EULER-LAGRANGE ANALYSIS 441likewise
H2 =


Ixx 0 −Ixx sin β0 Iyy cos2 α+ Izz sin2 α (Iyy − Izz) sinα cosα cos β

−Ixx sin β(Iyy − Izz) sinα cosα cos βIxx sin2 β + Iyy sin2 α cos2 β + Izz cos2 α cos2 β


(16.78)Thus, factorising the first derivatives of the generalized coordinates to obtain the Coriolis orcentripetal matrix,

C(q̇) = 03×303×3
03×3 C1

 , (16.79)
with

C1 =


0 c12 c13
c21 0 cc23
c31c32 0

 , (16.80)
and

c12 = γ̇[−Ixx cos β + (Iyy + Izz)(sin2 α − cos2 α) cos β] +
β̇(Iyy + Izz) cosα sinα

c13 = −γ̇(Iyy + Izz) sinα cosα cos2 α
c21 = β̇[(−2 sinα cosα+ cos2 α cos β)(Iyy − Izz)] + γ̇(Ixx cos β − sin2 α cos β)

c23 = γ̇ sin β cos β(Ixx + Iyy sin2 α+ Izz cos2 α)
c31 = β̇[−Ixx cos β + (Iyy − Izz) cos β(cos2 α − sin2 α)] + 2γ̇(Iyy − Izz) sinα cosα cos2 β

c32 = γ̇[2 sin β cos β(Ixx − Iyy sin2 α − Izz cos2 α)]− β̇(Iyy − Izz) sinα cosα sin β.
Finally, the gravity vector has the following form

g(q) = (0, −mg, 0, 0, 0, 0)> (16.81)
Obtained matrices H(q), C(q̇,q), vector g(q), and vector fd , which represent diverse dissipativeforces (out of this work’s scope), then the robot’s general dynamics equation is be expressedby

H(q)q + C(q̇,q)q̇ + g(q)− fd = τ (16.82)
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Chapter 17

HOVER CRAFT DYNAMIC MODELLING

Marco Elizalde Ceballos and Edgar A. Martínez García

Laboratorio de Robótica, Institute of Engineering and Technology
Universidad Autónoma de Ciudad Juárez, Mexico.

This chapter discusses the analysis of a mathematical framework describing the dynamicalmotion of a hover craft. This work is a preliminary study of a first approach for future for-mulation of trajectory state estimation. The present chapter presents the formulation to modelthe vehicle’s mobility with foundations on the interacting forces that provide the propulsivedisplacements. Two main aspects are analysed and modelled: the Euler speeds that are deter-mined in terms of the propulsive devices on the aircraft, which provide the geometry of linearmotion; and the angular motions around the roll, pitch and yaw axes usually associated to theaircraft instability. The direct and inverse dynamic equations of motion are disclosed based onthe hovercraft physical design.
17.1 Translation velocities vector model

Based on the aerodynamic design of the aircraft (figure 17.1), there are some forces thatinfluence the hover Cartesian motion. One force is produced by the air stream of the mainfan propulsive system, which is located at the very back of the hovercraft. This propulsionproduces the thrusting force fth that is able to move the aircraft forward (depicted in figure17.1). The angle of direction of the force fth is called θth , and is controlled by the main rudder
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Figure 17.1: Hover craft diagram of local Euler axes, and main propulsive air streams direction.

In addition, the lifting force fs applies underneath the hovercraft yielded by the air streamflowing from the inner craft’s structure. This mass of air produces the air cushion to lift thevehicle from the ground surface. The sustenance or lifting force of the air cushion is describedby fs and modelled by the following expression,
fs = psa (17.1)

where pa is the pressure within the air cushion chamber and a the effective cushion area.This type of hovercraft integrates two auxiliary ailerons, left-back and right-back. Theseailerons assist for steering, and for yielding braking effects (17.2). The forces far and falrepresent the forces generated by the right and left ailerons’ air stream, respectively7–12. Thethrust force is generated towards the opposite direction of the main air stream. The propulsionforce generated by the air stream depends entirely on the fluid dynamics in the ducted fan.Thus, it is possible to describe the function of the hovercraft mobility by taking into account thefour forces acting on the vehicle. By applying the Newton’s second law of motion, we describethe acceleration ẍ along the X-axis by the next expression
ẍ = 1

m (fth cos(θth) + far cos(θar) + fal cos(θal)) (17.2)
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Figure 17.2: Top view of air streams and ailerons force direction.

Where θth , θar y θal are the respective angles of each force on the plane XZ. The accelerationcan be represented as a differential of the linear velocity over time in accordance with
dẋ
dt = 1

m (fth cos(θth) + far cos(θar) + fal cos(θal)) (17.3)
The differential can be represented by its discrete form. By assuming a change in time ∆t , wecan define

ẋt − ẋt−1∆t = 1
m (fth cos θth + far cos θar + fal cos θal) (17.4)

By solving for ẋ we have,
ẋt − ẋt−1 = 1

m (fth cos θth + far cos θar + fal cos θal) ∆t (17.5)
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Definition 17.1.1 (instantaneous absolute velocity). The recursive model of the instanta-neous absolute velocity as a function of the propulsive forces is defined by

ẋt = 1
m (fth cos θth + far cos θar + fal cos θal) ∆t + ẋt−1 (17.6)

From previous definition, the equation (17.6) states a model for the linear instantaneous velocity
ẋt in function of the main forces interacting over the hovercraft. In order to define the linearvelocity along Y -axis, we need to take in account the lifting force fs in accordance with

fy = fs −W (17.7)
were W is the net weight of the vehicle. By applying Newton’s second law of motion andsolving for ÿt we have that

mÿ(t) = fs(t)−W (17.8)
as well as,

ÿ(t) = 1
m
(
fs(t) −W) (17.9)

The linear acceleration can be represented in its differential form. Then, by solving for ẏt wehave that
dẏt
dt = 1

m (fst −W ) (17.10)
and

ẏ(t) − ẏ(t−1)∆t = 1
m (fs −W ) (17.11)

ẏt − ẏt−1 = 1
m (fs −W ) ∆t (17.12)

ẏt = 1
m (fst −W ) ∆t + ẏt−1 (17.13)

Equation (17.13) describes the linear velocity of the vehicle along the Y -axis in terms of thelifting force fs and the weight of the vehicle. Finally, a similar analysis can be performed todefine the forces that interact on the vehicle along the Z-axis.



17.1. TRANSLATION VELOCITIES VECTOR MODEL 449Thus, in terms of the second order derivative,
z̈t = 1

m (fth sin θth + far sin θar + fal sin θal) (17.14)
or in terms of the first order derivative,

dżt
dt = 1

m (fth sin(θth) + far sin(θar) + fal sin(θal)) (17.15)
thus, by stating the recursive form, which originally arose from the defined integrals,

żt − żt−1∆t = 1
m (fth sin(θth) + far sin(θar) + fal sin(θal)) (17.16)

and by arranging the time algebraically,
żt − żt−1 = 1

m (fth sin(θth) + far sin(θar) + fal sin(θal)) ∆t (17.17)
hence, the recursive form of the instantaneous żt ,

żt = 1
m (fth sin(θth) + far sin(θar) + fal sin(θal)) ∆t + żt−1 (17.18)

By arranging equations (17.6), (17.13) and (17.18), the direct solution for the linear velocities ofthe hovercraft is described by the following postulate,

Postulate 17.1.2 (velocity vector). The recursive velocity vector model is postulated as a

function of the interacting propulsive forces.


ẋt
ẏt
żt

 = ∆t
m


cos θth cos(θar)cos(θal)00 0 0 1sin(θth)sin(θar) sin(θal)0




fth
far
fal
fs−W

+

ẋt−1
ẏt−1
żt−1

 (17.19)
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17.1.1 Inverse solution

Let ξ̇t = (ẋ, ẏ, ż)> be the velocity vector and, let ut = (fth, far , fal, fs−W )> be the input vectorcomprised of the propulsive forces. Thus, the equation (17.19) is now expressed in the matrixform by
ξ̇t = (∆t

m

)
Q · u + ξ̇t−1 (17.20)

Likewise, let us represent the transition matrix Q by
Q =


cos(θth)cos(θar)cos(θal)00 0 0 1sin(θth) sin(θar) sin(θal)0

 (17.21)
The equation (17.20) computes the linear velocities of the vehicle by controlling the forcesinteracting with it. For instance, by controlling the engine’s acceleration throttle that speedsup/down the ducted fan, then it will generate propulsive forces surface-tangent over the vehicle.Those forces can be controlled by the rudder and the ailerons of the hovercraft to change thevehicle trajectory, Furthermore, to define the inverse solution to obtain the forces vector ut asa function of the Cartesian velocities, by solving the equation (17.20),

Corollary 17.1.3 (vector of propulsive forces). The instantaneous vector of propulsive forces

is deduced as a function of the recursive velocity vectors.

ut = m∆tQ−1(ξ̇t − ξ̇t−1) (17.22)

The proposed solution is fully completed by the equation (17.22), where it is necessary to firstlysolve for the inverse closed form of Q. It is achieved by using the Moore-Penrose pseudoinverse method (see section 1.2.5). Then, Q−1 can be defined as
Q−1 = (Q>Q)−1Q> (17.23)
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Q>Q =


1 c(θth − θr)c(θth − θl)0
c(θth − θr) 1 c(θr − θl) 0
c(θth − θl) c(θr − θl) 1 00 0 0 1

 (17.24)

Hereafter, for readability purposes time indexes were omitted and cos and sin will be repre-sented by c and s respectively. Then, we can define the determinant k = det(Q>Q) as
k = 2c(θth − θr)c(θth − θl)c(θr − θl)− c2(θth − θr)− c2(θth − θl)− c2(θr − θl) + 1 (17.25)

We can solve a matrix P = (Q>Q)−1 using the determinant method as

P = (Q>Q)−1 =


c2(θr−θl)
−k

c(θth−θr )−c(θth−θl)c(θr−θl)
−k

c(θth−θl)−c(θth−θr )c(θr−θl)
−k 0

c(θth−θr )−c(θth−θl)c(θr−θl)
−k

c2(θth−θl)
−k

c(θr−θl)−c(θth−θr )c(θr−θl)
−k 0

c(θth−θl)−c(θth−θr )c(θr−θl)
−k

c(θr−θl)−c(θth−θr )c(θr−θl)
−k

c2(θth−θr )
−k 00 0 0 1

 (17.26)

Finally, the pseudo-inverse Q−1 can be defined as

Q−1 = PQ> =

dgh0
ge i 0
h i f 00001

 ·

c(θth)0s(θth)
c(θr) 0 s(θr)
c(θl) 0 s(θl)0 1 0

 (17.27)

and by developing the matrix operation the following matrix is obtained

Q−1 =

c(θth)d + c(θr)g + c(θl)h0s(θth)d + s(θr)g + s(θl)h
c(θth)g + c(θr)e + c(θl)i 0 s(θth)g + s(θr)e + s(θl)i
c(θth)h + c(θr)i + c(θl)f 0 s(θth)h + s(θr)i + s(θl)f0 1 0

 (17.28)
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d = c2(θr − θl)

−k e = c2(θth − θl)
−k f = c2(θth − θr)

−k

g = c(θth − θr)− c(θth − θl)c(θr − θl)
−k

h = c(θth − θl)− c(θth − θr)c(θr − θl)
−k

i = c(θr − θl)− c(θth − θr)c(θr − θl)
−k

17.2 Angular motion model

It is assumed that the angular velocities and perturbation (internals and externals) forces areclosely related to each other. One example is the strong air stream hitting the lateral sidesof the hovercraft. This air stream causes a set of oscillating turns over time to the vehicle’strajectory. Another example is the side inclination caused be the gravitational forces whenthe vehicle’s swift effects occur. These types of motion affect the sensor readings that causepreventing the precise estimation of the vehicle displacements. In order to model the angularvelocities of the vehicle we need to consider multiple factors that may cause a turn around althree axis of the hovercraft. Let assume that the sum of the perturbation forces will equal oneperturbation force on each plane of a hovercraft. For example, we can define a sum force fdon the XZ plane as shown in figure 17.3. This force will turn the vehicle a long a center ofrotation generating an angular momentum or torque. Analysing the XZ plane we can definea torque τ as
τ = Ixzγ̈ (17.29)

Were I is the moment of inertia of the mass of the vehicle and γ̈ is the angular acceleration.We can express the inertial momentum as I = ∫ r2dm and rewrite equation (17.29) as
τ = ∫ r2dmγ̈ (17.30)
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Figure 17.3: Free body diagram of perturbing forces fd.

where r is the turn radius. In accordance with 17.3, we can also represent the torque as τ = rfpand define an equality as
rfp = ∫ r2dmγ̈ (17.31)

Solving for γ̈ we have
γ̈ = rfd

r2 ∫ dm (17.32)
and

γ̈ = fd
rm (17.33)

Both, the perturbation force fd and turn radius r vary over time. Hence, we represent equation(17.33) as
γ̈t = 1

m

(
fdt
rt

) (17.34)
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dγ̇t
dt = 1

m

(
fdt
rt

) (17.35)
By establishing a constant time increment ∆t , the differential in the equation (17.35) is indiscrete form as

γ̇t − γ̇t−1∆t = 1
m

(
fdt
rt

) (17.36)
Solving for γ̇t we have

γ̇t − γ̇t−1 = ∆t
m

(
fdt
rt

) (17.37)
or

γ̇t = ∆t
m

(
fdt
rt

)+ γ̇t−1 (17.38)
Equation (17.38) defines the angular velocity γ̇ in terms of a perturbation force fd . And extend-ing the analysis to XY and YZ planes, in order to develop a model for the angular velocitiesof the vehicle: 

γ̇t
β̇t
α̇t

 = ∆t
m


ηt/pt
κt/qt
δt/rr

+

γ̇t−1
β̇t−1
α̇t−1

 (17.39)
were ηt , κt and δt are the result perturbation forces in XZ, XY y YZ planes respectively; and
pt , qt y rt the turn radius generated by those forces. The inverse solution of (17.39) can bedefined as 

ηt
κt
δt

 = m∆t

pt(γ̇t − γ̇t−1)
qt(β̇t − β̇t−1)
rt(α̇t − α̇t−1)

 (17.40)
Equation (17.40) is used to compute de perturbation forces acting on the hovercraft with theangular velocities as inputs. The angular velocities can be measure by an inertial sensor inorder to describe the perturbation forces acting on the vehicle.
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