Numerical Modelling in Robotics

Cover Page

Author: Edgar Alonso Martínez García

DOI: Open Access

Language: English - ISBN: 978-84-942118-8-1

Subject: Mathematics and StatisticsTechnology and Engineering


Abstract: Modern robotic systems are tied to operate autonomously in real-world environments performing a variety of complex tasks. Autonomous robots must rely on fundamental capabilities such as locomotion, trajectory tracking control, multi-sensor fusion, task/path planning, navigation, and real-time perception. Combining this knowledge is essential to design rolling, walking, aquatic, and hovering robots that sense and self-control.

This book contains a mathematical modelling framework to support the learning of modern robotics and mechatronics, aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners. The volume exposes a solid understanding of mathematical methods as a common modelling framework to properly interpret advanced robotic systems. Including numerical approximations, solution of linear and non-linear systems of equations, curves fitting, differentiation and integration of functions.

The book is suitable for courses on robotics, mechatronics, sensing models, vehicles design and control, modelling, simulation, and mechanisms analysis. It is organised with 17 chapters divided in five parts that conceptualise classical mechanics to model a wide variety of applied robotics. It comprehends a hover-craft, an amphibious hexapod, self-reconfiguration and under-actuation of rolling and passive walking robots with Hoekens, Klann, and Jansen limbs for bipedal, quadruped, and octapod robots.


Digital format (Open Access): PDFGoogle PlayGoogle Books

Paper format: LuluAmazon.esAmazon.comCreatespace


If you find this book interesting, we would appreciate that you supported its authors and OmniaScience so that books can continue publishing in Open Access

Open Access Support

OmniaScience, 2011-2018 -